COALLOCATION BETWEEN LATTICES WITH APPLICATIONS TO MEASURE EXTENSIONS

WILLIAM JOSEPHSON

It is well known that in a locally compact Hausdorff space every countably additive measure on $R_{\sigma}(\mathcal{X}_{\delta})$, the σ -ring generated by the compact G_{δ} sets, can be extended to a countably additive measure on $\sigma(\mathcal{F})$, the σ -algebra generated by the closed sets. In a locally compact Hausdorff space \mathcal{F} , the lattice of closed sets, countably coallocates (Definition 4.7) the lattice of compact G_{δ} sets. Our purpose is to show that coallocation and countable coallocation are properties basic to many extension theorems.

Dubins [5] considered the following situation. $K \subseteq L$ are two lattices containing the null set (a lattice is a collection of subsets of some set closed under finite unions and intersections). u is a bounded measure defined on K. Dubins asked when u_* , defined by $u_*(b) = \sup\{u(k)/k \subseteq b, k \in K\}$, is a measure on L. A necessary and sufficient condition is for L to allocate K. L allocates K if the following is true. For any $k \in K$ contained in the union of two sets l and l from l there exist sets l and l from the lattice l such that l is l and l from l and l from l in l is l and l from l in l and l from l in l i

With two lattices $K \subseteq L$ and u a measure on K, we show that a sufficient condition for u^{**} , defined by $u^{**}(b) = \inf\{u_*(l')/b \subseteq l', l' \in L'\}$, to be a measure on the algebra generated by L is for u_* to be modular on L'. l' is the complement of the set l and $L' = \{l'/l \in L\}$. It follows that if u is a K inner regular measure on R(K), the ring generated by K, then u^{**} is a L inner regular extension of u to A(L), the algebra generated by L.

Thus when L coallocates K (i.e. L' allocates K) Dubin's result shows that for every K regular bounded measure u on R(K), u^{**} is a L regular extension of u to A(L). If L countably coallocates K then u^{**} is countably additive when u is countably additive. From this we obtain the stated result on locally compact Hausdorff spaces [Halmos 7] as well as a related result by Levin and Stiles [8]. Countable coallocation also yields an extension theorem by Marik [9] on countably paracompact normal spaces and a theorem by Berberian [2]. In most instances we can and do prove our results for measures that are not bounded.

We also look at measures that are τ -smooth. A measure u on K is τ -smooth if for any net $\{k_a\}$ decreasing to \emptyset , $k_a \in K$, $\lim_a u(k_a) = 0$. We

show that any bounded K regular measure u on R(K) that is τ -smooth on K can be extended to a bounded measure on $A(\tau(K))$ that is τ -smooth on $\tau(K)$. $\tau(K)$ is the smallest lattice containing K that is closed under arbitrary intersections. We prove u_* is modular on $\tau(K)$ and obtain u^{**} , defined with respect to $\tau(K)$, as the desired extension.

2. **Definitions and notation.** All lattices are collections of subsets of an abstract set X that are closed under finite unions and intersections. The fact that X contains points has no importance in this paper — the boolean algebra of all subsets of X can be replaced by any complete boolean algebra. Subsets of X will be denoted by lower case letters. If we are considering a lattice L and a set l, it will usually be assumed that l belongs to L.

l' denotes the complement of the set l in X and $L' = \{l'/l \in L\}$. R(L) is the ring generated by L; A(L) the algebra generated by L. $R_{\sigma}(L)$ is the σ -ring generated by L and $\sigma(L)$ is the σ -algebra generated by L.

A measure u on a lattice A is an extended real valued set function such that for $a, b \in A$

- (i) $u(a) + u(b) = u(a \cup b) + u(a \cap b)$.
- (ii) $u(a) + u(b) = u(a \cup b)$ whenever $a \cap b = \emptyset$.
- (iii) $a \subseteq b$ implies $u(a) \le u(b)$.

Let K be a lattice contained in A. A measure u on A is K inner regular if for any $a \in A$, $u(a) = \sup\{u(k)/k \subseteq a, k \in K\}$.

A measure u on a lattice A is σ -smooth if for any sequence $\{a_n\}$ decreasing to \emptyset , $\lim_n u(a_n) = 0$. u is countably additive on A if $\sum_1^\infty u(a_n) = u(\bigcup_1^\infty a_n)$ whenever $\{a_n\}$ is a disjoint sequence of sets from A such that $\bigcup_1^\infty a_n \in A$. For a ring A any finite valued measure u which is σ -smooth on $K \subseteq A$ and K inner regular is countably additive on A.

A measure u on a lattice A is σ -finite if for every $a \in A$, a is contained in $\bigcup_{1}^{\infty} a_{n}$ where $a_{n} \in A$ and $u(a_{n})$ is finite for all n. If A is a ring then by the Caratheodory extension theorem any countably additive, σ -finite measure u on A can be uniquely extended to a countably additive measure on $R_{\sigma}(A)$. The extension is the outer measure defined by $\hat{u}(b) = \inf\{\sum_{1}^{\infty} u(a_{n})/b \subseteq \bigcup_{1}^{\infty} a_{n}, a_{n} \in A\}$.

The bounded measures on the algebra A(L) are denoted by M(L). It is easy to verify that if u is bounded and L inner regular then $u(a) = \inf\{u(l')/a \subseteq l', l \in L\}$ for $a \in A(L)$. A measure satisfying the last equality is called L' outer regular. If a measure is both L inner regular and L' outer regular then it is L regular. The L regular, bounded measures on A(L) are denoted by $M_r(L)$. Those measures belonging to $M_r(L)$ which are σ -smooth are denoted by $M_r^s(L)$. These

measures are countably additive and hence can be uniquely extended to a countably additive measure on $\sigma(L)$.

