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BOUNDED MONOIDS

WiLLiAM R. Nico

Monoids whose left S-sets X always satisfy sl(X) < h(X)
are characterized in terms of chain conditions on principal
left ideals.

For S a monoid, a left S-set (S-operand, S-system) is a set X
on which S operates from the left and such that 1z = z forallz e X
where 1 ¢ S is the identity. For any xe X, an S-subset of X of the
form Sz is called an orbit of X. It is well-known that every left
S-set is a union of orbits and that, up to isomorphism, orbits are
characterized by left congruences on S (see [1], Chapt. 11).

In order to study the way orbits fit together in an S-set X the
author has in [2] and [3] constructed two chains of S-subsets (to
be defined more fully below) of an S-set X, each having the property
that the subquotients are essentially 0-disjoint unions of orbits. The
lengths of those two chains are denoted by A(X) and si(X). In [3]
it is shown that when A(X) is finite, then si(X) < h(X).

Let us call a monoid bounded if for every S-set X, one has
sl(X) £ (X). Then a main goal of this paper is to show that a
monoid is bounded if and only if there is a positive integer n such
that the monoid contains no proper chain of principal left ideals of
length exceeding n.

1. Preliminaries. Let X be a left S-set. An S-subset Y of
X is a (possibly empty) subset Y of X such that sye Y forallseS
and ye€Y. If X and Y are both orbits, we may say that Y is a
suborbit of X. If Z is an S-set, a homomorphism ¢: X— Z is a
funetion such that ¢(sx) = s¢(x) for all xe X and s€S. A congruence
~ on an S-set X is an equivalence relation such that x ~ y implies
sx ~sy for z,ye€ X and s€S. Denoting the set of congruence
classes by X/~ one finds that X/~ is a left S-set under the induced
action and is a homomorphic image of X under the natural map
X—X/~.

If Yc X is an S-subset, define a congruence ~, on X by setting
x~ya if and only if x =2 or z,2'€Y. Let us denote X/~
simply by X/Y. If Y = @, the class of Y in X/Y is denoted by 0.

If X is a left S-set, call «, ¥y € X separated in X if there is no
z€ X such that x, y€Sz. Then let us define a descending chain of
S-subsets of X by setting X, =X, X,,, = U{SxN Sy: 2, ye X, are
separated in X;} for 4> 0, and X, = N{X.:7 <o} for ¢ a limit
ordinal. Then sl(X), the saturation length of X, is the first ordinal
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a such that X, = X,,,. In general it need not be that X, = @&, but
whenever S satisfies the ascending chain condition on orbits, it must
be that X, = @ (see [2] and [3]).

Alternately, if one has an S-subset Y X, then an element
re X is called Y-distinguished if for every ze X either x €Sz or
zeSx or Sx NSz Y. The orbit St X is called Y-distinguished
if «' is Y-distinguished for every 2’€Sx. Then one can define an
ascending chain of S-subsets of X by letting X° = @, X' = U{Sz:
Sz is an X‘-distinguished orbit of X} U X* for ¢ >0, and X° =
U{X*:7 < o} if o is a limit ordinal. Let A(X), the height of X, be
the first ordinal B such that X? = X?*!, - (Note: The definition of
Y-distinguished orbit here is more restrictive than that used in [3]
and corrects the definition given there in the sense that some (cor-
rectable) gaps in proofs these are trivially closed by the altered
definition, the current definition being what the author had in mind
in [3]. The principal difference is that in [3] z' = x, whenever x is
an orbit, while here that need no longer be so. Here h(X) is at least
as in [3].) In general X’ X, but if S satisfies the descending chain
condition on principal left ideals, then one always has X*=X (see [3]).

Throughout the rest of this paper we  shall assume that S
satisfies the descending chain condition on principal left 1deals This
assumptlon is justified by the following proposition.

PROPOSITION 1.1. If S does mot satisfy the descending chan
condition on principal left ideals, then there is a left S-set X such
that WM(X) = 1, but such that sl(X) = 2.

