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ANALYTIC DISCS IN THE
MAXIMAL IDEAL SPACE OF M{G)

GAVIN BROWN AND WILLIAM M O R A N

Let M(G) denote the convolution algebra of finite regular
Borel measures on a locally compact abelian group G, and let Δ
denote the maximal ideal space of M(G). It is well-known that
on certain subsets of Δ the Gelfand transforms μ Λ of members μ
of M(G) behave like holomorphic functions. The simplest way
to exhibit this is to use Taylor's description of Δ as the semigroup
of all continuous semicharacters of a compact semigroup 5 —
the structure semigroup of M(G) (see [10]). If / G Δ ( = 5 )
and f(s) ^ 0 for all s G S, then f G A for Re(z) > 0. Thus,
provided f2 ^ /, there is an analytic disc around / in the sense
that μ ( / 2 ) is holomorphic on R e ( z ) > 0 for all
μ G M(G). Using this fact, Taylor (loc. cit.) has shown that if /
is a strong boundary point of M(G), then | / | 2 = |/|.

We have already shown ([2]) that there is a point derivation at the
idempotent ft which corresponds to the direct sum decomposition of
M(G) into discrete and continuous measures. It was also possible to
prove that this point derivation is continuous in the spectral radius norm
so that we were able to deduce that ft is not a strong boundary point.
Here we strengthen the main result of that earlier paper to show that
there is an analytic disc around ft, and that this disc remains analytic for
the completion of M(G) in the spectral radius norm.

Here we strengthen the main result of that earlier paper to show that
there is an analytic disc around ft, and that this disc remains analytic for
the completion of M{G) in the spectral radius norm.

In fact, our methods here are in some ways more straightforward
than those we used in that paper, and can be extended to encompass the
case when ft is an idempotent corresponding to the direct sum decompos-
ition of M{G) induced by a single generator symmetric Raikov system.

The proofs rely heavily on refinements and modifications of techni-
ques given by Williamson in [13] and Varopoulos in [11] in connection
with independent subsets of locally compact abelian groups. Indeed our
results in §3 are of interest in producing yet another direct sum
decomposition of M(G) associated with an independent set. This one
lies between the Raikov construction and that of Varopoulos (loc. cit.).

In §2 we prove the existence of the disc subject to having a certain
decomposition of the measure algebra. Later sections are devoted to
the proof of the existence of such a decomposition.
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46 G. BROWN AND W. MORAN

2. Definitions and statement of theorem. Fix a locally
compact abelian group G. Let M(G) denote its measure algebra and Δ
the maximal ideal space of the latter. It will be convenient to adopt
Sreider's description of members of Δ as generalized characters (cf. e.g.
[1]). By an analytic disc in Δ we mean an injection φ of the open unit
disc in C into Δ such that μΛ ° φ is holomorphίc for each μ E M(G). The
centre of such a disc is defined to be

A Raikov system in G is a nonempty collection 01 of nonempty 9σ

subsets (countable unions of compact sets) of G satisfying
(i) if FλE 01 and F2 is an &σ subset of F1 then F2E0t\
(ii) the union of a countable collection of members of 01 is in 0i
(iii) if F E 01, then F + x E 01 for all x E G;
(iv) if Fem, then F + F£0l.

Raikov systems are discussed in more detail in [12] and [13]. 0t is said
to be symmetric if

(v) F^0i implies -FE01.
The smallest Raikov system in G consisting of all countable subsets

of G is, of course, symmetric. 0i is said to be a proper Raikov system if
it does not contain all 9σ subsets of G. The intersection of any family of
Raikov systems is again a Raikov system, so that it is meaningful to talk
about the Raikov system generated by a given collection of 5Fσ-subsets of
G. We shall be interested only in singly generated (or equivalently
countably generated) Raikov systems — the smallest Raikov system is a
trivial example of such an object.