For a measure u on a lattice K which contains \emptyset , u_* is defined as in the introduction. The definition of u^{**} as given in the introduction depends on the lattice L used (L must also contain \emptyset).

3. The modularity of u_* . Let $K \subseteq L$ be two lattices containing \emptyset and u a measure on K. u_* is modular on L' if $u_*(l_1') + u_*(l_2') = u_*(l_1' \cup l_2') + u_*(l_1' \cap l_2')$. We now show that if u_* is modular on L' then u^{**} is an L' outer regular measure on A(L) where u^{**} is defined with respect to L. Furthermore u^{**} is a complete measure on $\mathscr{E}(u, L') = \{e/u^{**}(l') = u^{**}(e \cap l') + u^{**}(e' \cap l') \text{ for all } l \in L\}$.

The easy proofs of the following lemmas are omitted.

LEMMA 3.1. Let u be a measure on K. If u_* is modular on L' then for a, b subsets of X,

$$u^{**}(a \cup b) + u^{**}(a \cap b) \leq u^{**}(a) + u^{**}(b).$$

LEMMA 3.2. Let u be a measure on K and u_* be modular on L'. Suppose $l' \cap a = \emptyset$, where a is any subset of X. Then $u^{**}(l') + u^{**}(a) = u^{**}(a \cup l')$.

 u^* is σ -smooth on L' if $\lim_n u_*(l'_n) = u_*(\bigcup_1^\infty l'_n)$ whenever $\{l'_n\}$ is an increasing sequence such that $\bigcup_1^\infty l'_n \in L'$.

THEOREM 3.3. Let u be a measure on K.

- (i) The modularity of u_* on L' is equivalent to u^{**} being an L' outer regular measure on A(L).
- (ii) If u_* is modular on L' then $\mathscr{C}(u, L')$ is an algebra containing A(L) and u^{**} is a complete measure on $\mathscr{C}(u, L')$.
- (iii) Suppose L is closed under countable intersections. If u_* is modular and σ -smooth on L' then $\mathscr{E}(u,L')$ is a σ -algebra containing $\sigma(L)$ and u^{**} is countably additive on $\mathscr{E}(u,L')$.
- **Proof.** (i), (ii). That modularity is necessary is obvious. The sufficiency of (i) and (ii) will be proved. If u_* is modular on L' then $\mathscr{E}(u,L')$ is closed under complementation and by Lemma 3.2 it contains L'.

Fix $l' \in L'$. It is sufficient to assume $u_*(l')$ is finite. Let e_1 , e_2 belong to $\mathscr{E}(u, L')$. By Lemma 3.1,

(1)
$$u_*(l') \leq u^{**}((e_1 \cup e_2) \cap l') + u^{**}((e_1 \cup e_2)' \cap l').$$

For the reverse inequality choose l'_i , h'_i from L' such that $l'_i \supseteq e_i \cap l'$, $h'_i \supseteq e'_i \cap l'$ and

(2)
$$u_*(l') \ge u_*(l'_i) + u_*(h'_i) - \epsilon/3$$
 $j = 1, 2.$

We claim that

(3)
$$u_*(l') \ge u_*(l'_1 \cup l'_2) + u_*(h'_1 \cap h'_2) - \epsilon.$$

This inequality is implied by

$$u_*(l'_1 \cup l'_2) + u_*(h'_1 \cap h'_2) \le u_*(l'_1) + u_*(h'_1) + \frac{2}{3}\epsilon$$

which is equivalent to

$$u_*(l_2') + u_*(h_2') \le u_*(l_1' \cap l_2') + u_*(h_1' \cup h_2') + \frac{2}{3}\epsilon$$

by the modularity of u_* . The last inequality is true by (2) and the modularity of u_* .

(3) implies the reverse direction of (1) and hence $e_1 \cup e_2$ belongs to $\mathscr{E}(u, L')$. Hence $\mathscr{E}(u, L')$ is an algebra containing L.

To show u^{**} is a measure suppose l' contains $e_1 \cup e_2$ and that $u(l') - u(e_1 \cup e_2) < \epsilon$. Then by (3)

$$u_*(l_1') + u_*(l_2') \le u_*(l_1') + u_*(l_1' \cap l_2') + \epsilon$$
.

Therefore

$$u^{**}(e_1) + u^{**}(e_2) \le u^{**}(e_1 \cup e_2) + u^{**}(e_1 \cap e_2) + 2\epsilon.$$

By Lemma 3.1 u^{**} is modular on $\mathscr{E}(u, L')$ and by Lemma 3.2 $u^{**}(\varnothing) = 0$. It is easy to verify that $\mathscr{E}(u, L')$ contains all e such that $u^{**}(e) = 0$.

(iii) Let $\{e_n\}$ be a sequence from $\mathscr{C}(u,L')$. Choose $l'_1 \supseteq e_n \cap l'$, $b'_n \supseteq e_n \cap l'$ such that

(4)
$$u_*(l') \ge u_*(l'_n) + u_*(h'_n) - \epsilon/2^n.$$

We can show using (4) and the modularity of u_* that

(5)
$$u_* \left(\bigcup_{1}^{n} l'_{j} \right) + u_* \left(\bigcap_{1}^{n} h'_{j} \right) \leq u_*(l') + \sum_{1}^{n} \frac{\epsilon}{2^{j}}.$$

Since u_* is σ -smooth on L' there exists an n large enough such that

(6)
$$u_*(l') \ge u_* \left(\bigcup_{j=1}^{\infty} l'_j \right) + u_* \left(\bigcap_{j=1}^{n} h'_j \right) - 2\epsilon.$$

It follows that

(7)
$$u_*(l') \ge u^{**} \left(l' \cap \left(\bigcup_{i=1}^{\infty} e_i \right) \right) + u^{**} \left(l' \setminus \left(\bigcup_{i=1}^{\infty} e_i \right) \right) - 2\epsilon.$$

Therefore by Lemma 3.1, $\bigcup_{i=1}^{\infty} e_i \in \mathscr{C}(u, L')$.

