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COALLOCATION BETWEEN LATTICES WITH
APPLICATIONS TO MEASURE EXTENSIONS

WILLIAM JOSEPHSON

It is well known that in a locally compact Hausdorff space
every countably additive measure on Rσ(j({δ), the cr-ring gener-
ated by the compact Gδ sets, can be extended to a countably
additive measure on cr(^), the cr-algebra generated by the
closed sets. In a locally compact Hausdorff space 3>9 the lattice
of closed sets, countably coallocates (Definition 4.7) the lattice of
compact Gδ sets. Our purpose is to show that coallocation and
countable coallocation are properties basic to many extension
theorems.

Dubins [5] considered the following situation. K CL are two
lattices containing the null set (a lattice is a collection of subsets of some
set closed under finite unions and intersections), u is a bounded
measure defined on K. Dubins asked when w*, defined by u*(b) =
sup{u(k)/k Cb,kE K}, is a measure on L. A necessary and sufficient
condition is for L to allocate K. L allocates K if the following is
true. For any k E K contained in the union of two sets / and h from L
there exist sets p and q from the lattice K such that k = p U q and p C /,
qCh.

With two lattices K CL and u a measure on K, we show that a
sufficient condition for w**, defined by «**(*>) = inf{n „(/')/& C /', /'
E.L'}, to be a measure on the algebra generated by L is for u* to be
modular on L'. V is the complement of the set / and!/ = {/'// G L}. It
follows that if u is a K inner regular measure on R(K), the ring
generated by K, then u** is a L inner regular extension of u to A(L),
the algebra generated by L.

Thus when L coallocates K (i.e. L' allocates K) Dubin's result
shows that for every K regular bounded measure u on R (K), u ** is a L
regular extension of u to A (L). If L countably coallocates K then u **
is countably additive when u is countably additive. From this we obtain
the stated result on locally compact Hausdorff spaces [Halmos 7] as well
as a related result by Levin and Stiles [8]. Countable coallocation also
yields an extension theorem by Marik [9] on countably paracompact
normal spaces and a theorem by Berberian [2]. In most instances we
can and do prove our results for measures that are not bounded.

We also look at measures that are r-smooth. A measure u on K is
τ-smooth if for any net {ka} decreasing to 0, ka E K, limα u (ka) = 0. We
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show that any bounded K regular measure u on R(K) that is τ-smooth
on K can be extended to a bounded measure on A(τ(K)) that is
τ-smooth on τ(K). τ(K) is the smallest lattice containing K that is
closed under arbitrary intersections. We prove u * is modular on r(K)f

and obtain u **, defined with respect to τ(K), as the desired extension.

2. Definitions and notation. All lattices are collections of
subsets of an abstract set X that are closed under finite unions and
intersections. The fact that X contains points has no importance in this
paper — the boolean algebra of all subsets of X can be replaced by any
complete boolean algebra. Subsets of X will be denoted by lower case
letters. If we are considering a lattice L and a set /, it will usually be
assumed that / belongs to L.

V denotes the complement of the set / in X and L' =
{/'// EL}. R(L) is the ring generated by L; A(L) the algebra gener-
ated by L. Rσ(L) is the σ-ring generated by L and σ(L) is the
σ-algebra generated by L.

A measure u on a lattice A is an extended real valued set function
such that for a,b E A

(i) w(α)+ u(b)= u(a Ub) + u(a Πb).
(ii) u(a) + u(b) = u(a U b) whenever a Π b = 0 .
(iii) a C b implies u(a)^ u{b).
Let K be a lattice contained in A. A measure u on A is K inner

regular if for any a E A, u(a) = sup{u(k)/k C a,k E K).

A measure w on a lattice A is σ-smooth if for any sequence {an}
decreasing to 0, limnu(an) = 0. w is countably additive on A if
ΣΓu(an) = u(U™an) whenever {an} is a disjoint sequence of sets from A
such that UΓ an E A. For a ring A any finite valued measure u which is
σ-smooth on K CA and K inner regular is countably additive on A.

A measure u on a lattice A is σ-finite if for every a E A, α is
contained in UΓan where an E A and u(an) is finite for all n. If A is a
ring then by the Caratheodory extension theorem any countably additive,
σ-finite measure u on A can be uniquely extended to a countably
additive measure on Rσ(A). The extension is the outer measure
defined by ύ(b) = inf{Σ7 u(an)/b C UΓαn, αn E A}.

