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BOUNDED MONOIDS

WILLIAM R. NICO

Monoids whose left S-sets X always satisfy sl(X) ^ h(X)
are characterized in terms of chain conditions on principal
left ideals.

For S a monoid, a left S-set (S-operand, S-system) is a set X
on which S operates from the left and such that lx = x for all x e X
where 1 e S is the identity. For any xeX, an S-subset of X of the
form Sx is called an orbit of X. It is well-known that every left
S-set is a union of orbits and that, up to isomorphism, orbits are
characterized by left congruences on S (see [1], Chapt. 11).

In order to study the way orbits fit together in an S-set X the
author has in [2] and [3] constructed two chains of S-subsets (to
be defined more fully below) of an S-set X, each having the property
that the subquotients are essentially 0-disjoint unions of orbits. The
lengths of those two chains are denoted by h(X) and sl(X). In [3]
it is shown that when h(X) is finite, then sl(X) <; h(X).

Let us call a monoid bounded if for every S-set X, one has
sl(X) <: h(X). Then a main goal of this paper is to show that a
monoid is bounded if and only if there is a positive integer n such
that the monoid contains no proper chain of principal left ideals of
length exceeding n.

l Preliminaries* Let X be a left S-set. An S-subset Y of
X is a (possibly empty) subset Y of X such that sy e Y for all s e S
and yeY. If X and Y are both orbits, we may say that 7 is a
suborbit of X. If Z is an S-set, a homomorphism φ:X—>Z is a
function such that φ(sx) = sφ{x) for all x e X and seS. A congruence
~ on an S-set X is an equivalence relation such that x ~ y implies
sx ~ sy for x, y e X and s e S. Denoting the set of congruence
classes by Xj'~ one finds that X/~ is a left S-set under the induced
action and is a homomorphic image of X under the natural map
X-+X/~.

If Γ c l i s a n S-subset, define a congruence ^ F on I by setting
x~γx

f if and only if x = xf or x, x'eY. Let us denote X/~Y

simply by X/Y. If Y Φ 0 , the class of Y in X/Y is denoted by 0.
If X is a left S-set, call x, y e X separated in X if there is no

zeX such that x, y eSz. Then let us define a descending chain of
S-subsets of X by setting XQ = X, Xi+ί = U {S# Γ) Sy: x, y e Xt are
separated in XJ for i > 0, and X, = Π {Xτ T < σ} for σ a limit
ordinal. Then sl(X), the saturation length of X, is the first ordinal
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a such that Xα — Xa+1. In general it need not be that Xa = 0 , but
whenever S satisfies the ascending chain condition on orbits, it must
be that Xa = 0 (see [2] and [3]).

Alternately, if one has an S-subset YdX, then an element
a e l is called ϊ'-distinguished if for every zeX either xeSz or
zeSx or Sx Π Sz c Y. The orbit SxczX is called Y-distinguished
if a?' is F-distinguished for every xf e S#. Then one can define an
ascending chain of S-subsets of X by letting X° = 0, X ί+1 = U{S#:
Sx is an X^-distinguished orbit of X} U X1 for i > 0, and X° =
U{Xr: τ < σ} if σ is a limit ordinal. Let fo(X), the height of X, be
the first ordinal β such that Xβ - Xβ+\ (Note: The definition of
Γ-distinguished orbit here is more restrictive than that used in [3]
and corrects the definition given there in the sense that some (cor-
rectable) gaps in proofs these are trivially closed by the altered
definition, the current definition being what the author had in mind
in [3].. The principal difference is that in [3] xι = x, whenever x is
an orbit, while here that need no longer be so. Here h(X) is at least
as in [3].) In general Xβ Φ X, but if S satisfies the descending chain
condition on principal left ideals, then one always has Xβ = X (see [3]).

Throughout the rest of this paper we shall assume that S
satisfies the descending chain condition on principal left ideals. This
assumption is justified by the following proposition.

PROPOSITION 1.1. // S does not satisfy the descending chain
condition on principal left ideals, then there is a left S-set X such
that h{X) — 1, but such that sl(X) = 2.

