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PSEUDO-VALUATION DOMAINS

JOHN R. HEDSTROM AND EVAN G. HOUSTON

A domain R is called a pseudo-valuation domain if,
whenever a prime ideal P contains the product xy of two
elements of the quotient field of 1? then JC E P or y G P. It is
shown that a pseudo-valuation domain which is not a valuation
domain is a quasi-local domain (R, M) such that V = M~] is a
valuation overring with maximal ideal M. The authors further
show that the nonprincipal divisorial ideals of R coincide with
the nonzero ideals of V. These ideas are then applied to the
case of a Noetherian pseudo-valuation domain R. Such a
domain R is shown to have all its nonzero ideals divisorial if and
only if each ideal is two-generated. Examples include valuation
rings, certain D + M constructions, and certain rings of algeb-
raic integers.

Introduction. The purpose of this paper is to study pseudo-
υaluation domains, a class of rings closely related to valuation rings. We
define a pseudo-valuation domain to be a domain R in which every
prime ideal P has the property that whenever a product of two elements
of the quotient field of R lies in P then one of the given elements is in
P. One shows easily that valuation rings are pseudo-valuation domains
(Prop. 2.1). In the first section of the paper, several characterizations of
pseudo-valuation domains are given. For example, a quasi-local do-
main (R,M) is a pseudo-valuation domain if and only if x" 'MCM
whenever x is an element of the quotient field of i?, xfέ R (Th. 1.4).

The name "pseudo-valuation domain" is justified in the second
section, first by showing that these rings share many properties with
valuation rings. More important is the characterization of a pseudo-
valuation domain which is not a valuation domain as a quasi-local domain
(R, M) with the property that V = M"1 is a valuation overring with
maximal ideal M. The second section is concluded with a study of the
relationship between the ideals of R and the ideals of V; for example,
the set of nonzero ideals of V and the set of nonprincipal, divisorial
ideals of R are shown to be one and the same (Cor. 2.15).

In the final section, the authors study Noetherian pseudo-valuation
domains. Such rings have Krull dimension ^ 1. Also, a Noetherian
pseudo-valuation domain has the 2-generator property if and only if
every nonzero ideal is divisorial (Th. 3.5).

Besides valuation rings, two other classes of examples of pseudo-
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valuation domains are given. The first (Ex. 2.1) is obtained by taking a
valuation ring of the form V = K + M, K a field, and taking R to be a
subring of the form F + M , F a proper subfield of K. A second class of
(Noetherian) pseudo-valuation domains is provided by localizing certain
rings of algebraic integers (Ex. 3.6).

I. Definitions and properties.

DEFINITION. Let R be a domain with quotient field K. A prime
ideal P of R is called strongly prime if x, y E K and xy E P imply that
x E P or y E P.

DEFINITION. A domain R is called a pseudo-valuation domain if
every prime ideal of R is strongly prime.

PROPOSITION 1.1. Every valuation domain is a pseudo-valuation
domain.

Proof. Let V be a valuation domain, and let P be a prime ideal in
V. Suppose xy E P where x , y 6 ί , the quotient field of V. If both x
and y are in V, we are done. Suppose that x& V. Since V is a
valuation domain, we have x " ! E V. Hence y = xy JC - 1 E P, as desired.

As we shall see in the next section, the converse of the above
proposition is false. We turn now to some simple properties and
characterizations of pseudo-valuation domains.

PROPOSITION 1.2. Let Pbe a prime ideal of a domain R with quotient
field K. Then P is strongly prime if and only if x~ιPCP whenever
xEK-R.

Proof. Assume that P is strongly prime. If x E K - R and p E P
then p = px~ι x E P, whence px~ι E P or x E P. Since x& R we must
have pjc 'E P. T h u s x ' P C P .

Conversely, assume x~λP CP whenever x E K - R, and let αfe E
P. If α, 6 E R there is nothing to prove. Hence we may assume a £ R
so that a~xP CP and b = a1 ab E P. This completes the proof.

COROLLARY 1.3. In a pseudo-valuation domain R, the prime ideals
are linearly ordered. In particular R is quasi-local.

Proof. Let P and Q be prime ideals, and suppose a E P -
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Q. Then for each b E Q we have a/b£R. Hence (b/a)P CP by the
proposition. Thus b•= £>/α a E P and we have Q CP.

THEOREM 1.4. Lei (i?, M) fee α quasi-local domain. The following
statements are equivalent.