Any Raikov system 01 leads to a direct sum decomposition of
M(G). Specifically, let

A = {μ: \μ \(F) = \\μ || for some F<Ξ0l}

and

/ = {μ : \μ \{F) = 0 for all F E 01}.

Then A is an L-subalgebra and / an L-ideal in M(G) and M(G) =
A 0 I (Recall that B is an L-subspace if it is a closed subspace such
that whenever μ E B and v is absolutely continuous with respect to μ
then v E B. L -ideals and L-subalgebras are respectively ideals and
subalgebras which are at the same time L-subspaces.) Thus we can
define a generalized character h of M(G) by

•β
if μEA
if μ<Ξl.
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We refer to this as the idempotent (generalized character) associated with
&l. Now we are able to state the theorem.

THEOREM. Let 91 be a singly generated proper symmetric Raikoυ
system and let h be the idempotent associated with it. Then there is an
analytic disc φ with centre h. Moreover the functions μ^φonthe unit
disc are exactly those holomorphic functions with absolutely convergent
Taylor series.

COROLLARY 1. There is a nonzero uniformly continuous point deri-
vation at h.

COROLLARY 2. The idempotent h is not a strong boundary point of
M(G).

Proofs of corollaries. Define, for / in the uniform closure of
M{G)\

and Corollary 1 is proved. Corollary 2 now follows from ([3] Ch. II, Ex.
12 (e)).

The reader is referred to §5 for a more concrete description of d as
we have constructed it. We conclude this section with the first step in
the proof of the theorem.

LEMMA 1. Let M{G) — A 0 1 be a direct sum decomposition of
M(G) into an L-algebra A and an L-ideal I, and let k be the correspond-
ing idempotent. Suppose that there exist mutually orthogonal L -subspaces
A = BD, Bu B2, of M(G) such that Bί ^ (0);

(i) μ E Bn, v E Bm implies μ * v E Bn+m for all positive integers n
and m

(ii) (®:=0Bny is an L-ideal of M(G).
Then there is an analytic disc φ with centre fc, and {μ°φ: μ ELM(G)}

consists of those holomorphic functions on the unit disc with absolutely
convergent Taylor series.

Proof We define, for each z in the open unit disc D, a generalized
character φ(z) by writing

zn (μ.a.e.) if μEBn (Λ =0,1,2,---)

0 (μ.a.e.) if μ ± φ β n .
n=0
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As every member λ of M(G) may be written uniquely in the form

(1) λ = Σ μn + v
n=0

where μ.nE.Bn (n = 0,1,2,3, •) and ι Ί φ ; . o β B φ[z) is completely
defined for such z G D. It is a straightforward matter to check that φ (z )
is a generalized character.

Using (1), we have, for λ G M(G),

λA(p(z))=Σz"ί <*/*„

which, since Σ*=0||/xn || = ||λ ||, shows that φ is an analytic disc with centre
k, and that λΛ°<p has an absolutely convergent Taylor series. Since
Bn^ (0) (n = 0,1,2, ) every such function arises in this way. This
completes the proof.

It may be helpful to the reader if we now indicate how Varopoulos's
direct sum decompositon of M(G) may be used to complete the proof of
the Theorem in the case when h corresponds to the smallest Raikov
system on G, and G is metrizable.

Let K be a strongly independent compact perfect subset of G. Let
Γi consist of the continuous measures on K, and, for n > 1, let Tn be the
L-subspace of M{G) generated by products of n elements of Tx. If we
write B n ( n ^ l ) for the translation invariant L-subspace of M(G)
generated by Tn, and Bo for the L -algebra of discrete measures on G,
then the conditions of the preceding lemma are satisfied. The proof of
this fact is contained in [11].

While extending the result to more general idempotents, we have
tried to simplify the part of the proof that corresponds to Varopoulos's
arguments. The result is a somewhat different direct sum decomposi-
tion associated with an independent set.