Proof Suppose there is an infinite proper descending chain of
principal left ideals in S. Denote it by S Ξg Sat 3 Sa2 5

 # > ̂ ^d
set a0 =-1. Let / = {xeS: for all i, at$Sx}. Then if 1 Φ 0 , I is
a left ideal of S which is maximal with respect to the property
that for all i = 1, 2, ••• one has attI. Form the left S-set S x N,
where ,JV= {0, 1, •••}, by letting s(t, n)-= (st, n) for all s,teS and
neN.'

Now let X = (S x JV)/~ where ~ is the congruence on S x N
given by (s, m) ~ (£, n) if and only if either (i) s, t el or (ii) s = t e
Sak for some k and m, n <: k. (In (ii) one wants to use the largest
possible, λ )

Let \y 9 n] 6 X denote the class of (y, ri)e S x N. If z e I, then
since [z, m] = \z, n] = [z\ n] for all m, neN and all zf eI and since
s[z, m] — [sz, m] = [z, m\, we can denote the class [z, m] simply by
0. (If I — 0 , all comments about 0 below are vacuous.) The S-set
Xcan be visualized schematically as in Figure 1, in which the action
by S moves things downward along the indicated edges.
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FIGURE 1

If o Φ [y, n] e X, then there is some m such that y e Sam but
y ί Sam+ι U /. By construction of /, there must be some q such that
aq e Sy. Without loss of generality we may assume that q > m and
q > n. If [y, n] = [y, q], we must have n = q or n, q <̂  m, both of
which are impossible by choice of g; hence [y, n] Φ [y, q]. However,
since n < q, we find that 0 =£ [aq, q] = [αg, w] e % , w] Π S[#, ?] . Hence
for every nonzero orbit S[y, n] of X, there is an orbit incomparable
to it (under inclusion) with which it has nonzero intersection. This
says X1 = {0} (or X1 = 0 if J =.0> and that no [y, w] ^ 0 is X1-
distinguished. Hence X2 = X\ and h{X) <; 1.

On the other hand one easily sees that the elements [l,n]eX
are all distinct for n e N and that these are the generators of the
maximal orbits of X. Moreover, it is easy to see that for n Φ m
one has S[l, n]Γ\ S[l, m] c S[αx, 0] U {0}. While [αx, 0] e Sfl, 0] n S[l, 1].
Hence Zx — St^, 0] U {0}, which is either an orbit or the disjoint
union of two orbits (depending on whether or not 0eS[alf 0]). Thus
χ2 = 0, which gives sl(X) = 2.

Hence we will assume in what follows that S satisfies the
descending chain condition on principal left ideals.

For any monoid S we now define two functions from S to
N\J {p°}. Let h = hs: S -> N\J {oo} be given by h(x) = sup{?t: there
exists aί9 az, , an e S such that Sx = S^ ,ϊg Sα2 ^ 3 SαJ for
ίceSί, and let d = ds: S—>N\J {°°} be given by d(x) = sup {n: there
exist aί9 a2, , aneS such that So? = Saλ g <?α2 g £Ξ Sfα%} for
x e S. We can call h(x) the height of x in S and cί(#) the depth of
x in S.

2* Bounded monoids* We wish to characterize monoids S such
that sl(X) ^ h(X)Λoτ every S-set X. The following theorem justifies
calling such monoids bounded, and we may take any one of its
equivalent conditions as a definition of bounded monoid,

THEOREM 2.1. For a monoid S the following are equivalent.
( i ) sl(X) ^ h(X) for every S-set X.
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(ii) There exists an integer n suck that S contains no proper
chain of principal left ideals of length exceeding n.

(iii) S satisfies the descending chain condition on principal
left ideals and h{X) < oo for every S-set X.

(iv) h(a) < oo for every aeS.
(v) S satisfies the descending chain condition on principal

left ideals and dτ{a) < co for every ae T = S/I where I = {xeS: Sx
is a minimal left ideal).

Proof. One sees immediately that (ii) implies (iv) and (ii) implies
(v).