(1) i? is a pseudo-valuation domain.
(2) For eαc/i pair I, J of ideals of R, either I CJ or MJ CMI.
(3) For each pair J, / of ideals of R, either I CJ or MJ CI.
(4) M is strongly prime.

Proof. (1) Φ (2). Assume If£J and pick a E I - J. For each
b G J we have α/f>£ R, so that (b/a)M CM and M6 CMα CMI. It
follows that MJ CMI

(2) φ (3). This requires no comment.
(3)φ(4). Let a,bER with a/b£R. We shall show that

(b/a)MCM; by Proposition 1.2 this will suffice. Since a/b£R we
have (a)C(b) whence Mb C(α) and MbfaCR. If M6/α = i? then
M = Ra/b and α/ί> E R, a contradiction. Hence Mfr/α CM, as was to
be shown.

(4) φ (1). Let x be an element of the quotient field of R, x £ K,
and let P be a prime ideal. Again, by Proposition 1.2, it is enough to
show that x'λP CP. Accordingly, let p G P and note that since P CM,
we have x'ιpEM. Hence x~ιp-x~ιE.M, whence (x~ιpf =
xλpx~ι-p E.P. Since P is prime and x^pER, we therefore have
x^pEP.

In the following theorem we characterize pseudo-valuation domains
without making the quasi-local assumption.

THEOREM 1.5. Let R be a domain with quotient field K. The
following statements are equivalent.

(1) R is a pseudo-valuation domain.
(2) For each x G K - R and for each nonunit a of R, we have

(jc + α)K =xJR.
(3) For each x G K - R and for each nonunit a of R, we have

Proof (1) Φ (2) Let x EK- R and let a be a nonunit of
R, Then αEP for some prime ideal P, so that x~γα E x~ιP CP C
JR. Hence (x + α)/x = 1 + α/x E R and (x 4- α)R CxR. On the other
hand, x + α£R so that (JC + a)~xP CP and a/(x + a)ER. Since
*/(* + α)= l - α / ( x + α ) , we have x/(x 4- a)ER and xi? C(x + α)K.

(2) => (3). By (2) (x + a)/x = 1 4- α/x G #, whence r ! α ε 8 also.
(3) => (1). Let P be prime and take ab E P with a,bEK. We
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may assume b£R. By hypothesis since ab is a nonunit of R, a =
b~ι ab E R. We claim that a is a nonunit; otherwise b = a~λ aft E P, a
contradiction. We apply the hypothesis again to get b~λa E R. Thus
α2 = b~λa ab E F and α 6 P, as desired.

We close this section with a brief study of overrings of pseudo-
valuation domains. (By an overring of a domain JR, we mean a domain
between R and its quotient field.)

LEMMA 1.6. Let R be a pseudo-valuation domain and let T be an
overring. If Q is prime in T, then every prime ideal of R contained in
Q Π R is also a prime ideal of T.

Proof Let P be prime in R with PCQ DR. To show that P is an
ideal of T, it suffices to show tp E P for all t ET, p E P. Now
p = tp ΓιEP Φ tp G P o r Γ ' G P. However, if t~ι E P C Q Π R, we
have that ί"1 E Q. This implies that t~ι is a nonunit of Γ, contradicting
that ί E T. Thus φ E P and P is indeed an ideal of T. That P is a
prime ideal of T follows easily from the fact that P is strongly prime in R.

THEOREM 1.7. Let R be a pseudo -valuation domain with overring
T. If the pair R C T satisfies incomparability, then T is also a pseudo-
valuation domain, and every prime ideal of T is a prime of R.

Proof Let Q be a prime ideal of T. We claim that Q is also prime
in R. Clearly Q Π R is prime in R, whence Q Π JR is prime in T by the
lemma. Thus Q Π R CO are primes of T lying over Q Π R in
i?. Since incomparability holds, we must have Q = Q Π R, so that Q is
a prime of R. Since J? and T have the same quotient field and Q is
strongly prime in R, it follows easily that Q is strongly prime in T. Thus
T is a pseudo-valuation domain.

