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PARTITIONING INTEGERS USING A FINITELY
GENERATED SEMIGROUP

DANIEL REICH

Denoting by Γ the semigroup of positive integers gen-
erated by two fixed primes, let rk(N) be the number of
partitions of N as a sum of k elements of Γ. Our main
result is that r2(N) is a bounded function of N. Incidentally,
we obtain an estimate of the number of distinct prime divisors
of numbers of the form l+qn. Boundedness of rk(N) would re-
solve an approximation theoretic conjecture of D. J. Newman.

Let Γ be a finitely generated semigroup of positive integers.
For a positive integer N, let rk(N) be the number of partitions of
N into k parts from Γ. Donald J. Newman has asked the following
question:

Is rk(N) a bounded function of N, for all &?
This question arose in the context of a general problem of approx-

imation theory; that is, the determination of when, for a given
function f(x), the functions {f(kx)}k

kz°?oo generate a dense subspace Ef

of some function space. This problem has been considered by Neuwirth,
Ginsberg and Newman in [3] for f(x) a trigonometric polynomial.
In his report to the Canterbury conference on complex analysis ([4],
1973), Newman stated a conjecture: Let f(z) = z + a2z

2 + + anz
n

(here z = eiθ). To f(z) we associate a "Dirichlet polynomial"

D(s) = 1 + α2/2s + + ajn' .

Then Ef is dense in Lp(l ^ p < oo) if and only if D(s) has no zeros
in Re s > 0, and Ef is dense in L°° if and only if D(s) is bounded
away from zero in Re s > 0. Newman asserts that the settling of
this conjecture for p < ©o depends on making a connection between
norms in the z and s variables, and that this connection can be made
according to a classical result of Szidon, if the above number theoretic
question has an affirmative answer.

In this paper we shall consider the simplest case of the question,
when Γ is generated by two primes, and k = 2. A complete proof
of Newman's conjecture for the corresponding f(z) would require a
proof for this Γ, for all k.

Let pf q be distinct primes; we shall denote by Γ the multiplicative
semigroup of nonnegative integers generated by {0, p, q}. For any
integer N, let r2(N) denote the number of representations

N = a + β (a,βeΓ).
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Our purpose is to prove:

THEOREM 1. r2(N) is bounded.

We shall show in fact that r2(N) ^ 5. This is merely the estimate
that falls readily out of the proof, not necessarily the best possible
one.

We begin with two simple observations, whose proofs are included
for the convenience of the reader. In what follows, 2[ denotes the
integers, and oτdp denotes the standard valuation, order of divisibility
by p.

LEMMA 1. (1 + qn) | (1 + qm) if and only ifm — Xn, with X odd.

Proof. Let m = Xn + r, with 0 ^ r < n. For an indeterminate
y, we may write

(P(y) , if X is odd

V) \Q(y) + 2/(y + I) , if X is even

with P(y),Q(y)eZ[y].
Set f(x) = (xm + l)/(xn + 1). Then

f(x) = xr(xXn + l)/(xn + 1) + (1 - xr)/(xn

If λ is odd,

f(x) = xrP(xn) - (xr - l)/(xn + 1)

thus

f(q) = integer - (q* - l)/(i* + 1)

and so f(q) is an integer if and only if r = 0.
If X is even,

f(x) = xr(Q(xn) + 2/(xn + 1)) + (1 - x

= xrQ(xn) + (1 + xr)/(l + xn).

Thus

f(q) = integer + (1 + g')/(l + gΛ)

and so cannot be an integer.

LEMMA 2. Let p be an odd prime. Suppose for integers qf X > 1,
and r, s ^ 1, we
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r = ordp (1 + q)

r + s = ordp (1 + qλ) .

Then oτάp λ = «.

Proo/. Write 1 + g = priΓ, with (p, £") = 1. Then

qi == ( -1 + p'tf)*

Thus

1 + q* = prK(X + λ') ,

where

(2) λ/= - Σ ( - l

It now follows from equation (1) that ordp (λ + λ') = s. From equation
(2) we obtain

or dp λ' ^ min]r(v — 1)

We now show that for each v ̂  2,

(X
or dp λ < r(v — 1) + ordJ

First, write

and we obtain

/λ
ordj, λ — ordp v ^ ordp

But for v ̂  2, ordp p < v — 1 (since p > 2, so p > a? + 1 for x :> 1),
and this does it.