Proof. Suppose there is an infinite proper descending chain of
principal left ideals in S. Denote it by S22 Sa, 2 Sa, 2 ---, and
set @, =1. Let I ={xeS: for all ¢, @, ¢Sx}. Then if 1% @, I is
a left ideal of S which is. maximal with respect to the property
that for all ¢ = 1,2, --- one has a;¢I. Form the left S-set S x N,
where N=1{0,1, ---}, by letting s(¢, n) = (st, n) for all s,teS and
neN. ‘ . :
Now let X = (S X N)/~ where ~ is the congruence on S X N
given by (s, m) ~ (¢, n) if and only if either (i) s,t€l or (ii) s =t¢
Sa, for some k and m, n < k. (In (ii) one wants to use the largest
possible %.) : ‘ :

Let [y, n] € X denote the class of (y,n)eS X N. . If zel, then
since [z, m] = [z, n] = [#/, n] for all m, ne€ N and all 2’ €I and since
s[z, m] = sz, m] = [z, m], we can denote the class [z, m] simply by
0. (If I = @, all comments about 0 below are vacuous.) The S-set
X can be visualized schematically as in Figure 1, in which the action
by S moves things downward along the indicated edges.
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[1,0] 1,1 [1,2] 1,31

la, 01=[a, 1' ¢ °Ia;,2]

[az,0]=[as, 1]=[a,2] ¥ [23]

FiGure 1

If 0+ [y, n]€X, then there is some m such that y < Sa, but
y ¢ Sa,,, UI. By construction of I, there must be some q such that
a, € Sy. Without loss of generality we may assume that ¢ > m and
g >mn. If [y, n] = [y, q], we must have n = ¢ or n, ¢ < m, both of
which are impossible by choice of ¢q; hence [y, n] # [¥, ¢]. However,
since n < ¢, we find that 0 + [a,, q] = [a,, 7] € S[y, n] N S|y, ¢]. Hence
for every nonzero orbit S[y, n] of X, there is an orbit incomparable
to it (under inclusion) with which it has nonzero intersection. This
says X' ={0} (or X'= @ if I = @) and that no [y, »] # 0 is X'-
distinguished. Hence X* = X', and n(X) = L. ’

On the other hand one easily sees that the elements [1, n]e X
are all distinet for n €N and that these are the generators of the
maximal orbits of X. Moreover, it is easy to see that for n = m
one has S[1, ] N S[1, m] < S[a,, 0] U {0}. While [a,, 0] € S[1, 0] n S[1, 1].
Hence X, = S[a,, 0] U {0}, which is either an orbit or the disjoint
union of two orbits (depending on whether or not 0 € S[a,, 0]). Thus
X, = @, which gives sl(X) = 2. ‘

Hence we will assume in what follows that S satisfies the
descending chain condition on principal left ideals. v

For any monoid S we now define two functions from S to
NU{w}. Let h =hs:S — NU{} be given by h(x) = sup {n: there
exists a,, @, +-+, a,€S such that Sx = Se, 2 Sa, 2 --- 2 Sa,} for
x€S, and let d =ds: S— NU{c} be given by d(x) = sup {n: there
exist a, ay -+, a,€S such that Sr=Se, & Se, & --- & Sa,} for
xeS. We can call h(x) the height of x in S and d(x) the depth of
x i S.

2. Bounded monoids. We wish to characterize monoids S such
that sl(X) £ h(X)-for every S-set X.. The following theorem justifies
calling such monoids bounded, and we may take any one -of its
equivalent conditions as a definition of bounded monoid.

THEOREM 2.1. For a monoid S the following are equivalent.
(1). si(X) = KX) for every S-set X.



464 WILLIAM R. NICO

(ii) There exists an integer n such that S contains no proper
chain of principal left ideals of length exceeding n.

(iii) S satisfies the descending chain condition on principal
left ideals and h(X) < o for every S-set X.

(iv) h(a) < o for every acS.

(v) S satisfies the descending chain condition on principal
left tdeals and dy(a) < « for every ac T = S/I wherel = {xecS: Sx
18 @ minimal left ideal}.