II. Valuation overrings. We begin this section with an
example which anticipates most of the results in the section.

EXAMPLE 2.1. Let V be a valuation domain of the form K + M,
where K is a field and M is the maximal ideal of V. If F is a proper
subfield of K, then i? = F + M is a pseudo-valuation domain which is not
a valuation domain. To see this, note that by [3, Theorem A, p. 560] R
and V have the same quotient field L and that M is the maximal ideal of
R. Therefore, since valuation domains are pseudo-valuation domains,
we see that M is strongly prime in V. It follows from the fact that R and
V have the same quotient field that M is strongly prime in R. Thus by
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Theorem 1.4 R is a pseudo-valuation domain. Note that R is not a
valuation ring, again by [3, Theorem A, p. 560].

PROPOSITION 2.2. // a GCD domain R is also a pseudo-valuation
domain, then R is a valuation domain.

Proof. By Theorem 1.3 the primes of R are linearly
ordered. Thus the result follows from [7, Theorem 1].

REMARK 2.3. It is not enough in the above proposition to take R
to be an integrally closed pseudo-valuation domain, for if in Example 2.1
we take F to be algebraically closed in K, then we have by [3, Theorem
A, p. 560] that R is integrally closed.

As the following results show, pseudo-valuation domains enjoy
many of the same properties that valuation domains do.

PROPOSITION 2.4. // / is an ideal in a pseudo-valuation domain,
then P = Π {Ik: k = 1,2, •} is a prime ideal.

Proof. Let xy E P with x £ P. Since x £ P we have that x £ Γ for
some n >0. Thus by Theorem 1.4 I2" C(x). Hence for each positive
integer fc, we have (xy)CP cl2n+k = I2n Ik Cxlk, whence
y E Ik. Therefore y E P and P is prime.

COROLLARY 2.5. Let J, J be ideals in a pseudo-valuation domain
R. If Jgλ// then J contains some power of L

Proof Suppose Ikf£ J for all k > 0. Then by Theorem 1.4 we have
PCΓ for all k so that J2C Π {Ik: k = 1,2, •} = P, a prime
ideal. Hence J CP Cl and λ/JCP C/, a contradiction.

PROPOSITION 2.6. Let R be a pseudo-valuation domain with maxi-
mal ideal M. If P is a nonmaximal prime ideal of R, then RP is a
valuation domain.

Proof. Let K denote the quotient field of R, and let x E K. If
x E R then x E RP. If x£ R then since JR is a pseudo-valuation domain
x~λMCM. Choose m E M - P. Then x~ι = x'ιm/m E RP.

We now characterize pseudo-valuation domains in terms of valua-
tion overrings.

THEOREM 2.7. The following statements are equivalent for a quasi-
local domain (R, M).



142 J. R. HEDSTROM AND E. G. HOUSTON

(1) R is a pseudo-valuation domain.
(2) R has a (unique) valuation overring V with maximal ideal M.
(3) There exists a valuation overring V in which every prime ideal of

R is also a prime ideal of V.

Proof (1) => (2) By [5, Theorem 56] there is a valuation overring
(W, N) with N ΠR = M. By Lemma 1.6 M is a prime ideal of W. Put
V - WM, then V is a valuation overring with maximal ideal MM. Since
M is strongly prime, it follows easily that M = MM. The uniqueness of
V follows from the fact that valuation overrings of R are determined by
their maximal ideals [3, Theorem 14.6].

(2) φ (3). Let P be prime in R, p E P, and v E V. Then p EM
so that vp E M. Thus v2p E M, whence (vpf E P. Hence vp E P and
P is an ideal of V. Now let xy E P with JC, y E V. If both x and y are
in R then xEP or y EP. Thus assume x£R so that x £ M and
x~ι E V. Thus, since P is an ideal of V, we have y =
JC"1 xy E P. Hence P is a prime ideal of V.

(3) φ (1). Let V be the given valuation overring. Then since
every prime ideal P of R is also prime in V, and since V is a
pseudo-valuation domain, P is strongly prime. Thus R is a pseudo-
valuation domain.

In Theorem 2.10 we shall give more information about the valuation
overring in the above theorem. We have need of the following:

PROPOSITION 2.8. Let (R,M) be a pseudo-valuation ring which is
not a valuation ring, and let (V, M) be the valuation overring (of Theorem
2.7). If I is a nonzero principal ideal ofR, then I is not an ideal of V.

Proof Suppose / = Ra is a nonzero ideal of V. Then / = VI =
VRa = Va. Choose υ E V-R. Then va El so that va = ra with
r E R and v = r E R, a contradiction.

COROLLARY 2.9. // a pseudo-valuation domain R has a nonzero
principal prime ideal, then R is a valuation domain.