To show u^{**} is countably additive, we can assume $\sum_{i=1}^{\infty} u^{**}(e_i)$ is finite. Choose $f'_i \supseteq e_i$, $f'_i \in L'$ such that $u_*(f'_i) - u^{**}(e_i) \leqq \epsilon/2^i$. Let $l' = \bigcup_{i=1}^{\infty} f'_i$. Then since u_* is σ -smooth and modular on L',

$$u_*(l') \leq \sum_{1}^{\infty} u_*(f_j') < +\infty.$$

Inequality (7) holds for l' and since $l' \supseteq \bigcup_{i=1}^{\infty} e_i$,

$$u^{**} \left(\bigcup_{1}^{\infty} e_{j} \right) \leq u_{*}(l')$$

$$\leq \sum_{1}^{\infty} u_{*}(f'_{j})$$

$$\leq \sum_{1}^{\infty} u^{**}(e_{j}) + 2\epsilon.$$

Thus u^{**} is countably additive on $\mathcal{E}(u, L')$.

We now give sufficient conditions for u^{**} to extend u.

THEOREM 3.4. Let u be a K inner regular measure on S(K) which represents either A(K) or R(K). If u_* is modular on L' and u^{**} is finite on K then $u = u^{**}$ on S(K).

Proof. $u(b) = u^{**}(b)$ when $u(b) = +\infty$. If u(b) is finite then $u^{**}(b)$ is finite. This follows because every $b \in S(K)$ is of the form $\bigcup_{i=1}^{n} k_i \cap h'_i$ where for all $j, h_i \in K$ and either $k_i \in K$ or $k_i = X$.

Choose $l' \supseteq b$ such that $u_*(l') - u^{**}(b) \leqq \epsilon/3$. Choose $k_0 \subseteq b$ such that $u(b) - u(k_0) \leqq \epsilon/3$ and choose $k_1 \subseteq l'$ such that $u_*(l') - u(k_1) \leqq \epsilon/3$. Let $k = k_0 \cup k_1$. Then since u is K inner regular, $|u(k) - u(b)| \leqq \frac{2}{3}\epsilon$. Then $u_*(l') - u(b) < \epsilon$. Hence $u^{**}(b) = u(b)$.

A set function v on a collection of subsets \mathcal{H} is σ -finite with respect to $\mathcal{S} \subset \mathcal{H}$ if for every $h \in \mathcal{H}$, $h \subseteq \bigcup_{i=1}^{\infty} s_i$ where $s_i \in \mathcal{S}$ and $v(s_i)$ is finite for

all j. Note that since our measure u is finite on K, u is σ -finite with respect to R(K) when u is defined on $R_{\sigma}(K)$.

Theorem 3.5. Suppose L is closed under countable intersections. Suppose u_* is modular and σ -smooth on L' where u is a countably additive measure defined on

- (i) $\sigma(K)$, σ -finite with respect to A(K). If u^{**} is finite on K then it is a countably additive extension of u to $\sigma(L)$.
- (ii) $R_{\sigma}(K)$. If u^{**} is finite valued on K then u^{**} is a countably additive extension of u to $\sigma(L)$.

Proof. If u is a countably additive, σ -finite measure on a σ -ring generated by a ring S then for all b in the σ -ring,

$$u(b) = \inf \left\{ \sum_{1}^{\infty} u(s_{j})/b \subset \bigcup_{1}^{\infty} s_{j}, s_{j} \in S \right\}.$$

That $u = u^{**}$ follows in both cases from this and Theorem 3.4. Define $K \cap L = \{k \cap l/k \in K, l \in L\}$.

COROLLARY 3.6. Suppose $u \in M_r(K)$ and u_* modular on L'. Then u^{**} is a $K \cap L$ regular extension of u to A(L). If u is countably additive, $u_* \sigma$ -smooth on L', and L closed under countable intersections then u^{**} is a countably additive measure on $\sigma(L)$.

4. Coallocation and the extension of K inner regular measures. We will assume throughout this section that $K \subseteq L$, and that any measure on K (or A(K), R(K), $\sigma(K)$, $R_{\sigma}(K)$) is finite valued on K. In most examples we consider there should be no confusion as to which lattice is used for L in the definition of u^{**} . We specify this lattice only occasionally.

Allocation is defined as in the introduction. A lattice L coallocates K if L' allocates K. Though Dubin's paper deals with bounded measures on a lattice, we state his theorem for any extended real valued measure. His proof remains valid despite the change.

THEOREM 4.1. Let $\emptyset \in H$; and let J be any other lattice (J need not contain \emptyset). The following two statements are equivalent.

- (i) For every measure u on H, u_* is a measure on J.
- (ii) J allocates H.

Proof. Assume J allocates H. Choose from J any j_1, j_2 and choose from H $h \subseteq j_1 \cup j_2$, $l \subseteq j_1 \cap j_2$. Then since J allocates H there exists

 $p_1, p_2 \in H$ such that

- $(1) \quad p_1 \subseteq j_1, \ p_2 \subseteq j_2$
- $(2) \quad p_1 \cup p_2 = h \cup l, \ p_1 \cap p_2 \supseteq l.$

Therefore $u_*(j_1 \cup j_2) + u_*(j_1 \cap j_2) \le u_*(j_1) + u_*(j_2)$. The reverse inequality is always true. Thus (ii) implies (i).