The bounded measures on the algebra A(L) are denoted by
M(L). It is easy to verify that if u is bounded and L inner regular then
u(a) = inf{u(l')/a Cl'jE L} for α G A(L). A measure satisfying the
last equality is called V outer regular. If a measure is both L inner
regular and L' outer regular then it is L regular. The L regular,
bounded measures on A(L) are denoted by Mr(L). Those measures
belonging to Mr(L) which are σ-smooth are denoted by MS

T(L). These
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measures are countably additive and hence can be uniquely extended to a
countably additive measure on σ(L).

For a measure u on a lattice K which contains 0 , u * is defined as in
the introduction. The definition of w** as given in the introduction
depends on the lattice L used (L must also contain 0).

3. The modularity of u *. Let K CL be two lattices con-
taining 0 and M a measure on K u* is modular on L' if u *(/!) +
w *(/0 = u *(/; U /£) + u *(/; Π /y. We now show that if u * is modular on
L' then u ** is an L'outer regular measure on A (L) where u ** is defined
with respect to L. Furthermore w** is a complete measure on
«(iι, L') = {e/u **(/') = u **(e Π /') + u **(e' Π /') for all / E L}.

The easy proofs of the following lemmas are omitted.

LEMMA 3.1. Let u be a measure on K. If u* is modular on L' then
for α, b subsets of X,

LEMMA 3.2. Let u be a measure on K and u * be modular on
Lf. Suppose l'Πa=0, where a is any subset of X. Then u•**(/') +

w * * ( α ) = M * * ( α u/').

u* is σ-smooth on V if limnw*(/^)= w*(UΓ/^) whenever {Γn} is an
increasing sequence such that U"ΓnELf.

THEOREM 3.3. Let u be a measure on K.
(i) The modularity of u * on L' is equivalent to u** being an V

outer regular measure on A(L).
(ii) If w* is modular on L' then %(u,L') is an algebra containing

Λ(L) and w** is a complete measure on Έ(u,L').
(iii) Suppose L is closed under countable intersections. If u * is

modular and σ-smooth on L' then %(u,L') is a σ-algebra containing
σ(L) and w** is countably additive on %(u,U).

Proof, (i), (ii). That modularity is necessary is obvious. The
sufficiency of (i) and (ii) will be proved. If w* is modular on V then
%{u,U) is closed under complementation and by Lemma 3.2 it
contains L'.

Fix ΓEL'. It is sufficient to assume w*(/') is finite. Let eu e2

belong to Έ{u,Lf). By Lemma 3.1,

(1) u *(/') S u ••((*! U e2) Π /') + u **((e, U e2)' Π /').
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F o r t h e r e v e r s e i n e q u a l i t y c h o o s e l'h h) f r o m V s u c h t h a t / J D e ; Π /',
h\Ώe\C\V and

(2) u *(/') S ii *(/;)+ii #(Λ})-6/3 y = l,2.

We claim that

(3) M*(Γ)^M (/ίU/0+M (ΛίnΛ0-€.

This inequality is implied by

which is equivalent to

by the modularity of w*. The last inequality is true by (2) and the
modularity of w*.

(3) implies the reverse direction of (1) and hence ex U e2 belongs to
%(μ,U). Hence Έ(u,Lf) is an algebra containing L.

To show w** is a measure suppose Γ contains ^ U e 2 and that
u(Γ)-u(eιUe2)<e. Then by (3)

() /; n /# + 6.

Therefore

By Lemma 3.1 w** is modular on %(u,L') and by Lemma 3.2 M * * ( 0 ) =
0. It is easy to verify that Έ{u,L') contains all e such that u **(e) = 0.

(iii) Let {en} be a sequence from ^(u,L ' ) . Choose / J D ^ Π / ' ,
b'nDenn I' such that

(4) i ι*(Γ)δiι*(Q+ιι»(Λ0-€/2-.

We can show using (4) and the modularity of u* that

(5) M * ( ϋ /;) + «* ( n Λ ; ) ^ U * ( / ' ) + Σ ^

Since w* is σ-smooth on V there exists an n large enough such that
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(6) w*(/')i^*(ύ /;) + *** (ή Λ;)-2€.