It now follows that

λ < ordp λ' ,

and thus

λ = ordp (λ + λ') = s .
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An immediate consequence of Lemma 2 provides the key step in
our proof of Theorem 1:

LEMMA 3. Let p, q be positive integers, with pa prime and either
p Φ 3 or q Φ 2. For Ne Z, with (p, N) = 1, the simultaneous equations

1 ; p'+'N - 1 + qm

have no solutions in integers r, s, n, m ^ 1.

Proof. Suppose we are given a solution (r, s, n, m) to (3). Ac-
cording to Lemma 1, we may write

m = Xn , λ odd .

Consider first the case p > 2. According to Lemma 2, ord^ λ = s; set

λ = p8l

m = psln ,

where I is odd. From equation (3) we obtain

p = (1 + ff'
fI )/(l + <T)

n{psl~l)n n(psl-2)n _i # # # ι 1

This last step follows from the inequality

which is valid under either of the following circumstances:

q > 3 and x ^ 3

q ^ 2 and x ^ 5 .

This covers all present cases, and the contradiction completes the
proof for p > 2.

To dispose of p = 2, we observe that from equation (3),

2s = (1 + 9 *)/(l + 4")
= λ + V

with λ' defined as in equation (2) of Lemma 2. Here λ' is clearly
even, and λ is odd; thus s = 0.

As an interesting consequence of Lemma 3 we obtain an estimate
of the number of primes dividing numbers of the form 1 + qn. We
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denote by ω(N) the number of distinct prime divisors of N, and by
Ω(N) the total number of prime divisors.

COROLLARY. Given integers q, n such that n is odd, and either
q Φ 2 or (3, n) — 1, we have

(0(1 + qn) ^ Ω{n) + ω(l + q) /

Proof. Write n = Πί=i Pu with {pj odd primes, not necessarily
distinct, and r — Ω(n). Let q0 = q, and for 1 ^ j <* r,

The result will follow once we prove

ω(l + g,) ^ α)(l + qj-J + 1 , (1 ^ i ^ r) .

Dropping the subscripts, we must show that for p an odd prime,
ω(l + gp) ^ ω(l + q) + 1. Let {7̂ , , ττs} be the distinct primes
dividing 1 + q. Since p is odd we may write

1 + <f = Λf(l + g) ,

with M an integer. Suppose for some v,πu\M; then, according to
Lemma 2, we have π^ | p and thus 7ΓV = p. Now write Λf = paM' with
(Λf, 1 + q) — 1. Lemma 3 assures us that M' Φ 1, and thus 1 + qv

is divisible by at least one prime not dividing 1 + q.
Note that for q — 2 and n = 3& we now obtain

α)(l + 23fc) = ω(l + Sk) ^ Ω(k) + 1

similarly, if n is even we can obtain a bound by setting n = 2V,
with nr odd, and replacing w by nf and g by q2t.

C. Gurwood has proven a result very closely related to Lemma 3
[2]:

LEMMA (Gurwood). The equation

(mα + l)nh = mc + 1

fcαs wo solutions in integers α, c > 0 αwc£ 6, m, w > 1.

This result is better than Lemma 3, but does not include it
because of the restriction b > 1.

We now proceed to the main result:
1 I would like to thank the referee for pointing out that E. Artin derived similar

results about numbers of the form qn — 1 in his discussion of coincidences among orders
of the finite linear groups (see [1]).
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THEOREM 1. r2(N) ^ 5.

Proof. Assume to begin with that p Φ 2, q Φ 2.

Case (i). (p, N) = (q, N) = 1.
Suppose we are given a representation

(4) N^a + β

with a, β eΓ. Then α and /3 cannot both be divisible by p or by q.
Say p l α :

(a) Suppose q\ a. Then α = 1, and (4) reads:

N=l + β.

But then β is determined by iNΓ; i.e., there is at most one such
representation.