Assuming J does not allocate H, Dubins constructed a measure u on H for which u_* is not a measure on J. Thus (i) implies (ii).

COROLLARY 4.2. Suppose L coallocates K and $u \in M(K)$. Define u^{**} with respect to L.

- (i) u^{**} is a complete measure on $\mathcal{E}(u, L') \supseteq A(L)$ and is the smallest L' outer regular measure on $\mathcal{E}(u, L')$ such that $u^{**} \ge u$ on K.
 - (ii) If $u \in M_r(K)$ then $u^{**} \in M_r(L)$ and $u^{**} = u$ on A(K).
- (iii) If $u \in M_r^s(K)$, $u * \sigma$ -smooth on L' and L closed under countable intersections then $u^{**} \in M_r^s(L)$ and $u^{**} = u$ on A(K).

For any lattice K, R(K) is an ideal in A(K), i.e. $r \cap a$ belongs to R(K) whenever $r \in R(K)$, $a \in A(K)$. Thus A(K) coallocates R(K). Hence for any K inner regular measure u on R(K), u^{**} defined with respect to A(K) is an extension of u to A(K). Since $u^{**} = u_*$, the extension is K inner regular.

In many instances the lattice K' separates the lattice L. A lattice H separates L if whenever $l_1 \cap l_2 = \emptyset$, there exists disjoint sets h_1 , h_2 such that $h_1 \supseteq l_1$, $h_2 \supseteq l_2$. H coseparates L if H' separates L.

Theorem 4.3. Suppose K coseparates L and $K \subseteq L$. Then L coallocates K.

Proof. Suppose $l_1' \cup l_2' \supseteq k$. Then $l_1 \cap k$, $l_2 \cap k$ are disjoint members of L. Since K coseparates L there exist disjoint sets k_1' , k_2' containing $l_1 \cap k$ and $l_2 \cap k$ respectively. Since $k_1 \subseteq k' \cup l_1'$, $k_1 \cap k \subseteq l_1'$. Similarly $k_2 \cap k \subseteq l_2'$. Now $(k_2 \cap k) \cup (k_1 \cap k) = k$.

Let X be a topological space. We give the following notation for some natural lattices occuring in X. \mathscr{F} is the lattice of closed sets, \mathscr{Z} is the lattice of zero sets, \mathscr{X} is the lattice of compact sets, and \mathscr{H}_{δ} is the lattice of compact G_{δ} sets. If X is a normal space then \mathscr{Z} coseparates \mathscr{F} by Urysohn's lemma. Hence every $u \in M_r(\mathscr{Z})$ extends to $u^{**} \in M_r(\mathscr{F})$.

 \mathscr{F} coseparates itself in a normal space and \mathscr{Z} coseparates itself in an arbitrary topological space. Consequently for any $u \in M(\mathscr{Z})$, in any space X, u^{**} is the smallest outer regular measure on $A(\mathscr{Z})$ such that $u^{**} \ge u$. Here u^{**} is defined with respect to \mathscr{Z} .

It will follow from the next theorem that \mathscr{F} coallocates \mathscr{K}_{δ} in any completely regular Hausdorff space.

DEFINITION 4.4. A lattice K is an L-ideal if $K \cap L \subseteq K$. $K \cap L = \{k \cap l/k \in K, l \in L\}$.

THEOREM 4.5. Let K be an H-ideal where $K \subseteq H \subseteq L$. If H coseparates $K \cap L$ then L coallocates K.

Proof. Let $l'_1 \cup l'_2 \supseteq k$. Then $(k \cap l_1) \cap (k \cap l_2) = \emptyset$. There exists h'_1 and h'_2 which are disjoint and contain $k \cap l_1$, and $k \cap l_2$ respectively. Then $h_1 \cap k \subseteq l'_1$, $h_2 \cap k \subseteq l'_2$ and $(h_1 \cup h_2) \cap k = k$. Since K is an H ideal, L coallocates K.

In a completely regular Hausdorff space \mathcal{H}_{δ} is a \mathcal{Z} -ideal. \mathcal{Z} coseparates the compact sets and therefore \mathcal{Z} certainly coseparates $\mathcal{H}_{\delta} \cap \mathcal{F}$. Hence \mathcal{F} coallocates \mathcal{H}_{δ} . Therefore we have the following.

THEOREM 4.6. Let X be a completely regular Hausdorff space. Suppose $u \in M^s_*(\mathcal{H}_{\delta})$. Then $u^{**} \in M^s_*(\mathcal{F})$ and is a $\mathcal{H}_{\delta} \cap \mathcal{F}$ -regular extension of u to $\sigma(\mathcal{F})$.

Proof. That u^{**} is σ -smooth follows from the fact that $\mathcal{H}_{\delta} \cap \mathcal{F}$ is a compact lattice (any collection $\{f_{\alpha}\}$ from the lattice has a nonempty intersection whenever every finite subcollection has a nonempty intersection). The rest of the theorem follows from Corollary 4.2.

The following definition is useful in determining when u^{**} is countably additive.

DEFINITION 4.7. L countably allocates K if whenever $k \subseteq \bigcup_{i=1}^{\infty} l_i$ then there exist $k_i \in K$ such that each k_i is contained in a finite union of the l_i and $\bigcup_{i=1}^{\infty} k_i = k$. If L' countably allocates K then L countably coallocates K.

Theorem 4.8. Suppose L countably coallocates K. Consider a countably additive measure u on $\sigma(K)$ (or $R_{\sigma}(K)$). Then u_* is σ -smooth on L'.