It follows that

(7) « , (/ ' )δu*

Therefore by Lemma 3.1? UΓe; E %(u,U).
To show w** is countably additive, we can assume ΣΓw**(ey) is

finite. Choose f)Ώep f'jEL' such that w *(/;)- K **(*,) = */2y Let
/'= UΓ/J. Then since w* is σ-smooth and modular on L',

Inequality (7) holds for /' and since l'~D

^ Σ «**(«,)+ 2e.
1

Thus w** is countably additive on %(u,L').
We now give sufficient conditions for w** to extend u.

THEOREM 3.4. Lei u be a K inner regular measure on S(K) which
represents either A (K) or R (K). Ifu* is modular on L' and u** is finite
on K then u = u** on S(K).

Proof. u{b)=u**(b) when u(b)= +oo. If u{b) is finite then
u**(b) is finite. This follows because every b G S(K) is of the form
U;=1 kj Πh'} where for all /, h} G K and either fcy G K or k} = X.

Choose /'D b such that w*(/')- u**(b) ^ β/3. Choose k0Cb such
that u(b)-u(ko)^e/3 and choose fcjC/'such that w*(/')- u(kx)^ c/3.
Let fc = fc0Ufci. Then since M is X inner regular, \u(k)- u(b)\^\e.
Then M * ( / ' ) - M ( 6 ) < € . Hence u**(b)=u(b).

A set function i; on a collection of subsets $f is σ-finite with respect
to y C Sίf if for every Λ G ̂ , h C UΓ 5; where 5; G 5̂  and i; (sy) is finite for
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all /. Note that since our measure u is finite on K, u is σ-finite with
respect to R{K) when u is defined on Rσ{K).

THEOREM 3.5. Suppose L is closed under countable
intersections. Suppose u* is modular and σ-smooth on Lr where u is a
countably additive measure defined on

(i) σ(K), σ-finite with respect to A (K). If u ** is finite on K then it
is a countably additive extension of u to σ{L).

(ii) Rσ(K). If M** is finite valued on K then w** is a countably

additive extension of u to σ(L).

Proof If u is a countably additive, σ-finite measure on a σ-ring
generated by a ring 5 then for all b in the σ--ring,

u(b) = i

That u = w** follows in both cases from this and Theorem 3.4.
Define K Π L = {k Π l/k E K, I G L}.

COROLLARY 3.6. Suppose u E Mr(K) and u * modular on L'. Then
u** is a K Π L regular extension of u to A (L). // u is countably additive,
u * σ-smooth on L', and L closed under countable intersections then u ** is
a countably additive measure on cr(L).

4. Coallocation and the extension of K inner regular
measures . We will assume throughout this section that K C L , and
that any measure on K (or A(K), R(K), σ(K), Rσ(K)) is finite valued
on K. In most examples we consider there should be no confusion as to
which lattice is used for L in the definition of w**. We specify this
lattice only occasionally.

Allocation is defined as in the introduction. A lattice L coallocates
K \i L' allocates K. Though Dubin's paper deals with bounded
measures on a lattice, we state his theorem for any extended real valued
measure. His proof remains valid despite the change.

THEOREM 4.1. Let 0 E H; and let J be any other lattice (J need not
contain 0 ) . The following two statements are equivalent.

(i) For every measure u on H, u* is a measure on J.
(ii) / allocates H.

Proof Assume / allocates H. Choose from / any j u j2 and choose
from H h C yΊ U ;2, / C ]\ Π j 2 . Then since / allocates H there exists
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pup2E H such that

(1) PiQjuPiQU
(2) PιUp2 = h U/, PιΠp2Dl.

Therefore u *(jλ U j2) + u *Q\ Π j2) ^ w *(/Ί) + w *(/2) The reverse in-
equality is always true. Thus (ii) implies (i).

Assuming / does not allocate if, Dubins constructed a measure u on
H for which u * is not a measure on J. Thus (i) implies (ii).

COROLLARY 4.2. Suppose L coallocates K and u G M(K). Define
w** vv/ί/i respect to L.

(i) u** is a complete measure on Έ{u,L')'DA{L) and is the
smallest V outer regular measure on Έ(u,L') such that u**^ u on K.

(ii) IfuE Mr(K) then u ** G Mr{L) and u** = u on A(K).
(iii) If u E Ms

r(K), u * σ-smooth on L' and L closed under counta-
ble intersections then u** EMs

r(L) and u** = u on A (K).