Proof. One sees immediately that (ii) implies (iv) and (ii) implies
(v).

That (iii) implies (i) follows from Theorem 5 of [3] provided one
observes that the descending chain condition on principal left ideals
of S implies that every left S-set satisfies the descending chain
condition on orbits (the hypothesis used in [3]). This follows since
any chain Sz, > Sx,D --- of orbits in an S-set X gives rise to a
chain of principal left ideals S = Sa,>Sa,>--- in S where a, =1
and @, € Se, is such that a,.,2, = 2;,, for 1 =1. Thus if ¢: S— X
is the homomorphism of S-sets given by ¢(s) = sx, for seS, then
é(a,) =z, for all t =1,2, ---. Since the chain of left ideals Sa,>
Sa,D - -+ must terminate, so must the chain of orbits Sx, > Sz, D ---.

To see that (iv) implies (ii) one need only observe that since
S = S1 is a principal left ideal containing every other principal left
ideal, one can have no proper chain of principal left ideals of length
exceeding h(1).

To show that (v) implies (iv) it suffices to show that A(l) < <.
Now I = {x€S:Sx is a minimal left ideal in S} is a two-sided ideal
in 8. In T = S/I, denote the image of x€S by £ T. Let a,=1,
@y, -+, @, €S be such that Sa, 2 Sa, 2 --- 2 Sa,. Since S satisfies
the descending chain condition on principal left ideals we may
assume that Sa, is minimal, i.e., that a,€I. Then in T one has
Ta, 2 Ta, R +-- 2 Ta,_, 2 {0}. This says that » < d,(0). Hence, in
turn one can conclude that A(l) =sup{n:S=8a, 2 --- 2 Sa,} =
d,(0) < =, which establishes (iv).

To show that (iv) implies (iii) we observe that since (iv) implies
(ii), S must satisfy the descending chain condition on principal left
ideals. We now show that for every S-set X one has h(X) < (1) = n.
To do this let X be an S-set and for x € X, let hy(x) = sup{n: Sx =
Se, 28,22 Sz, for z, --+,x,€X}. If ¥:S— Sz is the homo-
morphism of S-sets given by +(s) =sx for s€8S and ze€X, and
if Sx = Sx, 28x, 2 :-- =2 Sx,, is a proper descending chain of sub-
orbits of Sz, then there are a, ---, @, €S such that ¥(a,) = «; for
4=1, ---, m and such that S = Sa, 2 Sa, 2 --- 2 Sa,,. Hence, since
we may take a, = 1, this shows that m < h(1) = n. Therefore for
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every zc X, one finds that Zy(x) £ n. Let X(k) = {x€ X: hy(x) £ k}
for k=1, ---,n. Hence X(1)c X@2)cC--- C X(n) = X.

To complete the proof that A(X)<n, we now show by induction
that X(k)c X* fork =1, ---, n. We observe first that h(sx) < hy(x)
for all xe X and all s€S. Hence X(k) is an S-subset of X for all
k=1,.-.,n. Since X(1) must be the union of the minimal orbits
of X, one finds that X(1)c X*. Now if X(k)cX* and if xe X(k+1)
with z ¢ X*, then sx must be an X(k)-distinguished orbit (for every
proper suborbit of Sx must lie in X(k)). Hence Sx must be an
X*-distinguished orbit, which shows that xe X*"!, and hence that
Xk + 1)c X** as desired. But thus X"D X(n) = X, which says
that &(X) < n.

Finally we show that (i) implies (ii). By virtue of Proposition
1.1, we know that S must satisfy the descending chain condition on
principal left ideals. We now complete the proof that (i) implies (ii)
in two steps. First we show that if there is a proper chain of
principal left ideals of S of length %, then there is a left S-set V,
such that si(V,) = h(V,) = n. Second we show that if such V, can
be constructed for all » = 1, then we can construct a left S-set X
such that A(X) = @ while sl(X) = w + 1, where w in the first infinite
ordinal. Since this contradicts (i), it must be that there is a positive
integer » such that S contains no proper chain of principal left ideals
of length exceeding m, which is the statement of (ii). We now
proceed with the construction.