3. The direct sum decomposition. In this section, we
focus on the problem of finding the L-subspaces Bn (n = 1,2,3, •) of
Lemma 1 in the case when the direct sum decomposition M(G) = A 0 /
is induced by the singly generated symmetric Raikov system 01 with
associated idempotent h.

It is easily seen that we may choose the generator of 01 to be an
^-subgroup H of G and then 9t consists of all countable unions of
cosets of H. The fact that 01 is proper implies that H is a first category
set (and, equivalently of zero Haar measure).
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We now introduce a concept which is an extension to general locally
compact abelian groups of a definition due to Williamson [13] in the
special case of the real line. Williamson's definition has to be modified
to cater for the existence of torsion in the group.

DEFINITION 1. A subset K of G is H-independent if, whenever
Xi, , xr are distinct elements of K and nu , nΓ are integers such that
Σ,Γ

=1 n^ E H then nxx, E H (i = 1,2, , r).
Of course this definition is equivalent to asking that the set of cosets

{k + H: k E K] is independent in G/H in the sense of ([9] 97). Write
oH(x) for the order of x + H in G/H.

In the next section we shall show that there always exists a perfect
ff-independent subset of G. To be precise, we shall prove the following
result.

PROPOSITION 1. Let H be a first category $Fσ subgroup of G. Then
there exists p E {2,3,4, , o°} and an H-independent perfect subset KofG
such that oH(x) = p for all x E K.

Assuming this for the moment, we proceed to define the L-spaces Bn

(n > 0). Notice, first, that each element of the group Q generated by K
and H has a representation in the form

(2) Σ nιχi + h

i = \

where 0 < | nx \ < p, h E H and xu x2, , xr are distinct. This represen-
tation is clearly unique except for the possible replacement of n, by nt ± p
for some i's and the corresponding change in h.

Let Sn consist of all sums of the form

(3)

where xl9 , xn are distinct elements of K and h EH. Evidently 5n is a
Borel subset of G.

Now we define Bn to consist of all measures μ E M(G) satisfying:
(a) μ is concentrated on U^=i ym + Sn for some yu y2, in G.
(β) If1 \(y + Sr) = 0 for all y E G and r<n.

Evidently each Bn is an L-subspace of M(G), and putting n = 0 in
the definitions of Sn and Bn, we have 50 = H, Bo = A. Furthermore the
definition forces the L-subspaces Bn to be mutually orthogonal. Since
K is perfect and | K Π x + H \ g 1 for all x E G, B1 ^ (0). We proceed to
the proofs of the remaining hypotheses of Lemma 1.
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LEMMA 2. Let μ E Bn, v E Bm. Then

μ*vEBn+m (n,m = 0,1,2,3, •)•

Proof. First we show that μ * v is concentrated on a countable
union of translates of Sn+m. It will simplify matters if we assume that μ
and v are probability measures. There is no harm in assuming further
that μ is concentrated on Sm and v is concentrated on Sn. We shall, in
these circumstances, show that μ * v is concentrated on Sn+m.

Evidently μ * v is concentrated on Sn + Sm, and the complement W
of Sn+m in this set consists of sums x 4- y (JC E Sn, y E 5m) such that the
sums of the form (3) for x and y have an element of K in common. The
inverse image of this set under the map ξ: (x, y) ~—> x + y from Sn x Sm

to Sn + Sm is the subset W of Sn x Sm consisting of those ordered pairs
(x, y) whose sums (3) have a common component in K. Fix y E Sm and
consider the section

Wy={x:(x,y)GW}.

This is contained in a finite union of sets of the form x + Sn-λ (x E K); we
obtain one such set for each member of K in the sum for y. Since
μ E Bm this implies that μ (Wy) = 0. By Fubini's theorem μ x v (W) =
0 and so μ * ̂  (W) = 0. This proves that μ * ẑ  is concentrated on Sn+m.