Proof. Suppose $l' = \bigcup_{1}^{\infty} l'_{j}$ and $\bigcup_{1}^{\infty} l'_{j} \in L'$. Choose $k \subseteq l'$. There exist $k_{i} \in K$ such that $k_{i} \subset \bigcup_{1}^{n} l'_{j}$ for some n and $\bigcup_{1}^{\infty} k_{i} = k$. Since u is countably additive, $\lim_{n} u(k_{i}) = u(k)$. Thus $u_{*}(l') \leq \lim_{n} u_{*}(\bigcup_{1}^{n} l'_{j})$. The reverse inequality is always true.

In a locally compact Hausdorff space if $k \subseteq \bigcup_{i=1}^{\infty} o_i$ where the o_i are

open, then $k = \bigcup_{1}^{n} k_i$, $k_i \in \mathcal{X}_{\delta}$, and $k_i \subseteq o_j$ for some j. Thus \mathscr{F} countably coallocates \mathcal{X}_{δ} . Also for every $k \in \mathcal{X}_{\delta}$ $k \subseteq z_1' \subseteq k_1$ where z_1 is a zero set and $k \in \mathcal{X}_{\delta}$. Applying Theorems 4.8, 3.3 and 3.5 we obtain the following.

THEOREM 4.9. Let X be a locally compact Hausdorff space. Every countably additive measure u on $R_{\sigma}(\mathcal{H}_{\delta})$, is \mathcal{H}_{δ} -inner regular. u^{**} is a countably additive extension of u to $\sigma(\mathcal{F})$.

Proof. All that has to be shown is that u is \mathcal{K}_{δ} -inner regular. This follows from the fact that for each $b \in R(\mathcal{K}_{\delta})$, $b = \bigcup_{i=1}^{\infty} k_{i}$, $k_{i} \in \mathcal{K}_{\delta}$.

Levin and Stiles [8] showed that the conclusions of Theorem 4.9 no longer are true if $R_{\sigma}(\mathcal{K}_{\delta})$ is replaced by $\sigma(\mathcal{K}_{\delta})$ even if X is locally compact and Hausdorff. Suppose X is locally compact, paracompact and Hausdorff. Levin and Stiles prove that for any countably additive measure u on $\sigma(\mathcal{K}_{\delta})u(b) = \inf\{u(o)/b \subseteq o, o \text{ open and } o \in \sigma(\mathcal{K}_{\delta})\}$. Thus if u is also \mathcal{K}_{δ} -inner regular then u^{**} must be a countably additive extension of u to $\sigma(\mathcal{F})$ according to Theorem 3.3. This result is found in the paper of Levin and Stiles.

In a countably paracompact, normal space the lattice \mathscr{F} countably coallocates \mathscr{Z} . In any topological space, for every zero set $z, z \subseteq z_1' \subseteq z_2$ where z_1, z_2 are zero sets. Thus we obtain Marik's [9] result.

THEOREM 4.10. Every countably additive measure u on $\sigma(\mathcal{Z})$ is \mathcal{Z} -inner regular. If X is countably paracompact and normal then u^{**} is a countably additive extension of u to $\sigma(\mathcal{F})$.

Let X be a countable product, $\Pi_1^{\infty} X_k$, of discrete topological spaces. Define for $x = (x_1, \dots)$, $y = (y_1, \dots)$ $y = x \pmod{n}$ if $x_i = y_i$, $i = 1, \dots, n$. For any subset A of X define $t_A(x)$ to be the least positive integer n, if any, such that $y \in A$ whenever $y = x \pmod{n}$. If there exists no such n then let $t_A(x) = +\infty$. Suppose $C \subseteq \bigcup_{i=1}^{\infty} O_k$ where C is a clopen set (both closed and open in X) and each O_k is open. Define inductively

$$C_1 = \{c \in C/t_{O_1}(c) \le t_{O_k}(c), k \ne 1\},$$

$$C_n = \{c \in C \setminus (\bigcup_{1}^{n-1} C_i)/t_{O_n}(c) \le t_{O_k}(c), k \ne n\}.$$

Then $C = \bigcup_{1}^{\infty} C_k$, $C_k \subseteq O_k$ for all k and each C_k is clopen. Thus \mathscr{F} countably coallocates $\mathscr{C}\ell$, the lattice of clopen sets. Dubins is interested

in measures defined on $\mathscr{C}\ell = A(\mathscr{C}\ell)$. These measures are called strategic measures. Strategic measures are always $\mathscr{C}\ell$ -inner regular.

THEOREM 4.11. Let X be a countable product of discrete topological spaces. For every countably additive strategic measure u, u^{**} is a countably additive extension of u to $\sigma(\mathcal{F})$.

Let R be a ring of subsets in X. Define $\mathcal{L}(R)$ to be those subsets b such that $b \cap r \in R$ for every $r \in R$. $\mathcal{L}(R)$ is an algebra containing R. $\mathcal{L}(R)$ certainly coallocates R and if R is a σ -ring then $\mathcal{L}(R)$ is an σ -algebra that countably coallocates R. For a measure (not necessarily finite valued on R) define $u_*(b) = \sup\{u(r)/r \subseteq b, r \in R\}$, and u^{**} with respect to $\mathcal{L}(R)$. It is easy to see that $u^{**} = u_*$ on $\mathcal{L}(R)$. By Theorem 3.3 u_* is an extension of u to $\mathcal{L}(R)$. By Theorems 4.8 and 3.3 if R is a σ -ring and u is countably additive then u_* is countably additive on $\mathcal{L}(R)$. $\mathcal{L}(R)$ is called the class of sets locally measurable with respect to R. The result for countably additive measures on a σ -ring is found in a paper by Berberian [2].