That (iii) implies (i) follows from Theorem 5 of [3] provided one
observes that the descending chain condition on principal left ideals
of S implies that every left S-set satisfies the descending chain
condition on orbits (the hypothesis used in [3]). This follows since
any chain Sxx 3 Sx2 3 of orbits in an S-set X gives rise to a
chain of principal left ideals S = Sax ZD Sa21> in S where ax — 1
and e ^ e S c ^ is such that ai+ιxx = xi+ι for i ^ 1. Thus if φ: S—+X
is the homomorphism of S-sets given by φ(s) — 8XX for seS, then
0(α.) = x. for all i = 1, 2, . Since the chain of left ideals Sa1 Z)
Sa2 3 must terminate, so must the chain of orbits SxL D SX2 3 .

To see that (iv) implies (ii) one need only observe that since
S = SI is a principal left ideal containing every other principal left
ideal, one can have no proper chain of principal left ideals of length
exceeding h(ϊ).

To show that (v) implies (iv) it suffices to show that h(l) < oo.
Now / = {x 6 S: Sx is a minimal left ideal in S) is a two-sided ideal
in S. In T = S/I, denote the image of x e S by x 6 T. Let αx = 1,
a>2> ---, aneS be such that Sc^ 3 Sa2 3 S San. Since S satisfies
the descending chain condition on principal left ideals we may
assume that San is minimal, i.e., that a«el. Then in T one has
Tax 3 Ta2 3 3 Tan^ 3 {0}. This says that n ^ dτ(0). Hence, in
turn one can conclude that h(l) = sup {n: S = iS^ 3 =i SαM} ^
dΓ(0) < oo, which establishes (iv).

To show that (iv) implies (iii) we observe that since (iv) implies
(ii), S must satisfy the descending chain condition on principal left
ideals. We now show that for every S-set X one has h(X) ^ h(ΐ) = n.
To do this let X be an S-set and for x e X> let hx(x) = sup {n: Sx =
Sxλ 3 Sx2 5 S Sίc% for a?!, , a?w e X}. If α̂ : S—> Sx is the homo-
morphism of S-sets given by ψ(s) = s^ for s € S and x e X, and
if Sx = Sa?! 3 S#2 3 3 S#m is a proper descending chain of sub-
orbits of Sx, then there are alf •••, ameS such that ψ(^) = α?< for
i = 1, , m and such that S = Sαx 2 Sα2 g Ξg Sαm. Hence, since
we may take αx = 1, this shows that m ^ ft(l) = w. Therefore for
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every xeX, one finds that hx(x) S n- Let X(k) = {x e X: hx(x) ^ k}
for k = 1, , n. Hence X(l) c X(2) c c JSΓ(n) = X.

To complete the proof that h(X) ^ w, we now show by induction
that X(k) c Xk for fc = 1, , n. We observe first that hx{sx) ^ Jfcx(a?)
for all xeX and all s e S. Hence X(k) is an S-subset of X for all
k = 1, '••, n. Since X(l) must be the union of the minimal orbits
of X, one finds that I ( l ) c Γ . Now if X(k)aXk and if xeXQc + ΐ)
with x 6 Xfe, then s# must be an X(fc)-distinguished orbit (for every
proper suborbit of Sx must lie in X(k)). Hence Sx must be an
^-distinguished orbit, which shows that x e Xk+\ and hence that
X(k + 1) c Xk+1 as desired. But thus Xn z> X(n) = X, which says
that &(X) ^ w.

Finally we show that (i) implies (ii). By virtue of Proposition
1.1, we know that S must satisfy the descending chain condition on
principal left ideals. We now complete the proof that (i) implies (ii)
in two steps. First we show that if there is a proper chain of
principal left ideals of S of length n, then there is a left S-set Vn

such that sl(Vn) — h(Vn) — n. Second we show that if such Vn can
be constructed for all n ^ 1, then we can construct a left S-set X
such that h(X) = o) while sl(X) = ω + 1, where ω in the first infinite
ordinal. Since this contradicts (i), it must be that there is a positive
integer n such that S contains no proper chain of principal left ideals
of length exceeding n, which is the statement of (ii). We now
proceed with the construction.

