PACIFIC JOURNAL OF MATHEMATICS
Vol. 73, No. 1, 1977

LIE ALGEBRAS WITH DESCENDING
CHAIN CONDITION

J. MARSHALL OSBORN

In this note we investigate Lie algebras which satisfy
the descending chain condition on ideals of ideals. We show
that a Lie algebra L satisfies this descending chain condition
if and omnly if the following two conditions hold: (i) L con-
tains a finite dimensional solvable ideal N such that every
solvable ideal of L is contained in N, and (ii) L/N is a
subdirect sum of a finite number of prime algebras satisfying
the descending chain condition. We also show that if L is
a prime algebra with this chain condition then there exists
a Lie algebra B, which is either simple or the tensor product
of a simple Lie algebra with a truncated polynomial algebra,
such that L is isomorphic to a subalgebra of Der B con-
taining ad;.

A decade ago a theory of Jordan algebras with descending chain
condition on inner ideals was developed [3, Chapter IV] which emu-
lates and connects with the theory of Artinian rings. More recently
Benkart [1] studied Lie algebras with descending chain condition on
inner ideals (a subspace B of a Lie algebra L is called an inner
ideal of L if [B, [B, L]] < B). It has not been settled yet whether
a Jordan algebra with DCC on inner ideals necessarily has a nilpotent
radical. One of the purposes of the present paper is to show that
a Lie algebra with DCC on inner ideals has a radical which is solva-
ble and finite dimensional. This follows from the results stated in
the last paragraph since any ideal of an ideal is an inner ideal and
hence DCC on inner ideals implies DCC on ideals of ideals.

It is known that a finite dimensional semisimple Lie algebra M
of characteristic p is not necessarily a direct sum of simple algebras,
but there do not seem to be any results published which express
M in terms of algebras which belong to a more restricted class
than M. A second purpose of this paper is to show that M is a
subdirect sum of prime algebras. Rather than finite dimensionality
the assumption of DCC on ideals of ideals seems to be the most
natural level of generality for this proof.

The results in this paper hold for Lie algebras over a field @ of
any characteristic including 2.

Suppose now that L is a Lie algebra with DCC on ideals of
ideals. We begin with

LEMMA 1. If C is a solvable ideal of L, then C 1is finite
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dimensional.

Proof. We proceed by induction on the index of solvability of
C. If [C,C] =0, then every subspace of C is an ideal of C, and so
by DCC we have dim C < «. For the inductive step, if C* =0
and C** = [C*, C*] = 0, then C* is an ideal of L and dim C*® < oo
as above. Since the quotient algebra L/C*® satisfies the same de-
scending chain condition and since -C/C*' is a solvable ideal of L/C*®
of smaller index, it follows from the inductive hypothesis that
dim C/C® < . Hence dim C < oo.

We call a Lie algebra semisimple if it contains no nonzero solv-
able ideals.

LEMMA 2. L contains o finite dimensional solvable ideal N
which contains-all solvable ideals of L, and L/N is semisimple.

Proof. 1t is sufficient to establish that L contains a maximal
solvable ideal N, since the uniqueness of N and the semisimplicity
of L/N will then follow from the fact that the sum of two solvable
ideals is solvable and that the preimage in L of any solvable ideal
of L/N 1is solvable. The finite dimensionality of N will follow from
Lemma 1. If L does not contain a maximal solvable ideal, it must
contain a properly ascending chain C,c C,c C,c +-- of solvable ideals
of L. -Each C; is finite - dimensional by Lemma 1. Let C = U?°; C,
and note that C'is an infinite dimensional ideal of L.

‘For each positive integer 7 we define D, = {d €C|[d, C;] = 0}, and
we note that.D, is an ideal of L since it is a subspace and since

LD, L], C.] < [[Dy, C, L] + [ Dy, [L, Ci]]
= [D, [E, G S [D; C] = 0.

Furthermore, D, ;rDz 2D,2 --- is a descending sequence of ideals.
By the chain condition there must exist an mteger' m such that
D, = D,,; for all positive integers 4. Then D, = N . D;, and We
see that’ D is the center of C. .Then every subspace of D, is an
ideal of C. By the descendmg chain condition, dim D, < oo,
Consider the map of C onto the ring of . endomorphlsms of the
subspace C,. given by @(¢c) = ad, lo,- The kernel of @ is exdctly D,.
Since dim C = o and dim D,, < oo, the dlmensmn of the image of @
must be infinite. But dim C, < oo and so the dimension of the ring
of endomorphisms of C,, is also finite. ‘This contradiction shows that
L mist have had a maximal solvable ideal, to complete the proof.

LEMMA 3. Let L be semisimple and let B be a minimal ideal
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of L. Then either B is sitmple or else @ has characteristic p and
B=B,Q W, where B, is a simple Lie algebra and where W, =
Oz, ---, x,)/(x?, ---, x2) 1is the truncated polynomial algebra on k
indeterminates.