Suppose that Se, & Se, & Sa; & --- & Sa, is a proper chain of
principal left ideals. Let U] = {x € S: Sx is a minimal left ideal}, and
for 1<i<n—1let Uy,=U;U{xeS: Sxr is minimal such that
xe U}, If U,== S, then U; & Ui, since S satisfies the descending
chain condition on principal left ideals. However, we observe that
a, € U}, and inductively, that if a; ¢ U,_,, then a;,, ¢ U; for 2=k <
n — 1. Hence we have a proper chain of left ideals U/ & --- & U,.

Observe now that if xe U, and xz¢ U;_, for 2=k < n, then
there is some y e U,_,NSx such that y¢ U,_,. (Here and below we
let U;= @.) This is so because x ¢ U;_, implies that there is an
element y € Sx such that Sy & Sz and such that y ¢ U;_,. Choosing
y so that Sy is minimal with respect to this property implies that
ye Ui,

Let a,e U, such that a,¢ U,_,. Using the above observation
inductively, one finds a,€ U; for 2 =1, ---, », such that a,¢ U;_, and
such that Se, & Se, & --- & Sa,,.

Let us now consider the left S-set U, =U.,/U,. Denote the image
of U; in U, under the natural homomorphism by U, fors =1, ---, n,
and denote the class of U; by 0. Hence we have a proper chain of
S-subsets of U, given by {0}=U, &S U, & --- & U,. We may
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continue to write nonzero elements of U, the same as elements of
U,; thus we write a,e U, for 1 =2, «--, n.

Finally we form the left S-set U, X {1, ---, 2"} by letting
s(z, @) = (sx, @) for se8S, xeU, and 1 < a < 2", and then we set
V.= (U, x{1, ---, 2"})/~ where ~ is the congruence relation given
by (x, @) ~ (y, B) if and only if x = y e U* for some k and 2" *p <
a, B2 %p + 1) for some p with 0 < p < 2%, (One wishes to use
the smallest possible % here.)

Observe that this implies that if xeU, and xz¢ U,_,, then
(x, @) ~ (¢, B) only when @ = B, while for x =0, i.e., x€ U,, (, @) ~
(2,8) for all 1< a,B<2"'. We can picture V, as a binary tree
such that every path from a leaf to the root looks like a copy
of U,. See Figure 2. Denote the class of (x, @) in V, by [z, a].
We have a natural epimorphism of S-sets #: V,» U, given by
[z, a]) = =.

[a,, 11 le,21  [2,31 la,4 a5l [e,61 [a,71 I[a,8]

) [an—l» 1= [an—b 2] [an-—b 71 =[¢n_1, 8]

[an—h 3]= [an-b 4] [an-—lr 5]= [ah—l) 6]

[dn_.g, =ree= [an_zy 4] [dnhz, 5]=-+e=[an-2, 8]

[an—3r 1] == [an-S) 8]

FIGURE 2

Let us now record properties of V, in the following lemmas.
By convention U, = @.

LeMMA 2.1.1. Let [z, a]l ez (U,) with [x, a] ¢ 7 *(U,_,) for some
1<k=mn.

(i) For every ly,BleV, either [z, a]leSly, Bl or S[x, a]ln
Sly, Blc n¥(U,-). Thus [z, &] is =~Y(U,_,)-distinguished.

(ii) [y, Blen ™ (U,) with [y, Bl ¢ (Us_.), then either S|z, a] =
S[y, Bl or [z, @] and [y, B] are separated in n (U,) and S[z, a] N
Sly, Bl 7 (U,-0)-

Proof. If [z, 7] e S[x, @] N S[y, 8], then by construction of V,,
[2,7] = [2, @] = [#, 8] and 2ze Sx N Sy in U,. But zec U, implies that
2eU, If z¢ U,_,, then by construction of U,, Sx = Sz. Thus
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[z, a] € S[z, ] = S|z, a] c S[y, B]. Hence if [x, a]¢ S[y, B], then
ze U,_,, which says S[z, @] N S[y, 8] € #7(U,-,). This gives (i).