If $K \subseteq L$ is an L-ideal, then $A(L) \subseteq \mathcal{L}(R(K))$. Clearly $l \cap r$ belongs to R(K) for all $l \in L$ and $r \in R(K)$. Suppose $b \cap r$ and $c \cap r$ belong to R(K) for all $r \in R(K)$. Then $(b \cup c) \cap r$ belongs to R(K) for all $r \in R(K)$. If $b \cap r \in R(K)$ then $b' \cup r'$ is in A(K). Therefore $r \cap b' = r \cap (b' \cup r')$ belongs to R(K). Thus A(L) is contained in $\mathcal{L}(R(K))$. Also $\sigma(L)$ is contained in $\mathcal{L}(R_{\sigma}(K))$. Thus in a Hausdorff space $\sigma(\mathcal{F})$ is contained in the locally measurable sets of $R_{\sigma}(\mathcal{K})$ where \mathcal{K} is the lattice of compact sets [Berberian and Jakobsen 3]. In a completely regular Hausdorff space $\sigma(\mathcal{L})$ is contained in the locally measurable sets of $R(\mathcal{K}_{\delta})$. We also have, for any lattice K, $A(K) \subseteq \mathcal{L}(R(K))$ and $\sigma(K) \subseteq \mathcal{L}(R_{\sigma}(K))$. In the following theorems the measures need not be finite on any particular set.

THEOREM 4.12. Any measure on R(K) extends to a R(K) inner regular measure on A(K). Any countably additive measure on $R_{\sigma}(K)$ extends to a $R_{\sigma}(K)$ inner regular, countably additive measure on $\sigma(K)$.

THEOREM 4.13. In a Hausdorff space any countably additive measure on $R_{\sigma}(\mathcal{H})$ has a countably additive, $R_{\sigma}(\mathcal{H})$ inner regular extension to $\sigma(\mathcal{F})$. In a completely regular Hausdorff space any countably additive measure on $R_{\sigma}(\mathcal{H}_{\delta})$ can be extended to a countably additive, $R_{\sigma}(\mathcal{H}_{\delta})$ inner regular measure on $\sigma(\mathcal{X})$.

THEOREM 4.14. Let $K \subseteq L$ be a L-ideal. Then for every R(K) inner regular measure on A(K) has a R(K) inner regular extension to

A(L). Every countably additive, $R_{\sigma}(K)$ inner regular measure on $\sigma(K)$ has a countably additive, $R_{\sigma}(K)$ inner regular extension to $\sigma(L)$.

In view of Theorem 4.14 the next example shows that coallocation is not necessary for every K inner regular measure u on A(K) to have u_* modular on L'. Also countable coallocation is not implied if u_* is σ -smooth on L' for every countably additive K inner regular measure on $R_{\sigma}(K)$.

Topologize the set of real numbers as follows. For $x \neq 0$ or 2 a neighborhood basis for x is the collection of open intervals containing x. A neighborhood basis for 0 is the collection of open intervals containing 0 and 1. Likewise a neighborhood basis for 2 is the collection of open intervals containing 1 and 2. The interval [0,2] is a compact closed set and the intervals $I_1 = (-1,3/2)$ and $I_2 = (1/2,3)$ are open sets. There does not exist a sequence $\{C_n\}$ of closed, compact sets such that $\bigcup_{n=1}^{\infty} C_n = [0,2]$ and each C_n is contained in either I_1 or I_2 . Therefore the closed sets \mathcal{F} do not coallocate or countably coallocate the lattice of compact closed sets though this lattice is an \mathcal{F} -ideal.

5. The extension of τ -smooth measures. A measure on a lattice L is τ -smooth if for any net $\{l_{\alpha}\}$ decreasing to \emptyset , $\lim_{\alpha} u(l_{\alpha}) = 0$. We will study the measures on A(L) which are L inner regular, finite valued on L and τ -smooth on L. Denote these measures by $\mathcal{M}'_{\tau}(L)$. $M'_{\tau}(L)$ are those measures in $\mathcal{M}'_{\tau}(L)$ which are bounded.

For a lattice L, $\tau(L)$ is the smallest lattice containing L that is closed under arbitrary intersections. We now show that every $u \in \mathcal{M}'_{\tau}(L)$ extends to u^{**} , defined with respect to $\tau(L)$ on A(L), and τ -smooth on $\tau(L)$.

LEMMA 5.1. Let u be a measure on A(L), τ -smooth on L. For any t in $\tau(L)$,

$$u_*(t') = \lim_{\alpha} u(l'_{\alpha})$$

where $t' = \bigcup_{\alpha} l'_{\alpha}$ and $\{l'_{\alpha}\}$ is an increasing net of sets from L'.

Proof. Choose $l \subseteq t'$. Since $t \in \tau(L)$ there exists a net $\{l'_{\alpha}\}$ from L' which is increasing and $\bigcup_{\alpha} l'_{\alpha} = t'$. Since u is τ -smooth, $\lim_{\alpha} u(l'_{\alpha}) = u(l) + \lim_{\alpha} u(l'_{\alpha} \cap l')$. Therefore $u_*(t') = \lim_{\alpha} u(l'_{\alpha})$.

THEOREM 5.2. Suppose u is a measure on A(L), τ -smooth on L. Then u_* is modular on $\tau(L)'$.

Proof. Let $s, t \in \tau(L)$. Then $s' = \bigcup_{\alpha} h'_{\alpha}$, $t' = \bigcup_{\beta} l'_{\beta}$ where $\{h'_{\alpha}\}, \{l'_{\beta}\}$ are increasing nets from L'.