Suppose that Sa[ £Ξ Sa'2 £Ξ Sa'Ά £=•••§= San is a proper chain of
principal left ideals. Let U[ = {x 6 S: Sx is a minimal left ideal}, and
for 1 <£ i <: n — 1 let U'i+ί — TJ\ U {x e S: Sx is minimal such that
x $ U'i}. If U[ Φ S, then U[ g U'i+ί since S satisfies the descending
chain condition on principal left ideals. However, we observe that
a[ e U[, and inductively, that if a'k & ULi, then a'k+1 £ U'k for 2 ^ fc ^
71 — 1. Hence we have a proper chain of left ideals U[ £ S= Z7».

Observe now that if xeU'κ and x € ί7Li for 2 <̂  fc ̂  w, then
there is some y e U'k-ι Π Sx such that y 0 U'k_2. (Here and below we
let UQ = 0.) This is so because a?g Ĉ Li implies that there is an
element y eSx such that Sy £ Sx and such that y £ U'k_2. Choosing
y so that Sy is minimal with respect to this property implies that
y e UL,

Let αft 6 Z7̂  such that αw g Uf

n^. Using the above observation
inductively, one finds at 6 V\ for ί — 1, , n, such that at 0 J7 _i and
such that Sax £ Sa2 £ £ jStaΛ.

Let us now consider the left S-set C7» = U'JU[. Denote the image
of U'i in Un under the natural homomorphism by Ut for i = 1, , w,
and denote the class of U[ by 0. Hence we have a proper chain of
S-subsets of Un given by {0} = Ux £ U2 £ £Ξ Z7Λ. We may
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continue to write nonzero elements of Un the same as elements of
U'n; thus we write α, e Ut for i — 2, , n.

Finally we form the left S-set Un x {1, , 2*"1} by letting
s(x, a) = (sx, a) for seS, xeUn and 1 ^ a <5 2W~1, and then we set
VH = (17* x {1, , 2w~1})/~ where ~ is the congruence relation given
by (x, a) ~ (#, /3) if and only if x — y eUk for some k and 2*"^ <
cc, β ^ 2*""*(p + 1) for some p with 0 <^p < 2h"1. (One wishes to use
the smallest possible & here.)

Observe that this implies that if xe Un and x ί Un-U then
(x, a) ~ (x, β) only when a = β, while for x = 0, i.e., OJ 6 D ,̂ (x, «) ^
(α?, /3) for all 1 ^ α, /δ ̂  2""1. We can picture V% as a binary tree
such that every path from a leaf to the root looks like a copy
of Un. See Figure 2. Denote the class of (x, a) in Fw by [x, a].
We have a natural epimorphism of S-sets π: Fw -» [7, given by
π([x, a]) .= α?.

FIGURE 2

Let us now record properties of Vn in the following lemmas.
By convention Uo = 0 .

LEMMA 2.1.1. Le£ [OJ, α] eπ~\Uk) with [x, a] £π~ι{Uk_ύ for some

( i ) For every [y, β] e Vn either [x, a] e S[y, β] or S[x, a]f]
S[y, β]cπ~\Uk-^. Thus [x} a] is π~\U^-distinguished.

(ϋ) [Vt β]eπ~\Uk) with [y} β] <£ π"\Uk^)9 then either S[x, a] =
S[y, β] or [x, a] and [y, β] are separated in π~\Uk) and S[x, a] Π

Proof. If [z, 7] 6 S[x, a] Π S[y, β], then by construction of Vn,
[z, 7] = [z, a] = [z, β] and z e Sx Π Sy in Un. But x e Uk implies that
zeUκ. If z&Uκ_lf then by construction of Uκ, Sx = &. Thus
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[x, a] 6 S[x, a] = S[z, a] c S[y,β]. Hence if [x, a]g S[y, β], then
z e Z7Λ_i, which says S[#, α] Π S[#, β] c π~\Uk^. This gives (i).

For (ii) suppose [x, a]t[y, β]eS[w, δ] for some [w, δ] eπ~\Uk).
Then as in proof of (i) we show S[x, a] = S[y, β] = S[w, δ]. Hence
if [x, a] and [y, β] are not separated in π~\Uκ), then S[#, α] = S[y, β].
This gives (ii).