(b) Suppose qJfβ. Then (4) reads:

N = qa + pb .

Here one of the two conditions

N/2 <qa <N

N/2 <pb <N

must be satisfied. Thus (α, b) have at most two possible values.
Combining (a) and (b), we have

rt(N) ^ 3 .

Case (ii). p\N, (q, N) = 1.

Suppose first N$Γ. Then in all representations (4), aβ Φ 0.
Write N = ^riSΓ', with (p, N') = 1, α = p% and /9 = O * . Equation

(4) now takes the form

( 5) prN' = p8 + qap* .

We now note that multiplication by pr provides a one-to-one corre-
spondence between the set of such representations of N with s^r, t^r,
and the set of all representations of N'; that is,

( 6 ) # {representations of N with s, t ^ r} = r2(N') .

It follows from (5) that r ^ min {s, ί}, and r = min {s, ί} if s ^ ί.
Thus the left side of (6) includes all representations of N with s Φ t;
and we have

(7 ) # {representations of N with s Φ t or s = t = r} = r%(N') .
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Now suppose we have a representation (5) with s = t < r. Then we
have

( 8) pr~8N' = 1 + qa .

Since p Φ 2, we can conclude a ^ 1. According to Lemma 3, s and
a are then determined by N; i.e., there is at most one such repre-
sentation. Thus equation (7) yields

r2(N) ^ r2(N') + 1 ^ 4 .

Now suppose NeΓ; then N = pr, and since p is odd, r2(N) = 1.
Thus in case (ii),

r2(N) ^ 4 .

Case (iii): q\N,{p,N) = 1.
As for case (ii), r2(iV) ^ 4.

Case (iv): pq\N.
Let N=prN', with p)f N' and g| JV'. Given a representation (4), write

α = p V

As before, we may use (7) to count representations with s Φ t, or
s = t = r. Now suppose s = ί < r. Then since p ^ 2, we know a Φb;
say 6 > α ^ 0. Setting J\Γ" = qa + gδ, we have

Writing u = r — s, c = b — a, then u > 0, c > 0 and

iV7' = p j ^ ' = ff (i + q°) .

Now, setting JV"' = iSΓVg ,

(**) p 2^w = l + q°.

Here α = ord^ N, r = ordp iV, and iSΓ" = N/prqa are all determined by
JV, and so applying Lemma 3 to (**), u is also determined. That is,
there is at most one such representation of N. Combining this with
(7) and the result of case (iii), we obtain:

This completes the proof of the theorem for p, q odd.
The same reasoning goes through for p — 2, q ^ 5, or vice versa,

with one minor modification. In case (ii), we cannot exclude a = 0
in equation (8). But if there is such a representation of N with
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a = 0, it is unique; and since r > s, N = 2r. Consequently JV = 1,
r2(N') = 1 and r2(N) <* 3. Case (iv) requires no change, since if
p = 2 we can interchange the roles of p and q.

For {q, p} — {2, 3}, we must modify Lemma 3 as follows:

LEMMA 3'. The equations

(9) ™ = l + 2
v J 3 r + 8iSΓ 1 + 2 m

exactly one solution with r > 0, s > 0; namely r = s = N — n =
1, m = 3.

Proof. The argument given for Lemma 3 is applicable up to
( * ). Thus, given a solution to (9), we have

3 s > 2 3 S ~ 2

and so s = 1. Applying this to (9), we have

(1 + 2")/(l + 2 ) = 3 ,

from which it easily follows that n = 1, m = 3, and thus iSf = 1, r = l.
We now indicate the changes that have to be made in the proof

of Theorem 1 when q = 2, p = 3:

Case (ii). According to Lemma 3', equation (8) will have at most
one solution unless N' = 1, ΛΓ=3r, in which case it can have at most
two. But then r2{Nr) = 1 and so

r 2 ( N ) ^ r 2 ( N ' ) + 2 ^ 3 .

Case (iv). The argument is the same up to (**). This equation
can have two solutions only when N'" = 1 (by Lemma 3') But then
N' = 2α, and we have seen that in this case r2(N') ^ 3. Thus rt(N) ^
5. This completes the proof of Theorem 1.
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