For any lattice K, R(K) is an ideal in A(K), i.e. r Π a belongs to
R (K) whenever r G R (K), aGA (K). Thus A (K) coallocates R (K).

Hence for any K inner regular measure u on R(K), u** defined with
respect to A(K) is an extension of u to A(K). Since M** = M ^ the
extension is K inner regular.

In many instances the lattice K' separates the lattice L. A lattice H
separates L if whenever lx Π l2 = 0 , there exists disjoint sets hu h2 such
that hx~D lu h2D l2. H coseparates L if H' separates L.

THEOREM 4.3. Suppose K coseparates L and K C L. Then L coal-
locates K.

Proof. Suppose l[L)Γ2D k. Then U Π fc, /2 Π k are disjoint mem-
bers of L. Since K coseparates L there exist disjoint sets fe{, fc2

containing /iΠfc and /2 Π fe respectively. Since /c! C fc' U /;, /c! Π fc C /J.
Similarly k2Γ\k C /2. Now (k 2 Π fc) U (fc2 n fc) = k.

Let X be a topological space. We give the following notation for
some natural lattices occuring in X. 2F is the lattice of closed sets, 3£ is
the lattice of zero sets, J{ is the lattice of compact sets, and SCδ is the
lattice of compact G8 sets. If X is a normal space then 2t coseparates ^
by Urysohn's lemma. Hence every u G Mr{2£) extends to u ** G Mr(ίF).

3F coseparates itself in a normal space and 2t coseparates itself in an
arbitrary topological space. Consequently for any u G M(2f), in any
space X, w** is the smallest outer regular measure on A(3Γ) such that
w**^ u. Here w** is defined with respect to ST.
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It will follow from the next theorem that ^ coallocates %δ in any
completely regular Hausdorff space.

DEFINITION 4.4. A lattice K is an L-ideal iΐKΠLCK. K ΠL =

{k nι/k eκ,ι<=L}.

THEOREM 4.5. Let K be an H-ideal where KCHCL. If H
coseparates K Π L then L coallocates K.

Proof. Let l[ΌV2Dk. Then (k Π h)ΓΊ (fc Π l2) = 0 . There exists

h[ and h'2 which are disjoint and contain kΠlu and k Π l2

respectively. Then hxΠ k C Γu h2Π k C Γ2 and (hλ U h2) Π k = k. Since K

is an H ideal, L coallocates K

In a completely regular Hausdorff space 9{δ is a 3f-ideal. 2t

coseparates the compact sets and therefore 2t certainly coseparates

J{δ Π 3F. Hence & coallocates J{δ. Therefore we have the following.

THEOREM 4.6. Let X be a completely regular Hausdorff
space. Suppose u<ΞMs

r(Xδ). Then M * * E M J ( ^ ) and is a %δ Π &-
regular extension of u to σ(2F).

Proof. That u ** is σ-smooth follows from the fact that 3Kδ Π 9 is a
compact lattice (any collection {/α} from the lattice has a nonempty
intersection whenever every finite subcollection has a nonempty
intersection). The rest of the theorem follows from Corollary 4.2.

The following definition is useful in determining when w** is
countably additive.

DEFINITION 4.7. L countably allocates K if whenever k C U " l}

then there exist fe, E K such that each fc, is contained in a finite union of
the /; and UΓfc, = k. If Lr countably allocates K then L countably
coallocates K.

THEOREM 4.8. Suppose L countably coallocates K. Consider a
countably additive measure u on σ{K) {or Rσ{K)). Then u * is σ-smooth
onV.

Proof. Suppose /' = UΓ / and UΓ /; G V. Choose k C /'. There
exist ki E K such that fc, C UU] for some n and UΓfc, = k. Since u is
countably additive, limiu(ki)= u(k). Thus w^Ogl im^^U; 1 / ; ) . The
reverse inequality is always true.

In a locally compact Hausdorff space if k C U™o} where the o] are
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open, then k = U? kh fc, E 3ίfΛ and fc, C o} for some /. Thus 2F countably
coallocates 3ίfδ. Also for every k E3{δk Qz[Qkx where zλ is a zero set
and ίcG3ίfδ. Applying Theorems 4.8, 3.3 and 3.5 we obtain the
following.