LEMMA 2.1.2. ( i ) For 1 ^ k ^ n -lf {[an_k, 2
kp + 1]: 0 ^ p <

(ii) sl(Vn) = n.

Proof, (i) implies (ii), since (i) for k = n — 1 implies that
φ Φ (Vn)n^ c iC\Ud = {0} which implies (Vn)n = 0 . Thus sZ(FJ - n.

We establish (i) by induction on k. For k = 1, we see by
Lemma 2.1.1 that the set {[#, a]: [x, a] eπ~\Un) = FΛ but [α?, α] ί
^"" ϊ̂/n-i)} generates maximal orbits in Vn and that the intersection
of orbits generated by a separated pair of elements is contained in
π-χUn^). Hence (7ΛC7TW.-1).

On the other hand, [anf 2p + 1] and [an, 2(p + 1)] are separated
in Vn for 0 ̂  p < 2n~2 by Lemma 2.1.1. Thus [an_19 2p + 1] e
S[αΛ, 2p + 1] Π S[an, 2(p + 1)] c (Vn\. This gives (i) for the case
k = 1.

Suppose by induction that (i) is true for 1 < k < n — 1. We
establish it for A + 1.

Since (F.)fccπ"1(Z7Λ_J(.), we see that if [x, a] and [y, /3]e(FJfc

are separated in π~~\Un_k), then they are separated in (Vk)κ and
by Lemma 2.1.1 S[x, a] n S[», /3] c π"\U%.h^. Thus (FJ& + 1 c

Finally, if {[αΛ_fc, 2
fcp 4- 1]: 0 ^ p < 2n-k~1} c (F,)*, we observe by

Lemma 2.1.1 that [an_k, 2\2p) + 1] and [an_k, 2\2p + 1) + 1] are
separated in (Vn)k for 0 ^ p < 2n~k-\ Thus [an_k_19 2

k+1p + 1] e
S [ α . . l f 2fc(2ί?) + 1] Π S K _ , , 2fc(2^> + 1) + 1] c (V.) 4 + 1 f or 0 ^ ί > < 2- f c~2.

This completes the lemma.

L E M M A 2 . 1 . 3 . ( i ) For l ^ k ^ n - l , (Vn)
k =) π~\Uk) but

(ii) h(Vn) = n.

Proof. To see that (ii) follows from (i) we see that when k =
n — 1 we have 7^3 (VrJw~1=)π"1(i7%_1). But by Lemma 2.1.1 every
remaining element in Vn will be Tr^f^J-distinguished and hence
«y»)*"ι)-distinguished. This gives {Vn)

n = Vn, which says h(Vn) = n.
We establish (i) by induction on k. For k = 1, τc~ι(U^ = {0}, a
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fixed point, so that ( F J ' D J O } = π~~\U^. However, by Lemma 2.1.1,
[a2,1] and [α2, 2*~2 + 1] generate orbits which are incomparable under
inclusion. Yet 0 = [alf 1] 6 S[a2, 1] Π S[a2, 2

n~2 + 1]. This assures us
that Kije TO1.

Suppose by induction that (i) is true for 1 < k < n — 1. Thus
{Vn)

k z> π-\Uk). By Lemma 2.1.1 every element of π~\Uk+1) is either
in π~XUk) or is TΓ"^[/^-distinguished. Hence if [x, <x\£(Vn)

k but
[x,cL\Gπ~ι(Uk+ύ> then S[#, «] is a π~\ί7Λ)-distinguished orbit, and
hence a (FJ^-distinguished orbit. Thus [x, a] e (F»)*+1, which gives

On the other hand, if [ak_lf 1] g (FJ fc, then since [αfc+1, 1] 6
» 1] Π S[α*+1, 2

%-fc~2 + 1] and since S[ak+2, 1] and S[ak+2, 2
n'h~2 + 1]

are incomparable under inclusion, we see that [ak+2,1] g (FΛ)fc+1. This
concludes the induction.