Proof. Assume that R is not a valuation domain. Let V^ I? be a
valuation overring with the same maximal ideal. If P is a nonzero
principal prime ideal of R then P is not an ideal of V by Proposition
2.8. This contradicts Lemma 1.6.

We now show that the valuation overring of Theorem 2.7 (2) is
simply M"1.

THEOREM 2.10. Let (R, M) be a quasi-local domain which is not a
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valuation domain. Then R is a pseudo-valuation domain if and only if
V = Λί"1 is a valuation overring with maximal ideal M.

Proof. Assume that R is a pseudo-valuation domain. Let x E
V = M~\ We claim that xM CM. Otherwise xM = i?, whence M =
Rx~λ is principal and R is a valuation domain by Corollary 2.9. Since R
was assumed not valuation, our claim is verified. To show that V is an
overring, it suffices to show that xy E V whenever x,y E V. This
follows from our claim since JC, y E V implies xyM CxM CM CR so that
xy E M"1 = V. To see that V is a valuation domain, let z be an element
of the quotient field. If z E R then z E V. Otherwise, z~ιMCM,
whence z~1EM"ί = V. That M is an ideal of V also follows from
xM CM whenever x E V. To see that M is the maximal ideal of V, let x
be a nonunit of V. \ix£M then JC g: R, whence x ~ιM C M and x ~x E V,
a contradiction. Thus M is the maximal ideal of V.

Conversely, assume that V = M"1 is a valuation ring with maximal
ideal M. Then JR is a pseudo-valuation domain by Theorem 2.7.

Throughout the rest of this section, (i?, M) will denote a pseudo-
valuation domain which is not a valuation ring, and V = M~ι will denote
the valuation overring with the same maximal ideal. As we have seen
(Theorem 2.7), every prime ideal of R is also a prime ideal of
V. Conversely, since every ideal of V is contained in M, it is clear that
every ideal of V is an ideal of R. Thus R and V have the same set of
prime ideals. As Proposition 2.8 shows, however, if A is a nonzero
ideal of V then A is not a principal ideal of JR hence there are ideals of
R which are not ideals of V. \Ve shall now study further the relation-
ship between ideals of R and ideals of V. This study is motivated by
Bastida and Gilmer's investigation of divisorial ideals in rings of the form
D + M [1, §4]. In particular, compare [1, Theorem 4.1] with Lemma
2.12 and [1, Theorem 4.3 (1)] with Theorem 2.13.

PROPOSITION 2.11. If A is an ideal of R, then either A is an ideal of
V or AV is a principal ideal of V.

Proof. Assume that A is not an ideal of V, and choose x E AV -
A. We shall show that AV = xV. Suppose, on the contrary, that
yEAV-xV. Then y/x£ V, so that x/yEM and x =
x/y - y E M(AV) = MA CA, a contradiction. Thus AV - xV is a
principal ideal of V.

To complete our discussion of ideals we have need of the v-
operation, a discussion of which may be found in [1, p. 87]. To simplify
our notation, we shall use " u " for the v-operation on JR and "w" for the
v -operation on V. Recall that an ideal A is called divisorial » A is a
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i?-ideal €> A = Av = (A"1)"1 = the intersection of principal fractional
ideals containing A.

LEMMA 2.12. M is divisorial.

Proof Otherwise M~ι = R, contradicting that M"1 is a valuation
overring.

THEOREM 2.13. If A is a nonzero ideal of V, then A is a divisorial
ideal of R.

Proof We have already noted that A is an ideal of R. Assume
that A is not divisorial in R, and pick x E Av - A. We assert that
Mx = MA. Since RxltA we have MA CMx by Theorem
1.4. Furthermore, if MxjtMA then A CRx, also by Theorem
1.4. Hence if a EA then a = rx, whence r EM since x£ A. Thus
aEMx and A CMx. This implies that Rx CAV C(Mx)v = Mvx = Mx,
the last equality following from the lemma. We have arrived at the
absurdity that Rx CMx therefore, Mx = MA as asserted.

Now in V either Mw = V or M is principal [1, Lemma 4.2]. In
either case Mw is principal. Thus Mwx = (Mx)w = (MA)W = (MWAW)W =
MWAW, the last equality following from the fact that Mw is
principal. Again, since Mw is principal, we cancel Mw from the equation
Mwx = MWAW, yielding Vx = Aw. If Aw = A then x E Aw = A, a
contradiction. Thus A is not divisorial in V, whence by [1, Lemma 4.2],
A = bM for some b E K, the quotient field of V. But then Aυ =
(bM)υ = bMυ = &M = A, and the theorem is established.