For (ii) suppose [z, «], [y, Ble S[w, 6] for some [w, d]ex " (U,).
Then as in proof of (i) we show S|z, @] = S[y, 8] = S[w, 6]. Hence
if [z, «] and [y, B] are not separated in 77'(U,), then S[z, a] = S[y, B].
This gives (ii).

LeMMA 2.1.2. (i) For 1=k=n—1, {[@a,, 2'» +1J: 0 p <
2N (Vo S (Upos).

(i) sV =mn.

Proof. (i) implies (ii), since (i) for k¥ =mn — 1 implies that
6 # (V) o™ (U,) = {0} which implies (V,), = @. Thus sli(V,) = n.

We establish (i) by induction on k. For k=1, we see by
Lemma 2.1.1 that the set {[z, a]: [z, a]lex*(U,) =V, but [z, a]¢
7 YU,.,)} generates maximal orbits in V, and that the intersection
of orbits generated by a separated pair of elements is contained in
~%U,-,). Hence (V,),cn ™ (U,_).

On the other hand, [a,, 20 + 1] and [a,, 2(» + 1)] are separated
in V, for 0=p<2* by Lemma 2.1.1. Thus [a,,2p + 1]¢
S[a,, 20 + 11N Sla., 2(p + )] (V,),.. This gives (i) for the case
k=1

Suppose by induction that (i) is true for 1<k <n—1. We
establish it for & + 1.

Since (V,),cn*(U,_.), we see that if [z, @] and [y, Ble (V.
are separated in z7(U,_,), then they are separated in (V). and
by Lemma 2.1.1 Sz, @]n S[y, Blcz¥(U,_,)). Thus (V,),.C
T (Up—trrn)-

Finally, if {{@,_i, 2*» + 1]: 0 < » < 2" * Y} < (V,):, We observe by
Lemma 2.1.1 that [a,_:, 2*(2p) + 1] and [a,_., 2*@2p + 1) + 1] are
separated in (V,), for 0= » <2 *2% Thus [a@, ;. 20 + 1]€
S[@n_1, 252p) + 1] N S[ap_i, 2¥@p + 1) + 1] C(V, )4y for 0 < p < 277572,
This completes the lemma.

LemMAa 2.1.3. (i) For 1=2k<n—1, (V)roa ¥ U, but
[a’k+1y 1] e (Vn)k' V

(ii) MV, =mn.

Proof. To see that (ii) follows from (i) we see that when & =
n —~1 we have V,2(V,) " 'Dzx Y (U,_,). But by Lemma 2.1.1 every
remaining element in V, will be 7#7%(U,_,)-distinguished and hence
(V) H-distinguished. This gives (V,)* = V,, which says a(V,) = ».
We establish (i) by induction on k. For k=1, #7Y(U,) = {0}, a
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fixed point, so that (V,)' D {0} = #~(U,). However, by Lemma 2.1.1,
[as, 1] and [a,, 2" + 1] generate orbits which are incomparable under
inclusion. Yet 0 = [a, 1] € S[a,, 1]1 N S[a,, 2"* + 1]. This assures us
that [a,, 1] (V).

Suppose by induction that (i) is true for 1 <k <n — 1. Thus
(V.)FoznY(U,). By Lemma 2.1.1 every element of #7(U,,,) is either
in #7(U,) or is w %U,)-distinguished. Hence if [z, a]¢(V,)* but
[x, @] e 7™ (U,,.), then Sz, a] is a m~'(U,)-distinguished orbit, and
hence a (V,)*distinguished orbit. Thus [z, a] € (V,)**!, which gives
T Uss) C (V)4

On the other hand, if [a,_, 1]¢(V,)*, then since [a;., 1]l€
S[y12 1] N S[@psey 277*7* + 1] and since S[ay., 1] and S[a,,,, 2°77% + 1]
are incomparable under inclusion, we see that [a,.,, 1] ¢ (V,)*". This
concludes the induction.