Form the net $\{k'_{\gamma}\}$ of unions $k'_{\gamma} = h'_{\alpha} \cup l'_{\beta}$. For the same γ , α , and β define $p'_{\gamma} = h'_{\alpha} \cap l'_{\beta}$. $\{k'_{\gamma}\}$ is a net increasing to $t' \cup s'$ and $\{p'_{\gamma}\}$ is a net increasing to $t' \cap s'$. Thus

$$u_{*}(t' \cup s') + u_{*}(t' \cap s') = \lim_{\gamma} (u(k'_{\gamma}) + u(p'_{\gamma}))$$

$$= \lim_{\gamma} (u(h'_{\alpha}) + u(l'_{\beta}))$$

$$\leq u_{*}(t') + u_{*}(s').$$

THEOREM 5.3. Let $u \in \mathcal{M}'_{\tau}(L)$. If u^{**} is finite on L then it extends u to $A(\tau(L))$ and belongs to $\mathcal{M}'_{\tau}(\tau(L))$.

Proof. u^{**} extends u according to Theorems 5.2 and 3.4. u^{**} is τ -smooth and finite on $\tau(L)$ since each $t \in \tau(L)$ is the intersection of sets from L. Consider t, s from $\tau(L)$. Choose v from $\tau(L)$ such that $s \subseteq v'$ and $u^{**}(v') - u^{**}(s) < \epsilon$. Then $u^{**}(t \cap s') - u^{**}(t \cap v) < \epsilon$. Every set in $A(\tau(L))$ is of the form $\bigcup_{i=1}^{n} t_{i} \cap s'_{i}$ where s_{i} belongs to $\tau(L)$ and either $t_{i} \in \tau(L)$ or $t_{i} = X$. Therefore u^{**} is $\tau(L)$ inner regular.

COROLLARY 5.4. Let u be a L inner regular, countably additive measure on $R_{\sigma}(L)$, τ -smooth and finite on L. If u^{**} is finite on L then u^{**} is a countably additive extension of u to $\sigma(\tau(L))$ and u^{**} is τ -smooth and finite on $\tau(L)$.

COROLLARY 5.5. Suppose X is a completely regular space. Suppose u is a L inner regular, countably additive measure on $\sigma(\mathcal{Z})$ that is τ -smooth and finite on \mathcal{Z} . Then u^{**} is a countably additive extension of u to $\sigma(\mathcal{F})$ and u^{**} is τ -smooth and finite on \mathcal{F} .

A collection of sets has the finite (countable) intersection property if every finite (countable) subcollection has a nonempty intersection. A lattice L is compact if every collection with the finite intersection property has a nonempty intersection. L is Lindelof if every collection with the countable intersection property has a nonempty intersection. A measure on a compact lattice is always τ -smooth and any σ -smooth measure on a Lindelof lattice is τ -smooth. $\mathcal{M}_r(L)$ are the L inner regular measures on A(L) that are finite on L and $\mathcal{M}_r^s(L)$ are those that are also σ -smooth on L.

COROLLARY 5.6. If L is compact then every $u \in \mathcal{M}_r(L)$ for which u^{**} is finite on L extends to $u^{**} \in \mathcal{M}_r^r(\tau(L))$. If L is Lindelof then for every $u \in \mathcal{M}_r^s(L)$ such that u^{**} is finite on L, $u^{**} \in \mathcal{M}_r^r(\tau(L))$ and extends u.

The result concerning compact lattices has been proved by using Zorn's lemma to show that u^{**} on $A(\tau(L))$ is, in an appropriate sense, a maximal extension of u [P. A. Meyer 10].

Suppose u is a L' outer regular measure on A(L). Then for any decreasing net $\{l_{\alpha}\}$ from L such that $\bigcap_{\alpha} l_{\alpha} \in A(L)$, $\lim_{\alpha} u(l_{\alpha}) = u(\bigcap_{\alpha} l_{\alpha})$. If L is a regular lattice then this property is a sufficient condition for a measure u to be L' outer regular.

DEFINITION 5.7. L is K regular if for any $l \in L$ there exists $\{h_{\alpha}\}$ from L such that $l = \bigcap_{\alpha} h_{\alpha}$ and for each α there exists k_{α} from K such that $l_{\alpha} \subseteq k'_{\alpha} \subseteq h_{\alpha}$. If L = K then L is a regular lattice.

THEOREM 5.8. Assume L is K regular and that $K \subseteq A(L)$. If for any net $\{l_{\alpha}\}$ decreasing to $\bigcap_{\alpha} l_{\alpha} \in A(L)$, $\lim_{\alpha} u(l_{\alpha}) = u(\bigcap_{\alpha} l_{\alpha})$ then u is K' outer regular on L. If K = L then u is L' outer regular on A(L). In addition, if u is finite on L and L is regular, then u is L inner regular on A(L).

Proof. The collection $\{l_{\alpha}\}\subseteq L$ such that $l_{\alpha}\supseteq k'_{\alpha}\supseteq l$, is a net decreasing to l. Therefore

$$u(l) \leq \inf \{ u(k'_{\alpha})/l \subseteq k'_{\alpha} \subseteq l_{\alpha} \}$$

$$\leq \inf \{ u(l_{\alpha})/l \subseteq k'_{\alpha} \subseteq l_{\alpha} \}$$

$$= u(l).$$

To give a similar result for measures on $\sigma(L)$ we need the following theorem. $\delta(L)$ is the smallest lattice containing L closed under countable intersections.

THEOREM 5.9. Let u be a countably additive, σ -finite measure on a ring R containing L. If u is L inner regular then the countably additive extension of u to $R_{\sigma}(R)$ is $\delta(L)$ inner regular.