PROPOSITION 2.14. If A is an ideal ofR, then either A is principal in
R or AV = AV.

Proof. Suppose A is not principal. Since A V is an ideal of V, A V
is a divisorial ideal of R by the preceding theorem. Thus since A C A V
we have Av C(AV)V = AV. We must prove that AVCA^; thus if
x E A"1 we must show AVxCR. But x E A"1 implies that xACR
whence xA CM since A is not principal. Hence VxA C VM = M Ci?,
as desired.

COROLLARY 2.15. A is a divisorial ideal of R if and only if A is a
nonzero principal ideal of R or A is a nonzero ideal of V.

Proof. If A is a nonzero principal ideal of i?, then A is clearly
divisorial. If A is a nonzero ideal of V, then A is divisorial in R by
Theorem 2.13.
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Conversely, assume that A is a divisorial ideal of R. If A is not
principal, then Aυ = AV by the preceding result. Hence A = Av = AV
is an ideal of V.

REMARK. A summary of the results in 2.7-2.15 is in order. Let
(R, M) be a pseudo-valuation domain which is not a valuation
ring. Then V{ = M' 1 ) is a valuation overring whose prime ideals
coincide with those of R (Theorem 2.7 and 2.10). Recall that each
nonzero ideal of V( = M~x) is a nonprincipal ideal of R (Proposition
2.8). On the other hand, a nonprincipal ideal / of R is an ideal of
V <=> / is divisorial in R (Corollary 2.15). Thus the nonprincipal
divisorial ideals of R coincide with the nonzero ideals of V.

III. Noetherian pseudo-valuation domains.

THEOREM 3.1. Let R be a Noetherian domain with quotient field K
and integral closure R'. Then R is a pseudo-valuation domain if and
only if x~λ ELR1 whenever x E K - R.

Proof. Assume that R is a pseudo-valuation domain with maximal
ideal M. If x E K - R then x~ιM CM. Since M is finitely generated,
we have JC"1 E JR' by [5, Theorem 12].

Conversely, assume x E K - R and let P be prime in JR. We must
show x'ΨCP.

Let P' be a prime ideal of R' such that P' Π R = P [5, Theorem
44]. Since x~ι E R\ x]P Cx'P'CP'. We claim x'PCR, in which

case x~]P CPf Π R = P, and we are done. To prove the claim, suppose
there exists p £ P with x~ιp£R. Then xp~ι E R' by hypothesis,
whence 1 = xp~ι - x~ιp E P', a contradiction.

PROPOSITION 3.2. // R is a Noetherian pseudo -valuation domain,
then R has Krull dimension ^ 1.

Proof. This follows from [5, Theorem 144] and the fact that the
primes of R are linearly ordered (Corollary 1.3).

COROLLARY 3.3. // R is a Noetherian pseudo -valuation domain,
then every overring of R is a pseudo-valuation domain.

Proof. By the Krull-Akizuki Theorem [5, Theorem 93], every
overring T has Krull dimension ^ 1 (and is Noetherian). Hence the
pair JR C T satisfies incomparability, and T is a pseudo-valuation domain
by Theorem 1.7.
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COROLLARY 3.4. // R is a Noetherian pseudo-valuation domain,
then the integral closure R' of R is a discrete rank one valuation ring.

Proof. We noted in the proof of Corollary 3.3 that R' is a
pseudo-valuation ring, hence R' is local of Krull dimension one and
integrally closed. Thus R' is a discrete rank one valuation ring.

REMARK. A Noetherian pseudo-valuation domain which is a GCD
domain is a discrete rank one valuation ring by Proposition 2.2.

In Theorem 3.5 we prove that each nonzero ideal of a Noetherian
pseudo-valuation domain is divisorial if and only if every ideal of R
requires at most two generators. The result is a consequence of Matlis
[6, Theorems 40 and 57]. We include our direct proof due to the
considerable simplification of the Matlis results in the case where R is a
pseudo-valuation domain. It should be noted that the conditions on R
in Theorem 3.5 do not imply that R is a pseudo-valuation domain, as one
can show using the example in [2, Exercise 1, p. 81].

THEOREM 3.5. Let (R,M) be a Noetherian pseudo-valuation do-
main with V - M~\τ^ R) its valuation overring. Then the following
statements are equivalent.