Finally, to complete the proof that (i) implies (ii) in Theorem
2.1, let us suppose that S contains chains of principal left ideals of
all lengths. Thus for each # =1 we can construct an S-set V, as
above. Notice that each V, has a fixed point 0,€V,. Let X be
the 0-disjoint union of the {V,:n =1}, that is, X = (U, V.)/~
where Usy., V, is the disjoint union of the V, and where ~ is the
congruence on this disjoint union given by v~ ¢ if and only if
v=2 or v=20, and v = 0,, for some m and =.

To compute h(X) one finds that X'= {0} and that X*=
(U, (V)¥)/~. Thus for every integer k one has X* =+ X, but
Up, X* = X. This gives h(X) = o.

However one also sees for every integer k that {0}e X, =
(Us (Voi)/~. Hence {0} = N X, =X,. But then X, = @,
which says that si(X) = o + 1 > h(X) contrary to (i). This completes
the proof of Theorem 2.1.

REMARK. To see that the result fails if one simply demands
that S satisfy both the ascending and descending chain condition on
principal left ideals, or even both chain conditions on orbits, or if
in (v) one only demands that d(a) < - for all ¢ €S, we can consider
the following example. Let C, = {a,, a%, ---, az™*, ar = 0,} be finite,
cyclic, nil semigroups. Let S = (Ug., C,) U {1} where 1 is a two-sided
identity and where we set afal, = 0,, for m #* n and multiply as in
C, otherwise. Then S satisfies both chain conditions on principal
left ideals and on orbits and every e €S is such that d(a) < «. But
h(l) = = and S chains of principal left ideals of arbitrary length.

3. Monoids bounded by 7. In order to analyze in more detail
what can happen let us call a monoid S bounded dby n = 0 if for
every S-set X we have sl(X) £ h(X) < sl(X)+n. In [3] it was
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shown that for every given positive integer » there is a monoid S
and an S-set X such that A(X) = sl(X) + =n.

LEMMA 3.1. If S is a bounded monoid and if S contains
proper chain of principal left ideals of length n + 2 for an integer
n = 0, then there exists a left S-set such that h(X) = sl(X) + n.

Proof. Let us note first that the condition of the lemma is
equivalent to the statement that A1) =Z» + 2 in S.

Since S is bounded, it satisfies both chain conditions on principal
left ideals. We can use a construction similar to that used in
Proposition 1.1 to create an S-set X such that si(X) =2 and h(X) =
n + 2. Suppose that we have S¢, 2 Sa, 2 --- 2 Sa,,, a proper
chain of principal left ideals. Since S is bounded, we may assume
that the a, are chosen so that h(a,) = % + 2 in S. This guarantees
that Sa, contains no longer proper chain of principal left ideals, that
Sa,,; is minimal, and that each Sa, is minimal among principal
left ideals properly containing Sea,,, for + =20, ---, n. Now as in
Proposition 1.1 we set X = (Sa, x {0, --+, n + 1})/~ where (x, @) ~
(x,8)ifxeSa;and a, 817 for 0 < ¢ <n + 1. We denote the class
of (#, @) in X by [z, a].

In X the set {[a, @: 0 < @ <n — 1} is a set of generators for
all the distinect maximal orbits of X. As in Proposition 1.1 we see
that X, = S[a,, 0] since [z, 7] € S[a,, @] N S[a,, B] for a +* £ implies
that [z,7] =[#, 0] and x€ Se, and since [a,, 0] € S[a, 0] N S[a, 1]
Thus since X, is an orbit, X, = @, which gives sl(X) = 2.