Proof. If B is a minimal ideal of L, then the elements of ad;,
act on B as derivations and under this action B is derivation simple.
Also the chain condition on L implies DCC on the ideals of B. Thus
B satisfies the hypotheses of Block’s theorem [2]. Then the con-
clusion of Lemma 3 holds since it is just the conclusion of Block’s
theorem.

If L is semisimple, the sum S of all its minimal ideals will be
called the socle of L.

LEMMA 4. If L is semisimple;, S is a direct sum of the minimal
ideals of L. Hence L has only a finite number of minimal ideals.

Proof. We construct two sequences of ideals B, B, --- and
C,, C, C,, --- inductively by taking C, = S, by choosing each B,; for
7=1 to be a minimal ideal of L contained in C,_,, and by choosing
each C; for ¢ =1 to be an ideal of L which is maximal with respect
to being contained in C,_, and not containing B,. The C,’s form a
strictly descending chain of ideals which must stop because of the
chain condition. The only way that the process can stop is that
C, = 0 for some integer k. If %k is the smallest such integer, it is
easy to verify that S is a direct sum of B, B,, ---, B,.

A Lie algebra will be called prime if it does not contain two
nonzero ideals whose product is zero. A prime algebra cannot con-
tain two distinct minimal ideals B,, B,, since then [B,, B,JcB,N B, = 0.
Thus a prime algebra either contains a unique minimal ideal or no
minimal ideals. In the presence of our chain condition, prime algebras
must contain a unique minimal ideal. Thus in this paper L is prime
only if it contains a unique minimal ideal B such that |B, Bj# 0
(and hence |B, B] = B). Conversely any Lie algebra with a unique
minimal ideal B satisfying [ B, B] = B is prime, since for any nonzero
ideals C, D of L we have [C, D|2{B, B|= B+ 0.

LEMMA 5. If L is semisimple, then L is a subdirect sum of a
finite number of prime algebras.

Proof. Let B, ---, B, be the minimal ideals of L, and for 1 <
1 < n let C; be an ideal of L which is maximal with respzct to not
containing B;. Since every ideal D of L properly containing C, must
contain B; by the choice of C,, wsa see that every ideal D/C, of L/C,
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must contain (B, + C;)/C,. Thus (B, + C,)/C; is the unique minimal
ideal of L/C,. Hence L/C, is prime.
If N, C; # 0, then this intersection must contain one of the
minimal ideals B; of L. But B; £C; so B; £, C,. Hence
»,C,=0. It follows that the homomorphism

L— 3@ L(C,

defined by composing the natural homomorphisms L — L/C; is a faith-
ful representation of L as a subdirect sum of prime algebras.

LEMMA 6. If L is prime with minimael ideal B, then L is iso-
morphic to a subalgebra of Der B containing ads.

Proof. Since ad; restricted to B is a subalgebra of Der B, the
natural map@: L — ad.|; is a homomorphism of L into Der B. Since
[B, B] # 0, the restriction of # to B is not zero. Hence the kernel
K of 6 is an ideal of L not containing B, giving K = 0. Thus 4 is
an isomorphism.

We have proved the forward direction of our

THEOREM. A Lie algebra L satisfies the descending chain con-
dition on ideals of ideals ©1f and only tf it satisfies both the con-
ditions

(i) L contains a finite dimensional solvable ideal N such that
every solvable ideal of L is contained in N,

(il) L/N s a subdirect sum of o finite number of prime algebras

satisfying the descending chain condition.
If L is a prime algebra with descending chain condition on ideals
of tideals, then L has a unique minimal ideal B and L is isomor-
phic to a subalgebra of Der B containing adz. Also, B is either «
simple algebra or is the temsor product of a simple algebra with «
truncated polynomial algebra.

To show the reverse direction of the first statement of this
theorem, let L be Lie algebra satisfying (i) and (ii). Since every
ideal of an ideal of L/N is uniquely determined by its images in
each of the prime algebras of the subdirect sum, it is easy to see
that L/N must also satisfy DCC on ideals of ideals. And then, since
N is finite diminsional, I must satisfy the same chain condition itself.

The standard example of a finite dimensional Lie algebra which
is semisimple but not a direct sum of simple algebras is constructed
as follows. Let A be the Lie algebra of all » X p matrices over a
field of characteristic p, and let Z be the center of A. Then A/Z
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is semisimple and prime, but not simple. Its unique minimal ideal
(and only proper ideal) is the image under A — A/Z of the matrices
of trace zero in A. '

This example can be modified to show that a finite dimensional
semisimple Lie algebra of characteristic p is not necessarily a direct
sum of prime algebras. Consider 2p by 2p matrices which have
been partitioned into four p by p blocks, and let A’ be the Lie
algebra of such matrices which have only zeros in their two off-
diagonal blocks. If A” is the subalgebra of A’ of matrices in A’
of trace zero and if Z" is the center of A”, then A”/Z" is a simisimple
Lie algebra which is not a direct sum of prime algebras.
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