(1) Each nonzero ideal of R is divisorial.
(2) Each ideal of R may be generated by two elements.
(3) M may be generated by two elements.
(4) V is a two-generated R-module.
(5) Each nonprincipal ideal of R is an ideal of V.

Proof. (1) <=> (5) This is a restatement of Corollary 2.15.
(1) Φ (2) By [4, Lemma 2.2], V = R + Rx with x E V - R. Let /

be a nonprincipal ideal of JR. By (5) / = IV = kV for some k E I since
V is a discrete rank one valuation ring. Hence I = kV = k(R + Rx) =
Rk + Rkx, and / is two-generated.

(2) φ (3). This is trivial.
(3) => (4). Let M = (a, b). Then in V, M is generated by one of a

and b, say M = aV. Then V = 1/αAf = I/a (Ra + Rb) = R + Rb/a, and
V is two-generated.

(4) φ (5). Write V = Rx + Ry. We first reduce to the case y =
1. To this end pick r, s E R with 1 = rx 4- sy. Then either r or 5, say s,
is a unit, and y = s~ι - s~λrx E R + Rx. Thus V = R + Rx. Now let /
be a nonprincipal ideal of R. Then IV = k V for some k E /, and, since /
is not principal in R, we may pick i E / - kR. Now i = kυ = k (a + bx)
for some a,b E i?, t; E V. If Z> E M, then bx BM whence a + bx ELR
and i E kR, a contradiction. Hence ft is a unit of R, and we have
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kx = b~ιi - b~ιka E I. Thus IV = kV = kR + kxR Cl, proving (5).
We close this section with an example of a Noetherian pseudo-

valuation domain which is not a valuation ring. The example given is
easily seen to satisfy the equivalent conditions of Theorem 3.5.

EXAMPLE 3.6. Let m denote a square-free positive integer, m = 5
(mod 8). Let Z denote the ring of integers and set D = Z[^/m\. Since
m = 1 (mod 4), D does not contain the algebraic integers of the form
(α + iVm)/2, where a and b are odd integers. Thus, D is nqUntegrally
closed [8, Theorem 6.6]. It is routine to check that (2,1 + Vm) = N is a
maximal ideal of D. The desired example is R = DN, which has
K = QjVm] as its quotient field. R is not a valuation ring since neither
(1 + Vm)/2 nor its inverse lies in R.

To show that R is a pseudo-valuation ring we apply Theorem 3.1 to
the integral closure R' of R. Since Rf = (DN)' = (D%, where 5 =
D - N and (') denotes integral closure, we must show x E K - R implies
1/x E (D% Now x = (a + bVnή/c where a,b,c EZ and
gcd(α, ί>, c) = 1. Since x^i?, c G N Π Z = 2Z so 2 divides c. But then
a or b must be odd since gcd(a,b,c)=l. Now JC 1 = c(a - b Vm)
(a2-b2rn)-\ If a2-b2m£S then α 2 - ί 2 m E N n Z = 2Z, but m ^ 1
(mod4); so a and b are both odd integers. It follows that a2- b2m = 0
(mod4), but a2-b2m = 1 - m = 4 (mod8). JΓhus a2-b2m = At with ί
an odd integer, and so JC"1 = (c/2((a -_fcVm)/2))/ί G £>s= i? because
with α, /> odd integers we have (a - b Vm)/2 an algebraic integer, hence
an element of D'.

We are grateful to the referee for his many helpful suggestions.

REFERENCES

1. E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M, Michigan

Math. J., 20 (1973), 79-95.

2. N. Bourbaki, Elements de Mathemathique, Algebra Commutative, XXXI, Hermann, Paris, 1965.

3. R. Gilmer, Multiplicative Ideal Theory, Queens Papers on Pure and Applied Mathematics, No.

12. Queens University Press, Kingston, Ontario, 1968.

4. W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika, 15 (1968),

164-170.

5. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.

6. E. Matlis, Torsion-free modules, Chicago Lectures in Mathematics, The University of Chicago

Press, Chicago, 1972.

7. S. McAdam, Two Conductor Theorems, J. Algebra, 23 (1972), 239-240.

8. H. Pollard, The Theory of Algebraic Numbers, The Carus Mathematical Monographs, No. 9,

M.A.A., John Wiley and Sons, New York, 1961.

Received October 11, 1976 and in revised form March 18, 1977.

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE, NC 28223