THEOREM 4.9. Let X be a locally compact Hausdorff space. Every
countably additive measure u on Rσ(J{δ), is Xδ-inner regular, w** is a
countably additive extension of u to

Proof. All that has to be shown is that u is 3£δ -inner regular. This
follows from the fact that for each b £ ! ? ( % ) , b = UΓ fc/, k} E 3ίΓβ.

Levin and Stiles [8] showed that the conclusions of Theorem 4.9 no
longer are true if Rσ(J{δ) is replaced by σ(J{δ) even if X is locally
compact and Hausdorff. Suppose X is locally compact, paracompact
and Hausdorff. Levin and Stiles prove that for any countably additive
measure u on σ{3ίδ)u{b) = ini{u{o)lb C o, o open and oEσ(9£δ)}.
Thus if u is also %δ -inner regular then u ** must be a countably additive
extension of u to σ{ZF) according to Theorem 3.3. This result is found
in the paper of Levin and Stiles.

In a countably paracompact, normal space the lattice SF countably
coallocates St. In any topological space, for every zero set z,z Qz\Qz2

where z1? z2 are zero sets. Thus we obtain Marik's [9] result.

THEOREM 4.10. Every countably additive measure u on σ(β) is
3£-inner regular. IfX is countably paracompact and normal then u ** is a
countably additve extension of u to σ{3<).

Let X be a countable product, Tΐ?Xk, of discrete topological
spaces. Define for x = (xu ), y = (yu ) y = x(mod n) if JC, = yh

i = 1, , n. For any subset A of X define tA(x) to be the least positive
integer n, if any, such that y EA whenever y =jc(modn). If there
exists no such n then let tA(x) = +™. Suppose C C U? Ok where C is a
clopen set (both closed and open in X) and each Ok is open. Define
inductively

Cn = {c E C \ ( U Γ ! G)/ ίo,(c)^ rO k(c), kϊ n}.

Then C = UΓCk, Ck C Ok for all k and each Ck is clopen. Thus &
countably coallocates ^ , the lattice of clopen sets. Dubins is interested
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in measures defined on <€£ = A (<€€). These measures are called
strategic measures. Strategic measures are always ^/-inner regular.

THEOREM 4.11. Let X be a countable product of discrete topological
spaces. For every countably additive strategic measure u, w** is a
countably additive extension of u to σ(SP).

Let JR be a ring of subsets in X. Define ££{R) to be those subsets b
such that b Π r G R for every r G R. ££{R) is an algebra containing
R. =Sf(jR) certainly coallocates R and if R is a σ-ring then ${R) is an
σ-algebra that countably coallocates R. For a measure (not necessarily
finite valued on R) define u*(b) = sup{w(r)/r Cb,rER}, and u** with
respect to 5£{R). It is easy to see that w** = w* on ϊ£{R). By
Theorem 3.3 u * is an extension of u to ϊ£(R). By Theorems 4.8 and 3.3
if R is a σ-ring and u is countably additive then u * is countably additive
on Ϊ£(R). ££(R) is called the class of sets locally measurable with
respect to R. The result for countably additive measures on a σ-ring is
found in a paper by Berberian [2].

If K C L is an L-ideal, then A(L)C^(R(K)). Clearly iΠr
belongs to R (K) for all / G L and r G R (K). Suppose b Or and c Πr
belong to R (K) for all r G R (K). Then (bUc)Πr belongs to R (K) for
all rGR(K). If bΠrER(K) then b'U r' is in A(K). Therefore
r n ί ) ' = r Π ( V u r ' ) belongs to R(K). Thus A(L) is contained in
g(R(K)). Also σ(L) is contained in £(Rσ(K)). Thus in a Hausdorff
space σ(^) is contained in the locally measurable sets of Rσ{3C) where 3K
is the lattice of compact sets [Berberian and Jakobsen 3]. In a com-
pletely regular Hausdorff space σ(3£) is contained in the locally measura-
ble sets of Rifts). We also have, for any lattice K, A(K)C^(R(K))
and σ(K)Q££(Rσ(K)). In the following theorems the measures need
not be finite on any particular set.

THEOREM 4.12. Any measure on R(K) extends to a R(K) inner
regular measure on A(K). Any countably additive measure on Rσ(K)
extends to a Rσ(K) inner regular, countably additive measure on σ(K).