It only remains to show that μ * v annihilates all sets of the form
x 4- Sr for r < n + m. Consider (x + Sr) Π Sn+m. Obviously we need
only consider the case where this is nonempty, and in this case x belongs
to Q. Thus write

x = Σ n.w. + h

as in (2). If Wi + w2 + + wn + tx + ί2 + * * + tm -f h' E Sn+m is in x + Sr

then one of the elements tv, (ί = 1,2, , n), ίy (/ = 1,2, , m) is equal to
an element of the form uk (fc = 1,2, , 5). Thus the inverse image of
(x + 5r) Π Sn+m in Sn x 5m under the map ξ is contained in a finite union
of sets of the form 5n x (uk + Sm_i) and (wf + Sn-λ) x 5m. All of these sets
are /x x *>-null so that μ * v(x + Sr) - 0.

To complete the proof that the L-subspaces Bn (n = 0,1,2, •)
satisfy the hypotheses of Lemma 1, we have to show that (φn=oBny is an
L-ideal. This will be done once we have established the following
lemma.

LEMMA 3. Let μ be orthogonal to (&n=oBn and v E M(G). Then
μ *v is orthogonal to φ ^ = 0 Bn.
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Proof. Let B = φ : = 0 ^ and J = BL. Evidently B is translation-
invariant and hence so is /. .Thus we may assume, without loss of
generality, that μ and v are continuous probability measures. Let £%'
be the Raikov system generated by H and K, and let M(G) = A' 0 Γ be
the corresponding direct sum decomposition of M{G) into an L-algebra
A' and an L-ideal ί\ Clearly B CΛ', so that if μ or v E 1\ μ * v E Γ
and hence is orthogonal to JB. In other words, we may make the
assumption that both μ and v belong to A'. This means that μ and v
are sums of measures each concentrated on a set of the form x + (n)K +
// where x E G, n is a nonnegative integer and

i = 1,2,3,

It will further simplify matters if we consider each of μ and v to be
concentrated on just one of these sets and, by translating the measures in
question, we may take μ concentrated on (n)K + H and v concentrated
on (m )K + H. Let n, m be the least positive integers for which this
argument is valid. Thus μ annihilates every translate of (r)K + H for
O ^ r ^ n - 1 and v annihilates every translate of (r)K + H for 0 ̂  r ^
m - 1 .

Suppose now that μ * ι/ is not orthogonal to B. Then μ * y
(x + SΓ)>0 for some x E G and some nonnegative integer r; again we
choose r to be the least such integer. Since μ * v is concentrated on
(n + m )K 4- H, x must belong to the group Q so that we may write

where Mb M 2 , " ' ,W S are distinct elements of K.
Suppose first that r>m +n. If w E(x + Sr)Π(n + m)K + H

(4) w = x + JCI + χ2 + + χr + hi = yi + y2 + + yn + zλ + + zm + Λ2,

where huh2E H, xh yh zk E K for all /, /, fc and xu - - , xr are distinct. It
follows that some JC, must equal some ur

Thus JC 4- 5r Π (n -I- m )K -f- K is contained in a finite union of translates of
Sr-ι and this contradicts the fact that r is the least integer for which
μ (x + 5r) > 0 for some JC E G.

Next assume that r < m + n. Again we have an equation of the
form (4) for any w E (JC + Sr) Π (n + m)K + fί. By the previous argu-
ment we may ignore those w's for which some jcf is equal to some
My. The remaining w 's satisfy at least one of the following statements:

(i) some y, equals some u}
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(ii) some z, equals some wy;
(iii) some y, equals some z};
(iv) at least p of the y. 's are the same;
(v) at least p of the z,'s are the same.
We consider the subsets El9 E2, ,E5 of ((n)K + H) x ((m)^ + H)

which are the inverse images under the map ξ: (w, v) ~~ —> « + ϋ of the
sets of w's satisfying (i), (ii), (iii), (iv), (v) respectively.