In order to show that A(X) = n + 2, we can first observe that
if we define a function h,: X — N as in the proof that (iv) implies
(iii) in Theorem 2.1, then hx([a,, @]) = hs(a,) = n + 2. Thus as in
the proof of Theorem 2.1, we can conclude that A(X)=n + 2. It
now suffices to show that for # <n + 2, we have [a,_,_;, 0] ¢ X*.
This we do by induction on k. For k = 0, there is nothing to prove
since X°= @. Thus suppose that for 0 <k <m+ 1 we have
[@,_i_iy 0]¢ X*. By construction of X we see that [a,, . 0]=
[@n_s_y m» — 1 — k] S[ay, n — 1 — k]. However [a,_, ;, 0] € S[a,_,_ 0],
and X, S[@,_.—1, 0] and S[a, » —1 — k] are incomparable under
inclusion. Thus since [@,_,_i 0] € S[@,_o—i, 0] N S[a, » — 1 — k] and
since [@,_, 4, 0] ¢ X*, we find that [@,_,_ 441, 0] € X**!, which completes
the induction. Hence letting k¥ =n + 1 we get [a, 0] ¢ X" while
X = X**, so that h(X) = n + 2 as desired.

We can now characterize monoids bounded by n.

THEOREM 38.2. Letn = 0 be an integer. A monoid S s bounded
by n if and only if S contains nmo proper chain of principal left
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ideals of length exceeding n + 2. Furthermore, if there is a chain
of this length, then there is a left S-set X such that h(X) =
sl(X) + n.

Proof. By Theorem 2.1 we know that sl(X) < h(X) for every
left S-set X if and only if the lengths of chains of principal left
ideals in S are bounded. If S contains a chain of principal left
ideals of length » + 2, then Lemma 3.1 produces a left S-set X
such that si(X) < h(X) = sl(X) + »n. Thus the inequality A(X) =<
si(X) + n for every S-set X implies that S contains no proper chain
of principal left ideals of length exceeding n + 2.

It remains to show that if every chain of principal left ideals
in S is of length not exceeding » + 2, then for every left S-set X
we have h(X) < sl(X) + n. Now as in Lemma 3.1 we observe that
our condition says that A(1) <% + 2 in S and as in the proof of
Lemma 8.1 and Theorem 2.1, this implies that A(X) < n + 2 for
every left S-set X. Since chains of principal left ideals are bounded
in S, one finds that S satisfies both chain conditions on orbits. Thus
si(X) =0 if and only if X = @, which is if and only if A(X) = 0.
Hence we need only consider the case sl(X)=1. But si(X)=1
implies that X is a disjoint union of orbits. Thus it suffices to
suppose that X is a single orbit, say, X = Sx,.

As in Lemma 3.1 and the proof that (iv) implies (iii) in Theorem
2.1 we can define hy: X — N and find that hy(z,) < k(1) < n + 2 and
that X, D{xe X:hx(x) <k} for £ > 0. Thus X*"D{x e X: hy(x) < n}.
Suppose now that x¢ X", Then hy(x) =n + 1. If helx) =n + 2,
then since hx(x) < hy(x,) < n + 2, we must have Sx = Sz, = X. Thus
yeSx for all y¢ X", and x is X"-distinguished. If hx(x) =2 + 1
and if ¥ ¢ X* is such that x ¢ Sy, then we must have hyz(y) = n + 1.
Thus either y € Sx or h,(z) < n for all ze Sx N Sy since Sz N Sy & Sx
and SxNSy < S,. But this says SxNSyc X". Hence every element
of X is X"distinguished. Therefore X = Sz, is an X"-distinguished
orbit so that X = X**', This shows that A(X)=n + 1 =n + sl(X)
as desired.

4. Further properties. Let S be a bounded monoid and let
h(l) = n, where h is the height function on elements of S. Let
I, ={xeS:h(x) <k}, L < k<mn Then we can observe the following
properties of S.

PROPOSITION 4.1. Let S, h, n, and I, be as above.

(i) For all x,yeS, one has h(zy) < h(z) and h(xy) < h(y).
(ii) FEach I, is o two-sided ideal in S.

(iii) I,_, comsists of the monunits of S.
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(iv) ze€S is @ unit ¢f and only tf h(s) = h(l) = n.
(v) Ifx_Fy in S, then h(x) = h(y).