Finally, to complete the proof that (i) implies (ii) in Theorem
2.1, let us suppose that S contains chains of principal left ideals of
all lengths. Thus for each n ^ 1 we can construct an S-set Vn as
above. Notice that each Vn has a fixed point 0n 6 Vn. Let X be
the 0-disjoint union of the {Vn:n^l}, that is, X = (UϊU Vn)/κ*
where U?=i Vn is the disjoint union of the Vn and where p* is the
congruence on this disjoint union given by v f& v' if and only if
v = v' or v = 0w and v' = 0m for some m and ^.

To compute h(X) one finds that X1 = {0} and that Xk =
(U^iC^*)*)/^- τ h u s f o r e v e r y integer fc one has Xk Φ X, but
U?=1 X" - X This gives h(X) = fi).

However one also sees for every integer k that {0} e l f =
(Uϊ=iTO*)/~- Hence {0} = n?-i-SΓ* =-Σ But then Xω+1 - 0 ,
which says that s£(X) = ω + 1 > Λ(X) contrary to (i). This completes
the proof of Theorem 2.1.

REMARK. TO see that the result fails if one simply demands
that S satisfy both the ascending and descending chain condition on
principal left ideals, or even both chain conditions on orbits, or if
in (v) one only demands that d(ά) < oo for all a e S, we can consider
the following example. Let Cn = {an, al, , αJΓ1, al = 0n} be finite,
cyclic, nil semigroups. Let S = (UϊU Cn) U {1} where 1 is a two-sided
identity and where we set akaι

m — 0m for m Φ n and multiply as in
Cu otherwise. Then S satisfies both chain conditions on principal
left ideals and on orbits and every a e S is such that d(a) < oo. But
h(ΐ) = oo and S chains of principal left ideals of arbitrary length.

3* Monoids bounded by n. In order to analyze in more detail
what can happen let us call a monoid S bounded by n ^ 0 if for
every S-set X we have sl(X) <: h(X) ^ sl(X) + n. In [3] it was
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shown that for every given positive integer n there is a monoid S
and an S-set X such that h(X) = sl(X) + n.

LEMMA 3.1. If S is a bounded monoid and if S contains a
proper chain of principal left ideals of length n + 2 for an integer
n ^ 0, then there exists a left S-set such that h(X) = sl(X) + n.

Proof Let us note first that the condition of the lemma is
equivalent to the statement that h(ΐ) ^ n + 2 in S.

Since S is bounded, it satisfies both chain conditions on principal
left ideals. We can use a construction similar to that used in
Proposition 1.1 to create an S-set X such that sl(X) = 2 and h(X) =
n + 2. Suppose that we have SaQ 3 Sax 2 5 San+1 a proper
chain of principal left ideals. Since S is bounded, we may assume
that the α* are chosen so that h(a0) = n + 2 in S. This guarantees
that Sa0 contains no longer proper chain of principal left ideals, that
San+1 is minimal, and that each Sat is minimal among principal
left ideals properly containing Sai+1 for i = 0, , n. Now as in
Proposition 1.1 we set X = (SaQ x {0, , n + l})/~ where (x, a) ~
(x, β) if x 6 Sat and a, β <^ i for 0 <I i <; w + 1. We denote the class
of (a;, α) in X by [#, α].

In X the set {[a0, a]: 0 <^ a <L n — 1} is a set of generators for
all the distinct maximal orbits of X. As in Proposition 1.1 we see
that X, = S[alf 0] since [x, 7] e S[a0, a] Γ) S[a0, β] for a Φ β implies
that [x, 7] = [x, 0] and xeSalf and since [alf 0] e S[a0, 0] Π S[a0,1].
Thus since Xγ is an orbit, X2 = 0 , which gives si(X) = 2.