E1 is contained in a finite union of sets of the form
(v + (n - 1)JKΓ + //) x ({m)K + //) and so, because n is the least integer
with its defining property, μ x ^(£1) = 0. A similar argument with μ, n
replaced by v, m works for E2. To cope with £ 3 , we use Fubini's
theorem as in the proof of Lemma 2, and the defining property of n or
m. This gives μ x v(E3) = 0.

If p of the y('s are the same, they sum to an element of H so that E4

is contained in ((n - p)K + H)x ((m )K 4- //) and this is μ x z/-null. E5 is
dealt with in the same way.

We have shown that the only possible value of r is n + m. Now we
prove that x = 0. To see this, put r = n + m in (4). As before we may
assume that each xt is distinct from each ur It follows that each x{ must
equal some y} or some zk. But then

χi + χ2 + + χ*+m = yi + + yn + zi + + zm

so that x E H and hence is 0.
If we look a little more closely at the preceding argument, we notice

that ξ-ι(S(n+m))n((n)K + H)x((m)K + H) is SnxSm. Since
μ * j/(S(n+m)) > 0, it follows that μ(Sn) > 0, which contradicts the fact that
μ is orthogonal to B. This completes the proof.

The direct sum decomposition M(G) - B 0 / defined here in the
case when 0i is the smallest Raikov system lies between that given by
Varopoulos in [11] and the one induced by the Raikov system generated
by K. In the former decomposition the L -algebra is the smallest one
containing all of the discrete measures together with all measures on K,
whereas in the latter it consists of all translates of all measures on
UI=i(n)K. Evidently the L-algebra in our decomposition is contained
in the L-algebra given by the Raikov system. On the other hand, since
K = Si, the proof of Lemma 2 shows that a convolution of n continuous
measures on K is concentrated on Sn and this yields that the L-algebra in
the Varopoulos decomposition is contained in ours. It is straightfor-
ward to see that both of the inclusions are proper.

4. The construction of a perfect if- independent set.
In this section we prove Proposition 1. Our methods are essentially
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those of Williamson ([13]) but we have to modify them to take account of
torsion and to deal with the nonmetrizable case. As in §3, H is a first
category Fσ-subgroup of G, so that we may write

H=9ι

 H-
where each Hn is compact and nowhere dense in G and we assume
Hn C Hn+ί.

Let p be the supremum of all positive integers q with the property
that every neighbourhood of 0 contains an element x with oH(x) = q>
Because H has zero Haar measure p E {2,3, , °°}.

Let us also write

Lq={xEG:qxEH}, ' 00

Evidently Lq is a closed subgroup of G, 1 ̂  q ̂  <».

LEMMA 4. Lp is an open subgroup of G and Lq is nowhere dense for
all l^q<p.

Proof. By definition, there is a compact neighbourhood TV of 0 such
that oH(x) S p, for all J C G N . Thus N C U; β l L,. It follows that at least
one of the groups Lq (1 ̂  q ̂  p) is not of zero Haar measure and hence is
open. Using the definition again, we see that Lp must be such a group
and moreover the only such group. The result follows.

Now we turn to the construction of the //-independent set K in
G. It will be necessary for the present to assume that G is
metrizable. Choose a compact neighbourhood N of 0 which is con-
tained in the subgroup Lp. The subset Iλ of N x N consisting of those
ordered pairs (JCI,JC2) such that either

n2x2 E

for some nu n2 with | n i | = 1, \n2\ § 1, |wi| + \n2\ > 0 or χx E Hλ o r x 2 ^ Hi,
is nowhere dense. Thus we can find disjoint compact sets £7(0) and
U(l) with nonempty interior and with diameter less than half such that
17(0) x 1/(1) C ( N x N ) \ / i .