THEOREM 4.13. In a Hausdorff space any countably additive meas-
ure on Rσ{jl{) has a countably additive, Rσ{J{) inner regular extension to
σ{2F). In a completely regular Hausdorff space any countably additive
measure on Rσ{jt{δ) can be extended to a countably additive, Rσ{jί{δ) inner
regular measure on σ(

THEOREM 4.14. Let KQL be a L-ideal. Then for every R(K)
inner regular measure on A(K) has a R(K) inner regular extension to
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A (L). Every countably additive, Rσ(K) inner regular measure on σ(K)
has a countably additive, Rσ(K) inner regular extension to σ(L).

In view of Theorem 4.14 the next example shows that coallocation is
not necessary for every K inner regular measure u on A (K) to have u *
modular on L'. Also countable coallocation is not implied if u* is
σ-smooth on L' for every countably additive K inner regular measure on

Topologize the set of real numbers as follows. For x^O or 2 a
neighborhood basis for x is the collection of open intervals containing
x. A neighborhood basis for 0 is the collection of open intervals
containing 0 and 1. Likewise a neighborhood basis for 2 is the collection
of open intervals containing 1 and 2. The interval [0,2] is a compact
closed set and the intervals /, = (— 1,3/2) and /2 = (1/2,3) are open
sets. There does not exist a sequence {Cn} of closed, compact sets such
that U ^ ! Cn = [0,2] and each Cn is contained in either Ix or J2. Therefore
the closed sets 3* do not coallocate or countably coallocate the lattice of
compact closed sets though this lattice is an ^-ideal.

5. The extension of r- smooth measures. A measure on
a lattice L is τ-smooth if for any net {la} decreasing to 0, limα u(la) = 0.
We will study the measures on A(L) which are L inner regular, finite
valued on L and r-smooth on L. Denote these measures by
M\(L). M'r(L) are those measures in M\(L) which are bounded.

For a lattice L, τ(L) is the smallest lattice containing L that is closed
under arbitrary intersections. We now show that every uEM{

r(L)
extends to u**, defined with respect to τ(L) on A(L), and r-smooth
on r(L).

LEMMA 5.1. Let u be a measure on A (L), r-smooth on L. For any
t in r(L),

where t' = UaΓa and {/«} is an increasing net of sets from L'.

Proof. Choose / C t'. Since t E τ{L) there exists a net {/«} from L'
which is increasing and UaΓa=t'. Since u is τ-smooth, \\mau(If

a) =
u(I) + limα u (/I Π /'). Therefore u *(ί') = limβ u (/;).

THEOREM 5.2. Suppose u is a measure on A(L), r-smooth on
L. Then u* is modular on r(L)'.
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Proof. Let s, t E τ(L). Then s' =\Jah'a,t'= Uβ /̂  where {Λ^, {/*}
are increasing nets from L'.

Form the net {/c f

Ύ} of unions k'γ= h'aU l'β. For the same γ, α, and β
define p'Ύ= h'aΠΓβ. {k'Ύ} is a net increasing to f ' U s ' and {p }̂ is a net
increasing to ί ' Π s ' . Thus

THEOREM 5.3. Lei w E M\(L). Ifu** is finite on L then it extends
u to A(τ(L)) and belongs to Jίί

Proof, w** extends u according to Theorems 5.2 and 3.4. u** is
T-smooth and finite on r(L) since each t E τ(L) is the intersection of sets
from L. Consider t, s from τ(L). Choose v from τ(L) such that s Cvf

and w**( ι ; ' )-«**(*)< e Then u**(t Π 5 ' ) - w**(ί Π v)< e. Every
set in Λ(τ(L)) is of the form UUk ^ s'k where sk belongs to τ{L) and
either tk E τ(L) or /k = X. Therefore «** is r(L) inner regular.

COROLLARY 5.4. Let u be a L inner regular, countably additive
measure on Rσ(L), r-smooth and finite on L. If u ** is finite on L then
u ** is a countably additive extension ofu to σ(τ(L)) and u ** is 1-smooth
and finite on τ(L).

COROLLARY 5.5. Suppose X is a completely regular space. Suppose u
is a L inner regular, countably additive measure on σ{β) that is τ-smooth
and finite on 2£. Then u ** is a countably additive extension of u to σ(2F)
and M** 15 τ-smooth and finite on 3*.