In order to show that h(X) — n + 2, we can first observe that
if we define a function hx: X -> N as in the proof that (iv) implies
(iii) in Theorem 2.1, then fcz([α0, #]) = &s(αo) — n -\- 2. Thus as in
the proof of Theorem 2.1, we can conclude that h(X) ^ n + 2. It
now suffices to show that for k < w + 2, we have [αw_i_Λ, 0] ϊ Xk.
This we do by induction on k. For A = 0, there is nothing to prove
since X° = 0 . Thus suppose that for 0 ^ & < ^ + l we have
[α%_!_fc, 0] ί X*. By construction of X we see that [&„_!_*, 0] =
K-!-*, w - 1 - fc] e iS[α0, w - 1 - fc]. However \an^_hf 0] 6 S[αΛ_2_&, 0],
and X, S[αw_2_fc, 0] and S[a0, n — 1 — k] are incomparable under
inclusion. Thus since [an_^kf 0] e S[an_2_k, 0] Π S[α0, n — 1 — k] and
since [^-i-fc, 0] g Xfc, we find that [<&*_!_(*+!„ 0] g Xfe+1, which completes
the induction. Hence letting k = n + 1 we get [α0, 0] g Xπ + 1 while
X = X*+2, so that Λ(X) = n + 2 as desired.

We can now characterize monoids bounded by n.

THEOREM 3.2. Let n ^ 0 be an integer. A monoid S is bounded
by n if and only if S contains no proper chain of principal left
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ideals of length exceeding n + 2. Furthermore, if there is a chain
of this length, then there is a left S-set X such that h(X) =
sl(X) + n.

Proof By Theorem 2.1 we know that sl(X) £ h(X) for every
left S-set X if and only if the lengths of chains of principal left
ideals in S are bounded. If S contains a chain of principal left
ideals of length n + 2, then Lemma 3.1 produces a left S-set X
such that sl(X) ^ h{X) = sl{X) + n. Thus the inequality h(X) ^
sl(X) + n for every S-set X implies that S contains no proper chain
of principal left ideals of length exceeding n + 2.

It remains to show that if every chain of principal left ideals
in S is of length not exceeding n + 2, then for every left S-set X
we have h(X) ^ sl(X) + n. Now as in Lemma 3.1 we observe that
our condition says that h(l) ^ n + 2 in S and as in the proof of
Lemma 3.1 and Theorem 2.1, this implies that h(X) ^ n + 2 for
every left S-set X. Since chains of principal left ideals are bounded
in S, one finds that S satisfies both chain conditions on orbits. Thus
sl(X) = 0 if and only if X = 0 , which is if and only if fe(X) = 0.
Hence we need only consider the case sl(X) = 1. But sl(X) = 1
implies that X is a disjoint union of orbits. Thus it suffices to
suppose that X is a single orbit, say, X = S#o.

As in Lemma 3.1 and the proof that (iv) implies (iii) in Theorem
2.1 we can define hx: X-+N and find that hx(xQ) 5j hs(l) ^ n + 2 and
that X* => {# e X: hx{x) ^ &} for k > 0. Thus X% z> {# 6 X: hx{x) ^ w}.
Suppose now that x $ Xn. Then hx(x) ^ w + 1. If Ax(αj) = w + 2,
then since hx(x) ^ fcχ(#0) ̂  ^ + 2, we must have Sx = Sx0 = X. Thus
y eSx for all # g Xw, and α? is ^-distinguished. If hx(x) = n + 1
and if y £ Xn is such that x £ Sy, then we must have hx(y) = n + 1.
Thus either y e Sx or /&β(s) ^ n for all zeSxΠ Sy since SxΓ\ Sy ^ Sx
and SxΓϊSyξ Sy. But this says SίcΠS^/cX^. Hence every element
of X is ^-distinguished. Therefore X = Sx0 is an -^-distinguished
orbit so that X = Xu+1. This shows that h(X) ^ w + 1 = n + sl(X)
as desired.

4* Further properties* Let S be a bounded monoid and let
h(ΐ) = ^, where Λ is the height function on elements of S. Let
Ik = {xe S: h(x) <* k}, 1 <* k<^ n. Then we can observe the following
properties of S.

PROPOSITION 4.1. Let S, fe, w, αwώ /fc be as above.
( i ) For all x, y e S, (me feαs Λ(a52/) ^ fe(ίc) α?icί /ι(α?]/) ̂  h(y).
(ii) ί/αcfe /fc -is a two-sided ideal in S.
(iii) !„_! consists of the nonunits of S.
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(iv) x 6 S is a unit if and only if h(s) = h(l) = n.
(v) // x^y in S, then h(x) — h(y).