Now consider the subset I2 of (7(0) x 17(0) x 17(1) x 1/(1) consisting
of those 4-tuples (jti,x2>*3, X*) s u c h that either

+ n2x2 + «3^3 + n4x4 E //2
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for some nu n2y n3, n4 with \πi\ %2 (i = 1,2,3,4), 0 <
I Πι I + I n21 + I n31 + I n3 | or qxtEH2 for some i (1 ̂  i g 4) and some q
(1 ̂  q < min(p, 3)). Using Lemma 4, we see that this is again nowhere
dense and so we are able to find disjoint compact sets £/(00), C/(01) in
ί/(0) and £/(10), U(l 1) in 1/(1), all with nonempty interior and diameter
less than \, such that

1/(00) x 1/(01) x 17(10) x 1/(11) C 17(0) x 1/(0) x [7(1) x U(1)\I2.

We repeat this procedure in an obvious way subject to the constraint that
at stage n, the nz 's and the q 's are strictly less than min (/?, n + 1). Put

K = ή U 1/(^2-- kn).

Then K is a compact perfect subset of G. If x E 1C, then it is clear from
the construction that for all 1 ̂  q < p, qx £ Hn for all sufficiently large
n. Thus oH(x) = p for all x E K. If jtl5 JC2, , XN are distinct elements
of K then, for all large enough n, they are in different sets of the form
[/(/cifc2 •••£„) (fc, = 0,1; / = 1,2, , n). Consequently,

niJCi + n2x2 + + nNxN ^ H

provided | n, \ < p i = 1,2, , N and Σ{li | nf | > 0. It is easily seen from
this that K is //-independent.

Now we have to remove the metrizability restriction on G. There
are quite standard methods available for solving problems of this
kind. Unfortunately they appear to be useless for our problem. The
standard methods rely on the existence of a compact Gδ subgroup N of G
such that the situation remains more or less the same when we pass from
G to the quotient group G/N. Such a technique would certainly be
available if H were in the σ-ring generated by all compact Gδ sets in G
for then we would choose N to be a subgroup of H. However, even in
the case when H = {0}, H could only have this property if G itself were
metrizable. Thus we resort to somewhat different methods. The key
idea is to reduce the problem to the case where G is a product of compact
metrizable groups. Although this product may be large, it is possible to
use our knowledge of the metrizable case to eliminate potential coun-
terexamples by a "rolling hump" argument.

Our first step is a standard one. G contains an open subgroup
isomorphic to 01n x D where D is a compact group. A straightforward
argument shows that it is enough to concentrate on groups of this
form. If H Π ί%n is of first category in 0in then the construction above
works in 0ln to yield the desired conclusion. Obviously if K is



ANALYTIC DISCS 55

(Hfl ^^-independent in 34n, then it is //-independent in 0in x D.
If H Π 34π is not of first category then 34" C// so that H Π D must

be of first category. Thus we have reduced the problem to the case of
compact groups. Using standard structure theory and duality argu-
ments we may represent D as a quotient by a compact subgroup N of the
direct product of a family {Ca: a E /} of metrizable groups, (see, for
example, [8] 444-5). The next step is to replace D by C = Παe/Cα.

Let π: C^>D be the canonical projection with kernel N. This is
an open mapping, so that if H is a first category ^.-subgroup of D then
//' = π~ι(H) is a first category ^-subgroup of C Assuming, for the
moment, that we can handle products of metrizable groups, let K' be a
perfect //'-independent subset of C, and let K = π(K'). The //'-
independence of K' implies its N-independence, so that the restriction of
π to K' is a homeomorphism onto 2C Thus K is perfect. A simple
computation shows that K is //-independent and that if oH{x) = p for all
x E K\ then oH(y) = p for all y £ K

It only remains, therefore, to consider groups of the form C =
Πα e /Cα where each Ca is a compact metrizable group and / is
uncountable. Let H be a first category ίFσ-subgroup of C. If H Π Cα

is of first category, for any α, we may construct K inside Ca in accordance
with the procedure set out earlier. Thus, for each x, we may assume that
H Π Ca is an open subgroup of Ca.