Proof. Let S be the collection of sets s in $R_{\sigma}(R)$ such that $u(s) = \sup\{u(k)/l \subseteq s, l \in \delta(L)\}$. Then $R \subseteq S$. Let $\{s_k\}$ be any sequence from S such that $u(s_k)$ is finite for all k. Then since u is countably additive, $\bigcup_{k=1}^{\infty} s_k$ and $\bigcap_{k=1}^{\infty} s_k$ belong to S.

Take any set b in $R_{\sigma}(R)$ such that u(b) is finite. There exists a sequence $\{r_k\}$ from R such that $r = \bigcup_{1}^{\infty} r_k$ contains b and $u(r) - u(b) < \epsilon$. There exists $\{t_k\}$ from R such that $t = \bigcup_{1}^{\infty} t_k$ contains $r \setminus b$ and $u(t) < \epsilon$. Then $r \setminus t \subseteq b$ and $u(b) - u(r \setminus t) < \epsilon$. For each k, $r \setminus t_k = \bigcup_{j=1}^{\infty} r_j \setminus t_k$ belongs to S. Since $r \setminus t = \bigcap_{1}^{\infty} r \setminus t_k$, $r \setminus t$ belongs to S. This implies that b belongs to S.

Every $b \in R_{\sigma}(R)$ is the countable union of sets b_k such that $u(b_k)$ is finite. Therefore $R_{\sigma}(R) = S$. A similar proof shows the extension of u is $\delta(L)'$ outer regular when u is L' outer regular.

THEOREM 5.10. Suppose L is a regular lattice. Let u be a countably additive, σ -finite measure on $\sigma(L)$, finite on L. If for any net $\{l_{\alpha}\}$ decreasing to $\bigcap_{\alpha} l_{\alpha} \in A(L)$, $\lim_{\alpha} u(l_{\alpha}) = u(\bigcap_{\alpha} l_{\alpha})$, then u is $\delta(L)$ regular on $\sigma(L)$.

COROLLARY 5.11. Let X be a topological space and u a countably additive, finite measure defined on $\sigma(\mathcal{F})$ such that for any decreasing net of closed sets $\{f_{\alpha}\}$

$$\lim_{\alpha} u(f_{\alpha}) = u\left(\bigcap_{\alpha} f_{\alpha}\right).$$

- (i) If X is a regular space then u is \mathcal{F} regular.
- (ii) If X is completely regular then u is $\mathcal{F} \cap \mathcal{Z}$ -regular and for every closed set f

$$u(f) = \inf \{ u(z')/f \subseteq z', z \in \mathcal{Z} \}.$$

(iii) If X is 0-dimensional then u is $\mathcal{F} \cap \mathcal{C}\ell$ regular where $\mathcal{C}\ell$ is the lattice of clopen sets and for every closed set f

$$u(f) = \inf \{ u(c)/f \subseteq c, c \ clopen \}.$$

(iv) If X is a locally compact Hausdorff space then u is $\mathcal{H}_{\delta} \cap \mathcal{F}$ regular and for every closed set f

$$u(f) = \inf\{u(k')/f \subseteq k', k \in \mathcal{K}_{\delta}\}.$$

COROLLARY 5.12. Suppose X is a locally compact Hausdorff space and u a countably additive, finite measure on $\sigma(\mathcal{Z})$ such that for any decreasing net $\{z_{\alpha}\}$ of zero sets, where $\bigcap_{\alpha} z_{\alpha} \in A(\mathcal{Z})$,

$$\lim_{\alpha} u(z_{\alpha}) = u\left(\bigcap_{\alpha} z_{\alpha}\right).$$

Then u is \mathcal{K}_{δ} regular.

Part (i) of 5.11 was proven by Gardner [6].

REFERENCES

- A. D. Alexandroff, Additive set functions in abstract spaces, Mat. Sb., (N.S.) 8, 50 (1940) 307-348.
 Mat. Sb. (N.S.) 8, 50 (1941), 563-621.
- 2. S. K. Berberian, On the extension of Borel measures, Proc. Amer. Math. Soc., 16 (1965), 415-418.
- 3. S. K. Berberian and J. F. Jakobsen, A note on Borel sets, Amer. Math. Soc. Month., 70 (1963), 55.
- 4. G. Birkhoff, Lattice Theory, New York, Amer. Math. Soc., 1948.
- 5. L. Dubins, On Lebesgue-like extensions of finitely additive measures, The Annals of Prob., 2 No. 3, (1974), 456-463.
- 6. R. J. Gardner, The regularity of Borel measures and Borel measure compactness, Proc. London Math. Soc., 3, 30 (1975), 95-113.
- 7. P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- 8. M. Levin and W. Stiles, On the regularity of measures on locally compact spaces, Proc. of the Amer. Math. Soc., 36, 1, (1972), 201-206.
- 9. J. Marik, The Baire and Borel measure, Czech. Math. J., 82 (1957), 248-253.
- 10. P. A. Meyer, Probability and Potentials, Blaisdell Publ. Comp. 1966.
- 11. R. Sikorski, Boolean Algebras, Springer-Verlag, New York, 1969.
- 12. F. Topsoe, Compactness in Spaces of Measures, Studia Math., 36 (1970), 195-212.
- 13. V. S. Varadarajan, *Measures on topological spaces*, Amer. Math. Soc. Translations, Series (2) 48 (1965), 161-228.

Received February 11, 1977.

POLYTECHNIC INSTITUTE OF NEW YORK BROOKLYN, NY 11201

Current address: Mathematics Dept.

University of Wisconsin at Milwaukee

Milwaukee, WI 53211.