Proof, (i) Since xy e Sy, it is clear that h(xy) <; h(y). On the
other hand, since one has an S-map φ: Sx -» Sxy given by φ(t) = ty
for teSx, the inverse image of any proper chain of principal left
ideals contained in Sxy gives rise to such a chain contained in Sx.
Hence h(xy) ̂  h{x).

(ii) By (i) if h(x) ̂  k, then h(ax), h(xa) ̂  h(x) ̂  k for all aeS.
Thus each Ik is a two-sided ideal.

(iii) and (iv). For xeS, h(x) = h(l) = n if and only if Sx = S,
i.e., if and only if x has a left inverse. But if a e S is a left inverse
of x, then ax = 1 and by (i) % = A(l) = fe(αa?) ̂  fe(α) ̂  n, so that α
also has a left inverse. Thus xa = 1 and both are two-sided units.

(v) If x^y in S, then SxS = S#S so that xeJ& if and only
if y £lk for 1 ̂  fc ̂  n. But since x 6 Ik for fc = fe(a ) and y e Ik for
]c = fe(2/) we get A(a?) = fe(y) as desired.

We should observe that S being bounded is not a strong enough
condition for S to satisfy ^ •= Sf. If S = T U {1} where 1 is an
identity and T is a simple, idempotent free semigroup which contains
a minimal left ideal, then S is bounded (in fact, h(ΐ) — 2), but
^ Φ & (see [1], v. 2, Ex. 1, p. 93).

Suppose now that S is a finite monoid. Then certainly S is
bounded, and the bounds expressed in Theorem 3.2 apply to any
S-set. Suppose further that we consider S as a left S-set over
itself. Then since S is a single orbit, we always have sl(S) = 1.
However, the height of this S-set need not be 1, and in fact the
difference h(S) — sl(S) gives some measure of the complexity of the
left ideal structure of S. If S is cyclic, then h(S) = sl(S) - 1.
However, we show in conclusion that for some S, the difference
h(S) — sl(S) attains the limit imposed by Theorem 3.2.

PROPOSITION 4.2. Let n ^ 0 and let Tn+2 be the monoid of all
transformation on the set {1, , n + 2} {with functions written on
the left). Then letting Tn+2 act on itself from the left we see that
sl(Tn+2) = 1 and h(Tn+2) = n + 1.

Proof. That sl(Tn+2) = 1 follows since Tn+2 is a single orbit
over itself. Also since Tn+2 satisfies the hypotheses of Theorem 3.2
and is an orbit over itself, we may conclude as a corollary to the
proof that h(Tn+2)^n + l. Thus it suffices to show that (Tn+2)

nφTn+2.
Let «!,-•-, an+1, β2, , βn+1 e Tn+2 be given by
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ak{x) =
k

k k < x
and βk(x) =

X X ^ X .

k — 1 x •= k

k k < x

for 1 ^ α ^ w + 2. One easily verifies that akak+ι = ak and that
akβk+1 = ak for 1 <. k ^ n. Furthermore, one sees that all the
principal left ideals Tn+iaκ, 1 ^ k ^ n + 1, and Tn+2βk, 2 <ί k <^ n + 1
are distinct since two elements of 2\+2 generate the same principal left
ideal if and only if they induce the same partition on {1, , n + 2}.
(See [1], v. 1, §2.2.) Thus one has Tn+2an+1 3 3 Tn+2a2 3 Γ +A,
Tn+2βk+ι^Tn+2ak for fc = l, - . . , n , and Tn+2βk+i and Γ%+2α;fc+1 are
incomparable under inclusion for & — 1, >--,n. Thus since α f c6
Γ +s^+i Π Tn+2βk+ί for fc = 1, , w, we can conclude by induction
that ^ ( Γ ^ ) * " 1 for fc = l, ••-,%. Hence α % + 1 ί (Γ % + 2 ) % so that
(Tn+2)

n Φ (Tn+2). Therefore h(Tn+2) = n + 1 as desired.
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