A collection of sets has the finite (countable) intersection property if
every finite (countable) subcollection has a nonempty intersection. A
lattice L is compact if every collection with the finite intersection
property has a nonempty intersection. L is Lindelof if every collection
with the countable intersection property has a nonempty
intersection. A measure on a compact lattice is always τ-smooth and
any σ-smooth measure on a Lindelof lattice is τ-smooth. Mr{L) are the
L inner regular measures on A(L) that are finite on L and Ms

r(L) are
those that are also σ-smooth on L.
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COROLLARY 5.6. // L is compact then every u GMr(L) for which
u ** is finite on L extends to u ** G M[{r{L)). If L is Lindelof then for
every uEJίs

r(L) such that u** is finite on L, «** G M'r(τ(L)) and
extends u.

The result concerning compact lattices has been proved by using
Zorn's lemma to show that u ** on A (r(L)) is, in an appropriate sense, a
maximal extension of u [P. A. Meyer 10].

Suppose u is a L' outer regular measure on A(L). Then for any
decreasing net {/α} from L such that Πala G A{L), limαu(/α) =
u(Γ\ala). If L is a regular lattice then this property is a sufficient
condition for a measure u to be L' outer regular.

DEFINITION 5.7. L is K regular if for any I G L there exists {ha}
from L such that / = C\aha and for each a there exists fcα from K such
that laCk'aCha. If L = K then L is a regular lattice.

THEOREM 5.8. Assume L is K regular and that K C A(L). ///or
any neί {/a} decreasing to ΠalaEA(L), limau(/a)= u(Π la) thenu isK'
outer regular on L. If K = L then u is L' outer regular on A(L). In
addition, if u is finite on L and L is regular, then u is L inner regular on
A(L).

Proof The collection {la}CL such that la D k 'aD /, is a net decreas-
ing to /. Therefore

To give a similar result for measures on σ(L) we need the following
theorem. δ(L) is the smallest lattice containing L closed under counta-
ble intersections.

THEOREM 5.9. Let u be a countably additive, σ-finite measure on a
ring R containing L. If u is L inner regular then the countably additive
extension of u to Rσ(R) is δ(L) inner regular.

Proof. Let S be the collection of sets s in Rσ(R) such that
u(s) = sup{w(fc)//Cs, IE8(L)}. Then R C S. Let {sk} be any
sequence from S such that u(sk) is finite for all k. Then since u is
countably additive, UΓ sk and Γ\™sk belong to S.
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Take any set b in Rσ(R) such that u{b) is finite. There exists a
sequence {rk} from R such that r = UΓrk contains b and u(r)- u{b)<
e. There exists {tk} from R such that t = U™tk contains r\b and
u(t)<e. Then r\ί C 6 and u(b)- u(r\t)< e. For each fc, r\rk =
U7=iΓy \ίk belongs to 5. Since r\t = Π"r\tk, r\t belongs to 5. This
implies that b belongs to S.

Every b E Rσ(R) is the countable union of sets bk such that u(bk) is
finite. Therefore Rσ(R) = S. A similar proof shows the extension of u
is δ(L)' outer regular when w is L' outer regular.

THEOREM 5.10. Suppose L is a regular lattice. Let u be a countably
additive, σ-finite measure on σ(L), finite on L. If for any net {la}
decreasing to Γ\ala E A(L), limau(la) = u(Γ)ala), then u is δ(L) regular
on σ(L).

COROLLARY 5.11. Let X be a topological space and u a countably
additive, finite measure defined on σ(3F) such that for any decreasing net of
closed sets {fa}

lim u(fa)=u ( p i fa).

(i) // X is a regular space then u is 3F regular.
(ii) If X is completely regular then u is 2F Π 2£-regular and for every

closed set f

u(f) = inf {u(z')/fCz\zE%}.

(iii) If X is ^-dimensional then u is 3F Π %f regular where %t is the
lattice of clopen sets and for every closed set f

u(f) = inf {u(c)/f C c, c clopen}.

(iv) // X is a locally compact Hausdorff space then u is 3ίδ Π 2F
regular and for every closed set f

u(f) = int{u(kyfCk'9ke%δ}.

COROLLARY 5.12. Suppose X is a locally compact Hausdorff space
and u a countably additive, finite measure on σ{β) such that for any
decreasing net {za} of zero sets, where Πaza GA(2ί),
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lim u(za)= ul Π za).

Then u is JK8 regular.

Part (i) of 5.11 was proven by Gardner [6].
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