Proof. (i) Since xzy € Sy, it is clear that h(zy) < h(y). On the
other hand, since one has an S-map ¢: Sx - Sxy given by ¢(¢) = ty
for t e Sz, the inverse image of any proper chain of principal left
ideals contained in Sxy gives rise to such a chain contained in Sx.
Hence h(xy) = h(x).

(ii) By (1) if h(x) £ k, then h(ax), h(xa) < h(x) < k for all a e S.
Thus each I, is a two-sided ideal.

(iii) and (iv). For z€ S, h(x) = k(1) = = if and only if Sz =S,
i.e., if and only if x has a left inverse. But if ¢ € Sis a left inverse
of x, then ax = 1 and by (i) n = h(1) = h(ax) < h(a) < n, so that a
also has a left inverse. Thus xa = 1 and both are two-sided units.

(v) If x_Fy in S, then SxS = SyS so that wxeI, if and only
if yelI, for 1<k <n. But since xel, for k = h(x) and y eI, for
k = h(y) we get h(x) = h(y) as desired.

We should observe that S being bounded is not a strong enough
condition for S to satisfy # = 2. If S= TU/{l} where 1 is an
identity and T is a simple, idempotent free semigroup which contains
a minimal left ideal, then S is bounded (in fact, A(1) = 2), but
S+ Z (see [1], v. 2, Ex. 1, p. 93).

Suppose now that S is a finite monoid. Then certainly S is
bounded, and the bounds expressed in Theorem 3.2 apply to any
S-set. Suppose further that we consider S as a left S-set over
itself. Then since S is a single orbit, we always have si(S) = 1.
However, the height of this S-set need not be 1, and in fact the
difference h(S) — sl(S) gives some measure of the complexity of the
left ideal structure of S. If S is ecyeclic, then A(S) = si(S) = 1.
However, we show in conclusion that for some S, the difference
n(S) — sl(S) attains the limit imposed by Theorem 3.2.

PROPOSITION 4.2. Let n = 0 and let T,,, be the monoid of all
transformation on the set {1, ---, n + 2} (with functions written on
the left). Then letting T,., act on itself from the left we see that
si(T,y) =1 and K(T,.,) =n + 1.

Proof. That sl(T,,,) =1 follows since T, is a single orbit
over itself. Also since T,,, satisfies the hypotheses of Theorem 3.2
and is an orbit over itself, we may conclude as a corollary to the
proof that A(T,,.)<n+1. Thus it suffices to show that (T,.,)"# T, ...

Let Oy vy Ky 182, tt %y Bn+1 € Tn+2 be given by
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x 1<z=k—1
r 1225k
a,(x) = and Bx)=k—1 =k
E k<
k E<x

for 1=<2=<n+ 2. One easily verifies that a,a,,, = @, and that
B =, for 1<k <mn. Furthermore, one sees that all the
principal left ideals T, ., 1<k =<n+1, and T,..5, 2=k<n+1
are distinct since two elements of T',., generate the same principal left
ideal if and only if they induce the same partition on {1, ---, n + 2}.
(See [1], v. 1, §2.2.) Thus one has T, @, 2+ 2 T, 2 T,.%,
Tn+218k+1 = Tn+2ak for k= 1; e, M, and Tn+sz+1 and Tn+2ak+1 are
incomparable under inclusion for k=1, --.,n. Thus since a,¢
ToislhiiN TpioBiyy for k=1, ---, n, we can conclude by induction
that @, ¢(T,.)*"* for k=1,---,n. Hence a,,, ¢(T,.,)" so that
(T,)" # (T,.s). Therefore h(T,,,) = n + 1 as desired.

REFERENCES

1. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 1 and
Amer. Math. Soc., Providence, 1961 and 1967.

2. W. R. Nico, A study of operands im terms of maximal generalized orbits, J.
Algebra, 30 (1974), 473-484.

3. , Height of operands over momnoids satisfying the d.c.c. om orbits, Proc.
Amer. Math. Soc., 48 (1975), 313-320.

Received November 23, 1976 and in revised form September 2, 1977.

TULANE UNIVERSITY
New OrLEANS, LA 70118