Suppose that H Π Ca/ Ca for distinct indices a = α l 5 α2, α3, * .
Then it is easily seen that H Π ΠΓ=i Cα, is not open and hence is of first
category in ΠΓ=i Cαi. As this last group is also metrizable we may
construct a perfect //-independent set in this situation also. Thus all
that remains is the case when H Π Ca^ Ca for only finitely many
α's. Evidently, nothing is lost if we discard these α's. As we have
already argued, we may assume that for any sequence (αf), H Π ΠΓ=i Caι is
an open subgroup of ΠΓ=i Caι. With the extra hypothesis that H Π Ca =
Ca for all α, this may be strengthened to allow us to assume that H
contains all countably infinite products ΠΓ=i Caι.

Thus, if C ( σ ) is defined to consist of all members x = (xα)α e / of C with
the property that xaτ^0 for only countably many α's, then C(σ)CH.

The final twist is to note that C ( σ ) is pseudocompact — i.e. every
continuous real-valued function on C ( σ ) is bounded — and that the
Stone-Cech compactification of C(σ) is C (see [6]). It follows im-
mediately that H is pseudocompact. As it is also σ-compact it must be
compact ([5] Ex. 5H) and hence equal to C. This gives the required
contradiction.

5. Remarks and problems. First we give the promised
concrete description of the point derivation d where



56 G. BROWN AND W. MORAN

This is just the coefficient of the first term in the Taylor expansion of
μΛ ° φ and so consists of the integral over G of the part of the measure
concentrated on translates of K + H but not in translates of H. Thus

d(μ)=Σ (( l-Λ)
xGG

where, of course, h is the idempotent associated with the Raikov system
generated by the ^-subgroup H and K is a compact H-independent
perfect set.

In fact, we can also describe the higher order derivations at ft,
corresponding to the higher order terms in the Taylor series. Thus,
putting

xGG

(recall the definition of Sn from §3) we have

do(μ) = Po(μ)

and

Leibniz formula applies for the sequence of dn's and contains much
of the measure theoretic and combinatorial properties of the 5n's that we
have exhibited and used in Lemmas 2 and 3. Thus, dn(μ)= 1 for a
probability measure μ if and only if μ is concentrated on translates of Sn

and μ(x + Sr) = 0 for all r < n. If μ and v are probability measures,

exhibits the fact that a product measure is concentrated on translates of
Sn and assigns zero mass to translates of Sr for r < n if and only if it is
built up from products of measures on translates of Sk and Sn-k which
annihilate translates of lower order sets Sn for some k. The existence of
dn(μ) and the fact that \dn(μ)\^\\μ\\ implies that intersections of
translates of 5n are of zero μ -measure when μ is in the L -ideal generated
by the Raikov system.

Clearly, it ought to be possible to extend our main result to cover
more general types of idempotents in Δ. An obvious next step is to
remove the symmetry restriction on the Raikov system. However, here
it must be borne in mind that there is on the real line an asymmetric
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Raikov system 0i generated by a semigroup S for which S - S is the
whole of 0i ([7]). The uncountably generated Raikov systems appear
much less tractable.

Another class of idempotents have been produced by Sreider ([4]
195) and shown to be different, in general, from Raikov
idempotents. Sreider takes a subgroup Q of the group of discontinuous
characters of G. Then

A = {μ: γ is μ-measurable for all γ E 0}

is an L-subalgebra and its orthogonal complement is an L-ideal. In
fact, if O is singly generated by γ, say, then the direct sum decomposition
is given by a symmetric Raikov system 01 where an 3?σ subset F = UnFn

(Fn compact) belongs to 01 if and only if γ \Fn is continuous. In this case
0t need not be singly generated. It would be interesting to know if there
exist analytic discs around these idempotents.
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