THE 2-CLASS GROUP OF BIQUADRATIC FIELDS, II

EZRA BROWN AND CHARLES J. PARRY

We describe methods for determining the exact power of 2 dividing the class number of certain cyclic biquadratic number fields. In a recent article, we developed a relative genus theory for cyclic biquadratic fields whose quadratic subfields have odd class number; we considered the case in which the quadratic subfield is $Q(\sqrt{l})$ with $l \equiv 5 \pmod 8$ a prime. Here we shall extend our methods to the cases in which the subfield is $Q(\sqrt{2})$ or $Q(\sqrt{l})$ with $l \equiv 1 \pmod 8$ a prime. We consider all such cases for which the 2-class group of the biquadratic field is of rank at most 3.

2. Notation and preliminaries.

Q: the field of rational numbers.

l: a rational prime satisfying l = 2 or $l \equiv 1 \pmod{8}$.

 p, q, p_i : rational primes.

k: the quadratic field $Q(\sqrt{l})$.

 $\varepsilon = (u + v\sqrt{l})/2$, the fundamental unit of k, with u, v > 0.

m: a square-free positive rational integer, relatively prime to l.

 $d = -m\sqrt{l} \varepsilon$.

K: the biquadratic field $k(\sqrt{d})$.

 h, h_0 : the class numbers of K and k, respectively.

 $\left(\frac{x, y}{\pi}\right)$: the quadratic norm residue symbol over k.

 $\left\lceil \frac{\alpha}{\beta} \right\rceil$: the quadratic residue symbol for k.

 $\left(\frac{a}{b}\right)$: the rational quadratic residue (Legendre) symbol.

 $\left(\frac{a}{b}\right)$: the rational 4th power residue symbol (defined if and only if (a/b) = 1).

N(): the relative norm for K/k.

H: the 2-Sylow subgroup of the class group of K.

It is easy to see that K is a cyclic extension of Q of degree 4 which contains k. Recall that ε has (absolute) norm -1, that h_0 is odd and that H has rank t-1, where t is the number of prime ideals of k which ramify in K.

3. Class number divisibility: The case $l \equiv 1 \pmod{8}$.

THEOREM 1. Let $m = p \equiv 3 \pmod{4}$. Then

$$h \equiv 2 \pmod{4}$$
 if $\left(\frac{p}{l}\right) = -1$;
$$\equiv 4 \pmod{8}$$
 if $\left(\frac{p}{l}\right)_4 = -1$;
$$\equiv 0 \pmod{16}$$
 if $\left(\frac{p}{l}\right)_4 = 1$.

Proof. The number t of prime ideals of k which ramify in K is equal to 2 or 3 according as (p/l) = -1 or 1. In the first case,

$$\left(rac{p,\,d}{\sqrt{\;l}}
ight)=\left[rac{p}{\sqrt{\;l\;}}
ight]=\left(rac{p}{l}
ight)=-1$$
 ,

so that only the principal ambiguous class is in the principal genus. By Theorem 1 of [1] we have $H \simeq Z_2$.

If (p/l) = 1, then $p = \pi_1 \pi_2$, where π_1 and π_2 are prime ideals of k. The ideals $\pi_1^{h_0}$ and $\pi_2^{h_0}$ are principal ideals, and

$$\pi_1^{h_0} = a + b\sqrt{l} > 0 \; , \ \pi_2^{h_0} = a - b\sqrt{l} > 0 \; .$$
 Thus, $\left(\frac{a + b\sqrt{l}, d}{\sqrt{l}}\right) = \left[\frac{a + b\sqrt{l}}{\sqrt{l}}\right] = \left(\frac{a}{l}\right) = \left(\frac{a^2}{l}\right)_{\!\!\!4} = \left(\frac{p}{l}\right)_{\!\!\!4} \; .$ Also, $\left(\frac{a + b\sqrt{l}, d}{\pi_2}\right) = \left[\frac{a + b\sqrt{l}}{\pi_2}\right] = \left(\frac{2a}{n}\right) \; .$

Because $p \equiv 3 \pmod{4}$ and h_0 is odd, a is even; if $a = 2^i c$ with c odd, then i = 1 if and only if $p \equiv 3 \pmod{8}$. Thus,

$$egin{split} \left(rac{2a}{p}
ight) &= \left(rac{2}{p}
ight)^{^{i+1}}\!\!\left(rac{c}{p}
ight) = \left(rac{c}{p}
ight) = \left(rac{-p}{c}
ight) \ &= \left(rac{l}{c}
ight) = \left(rac{c}{l}
ight) = \left(rac{c^2}{l}
ight)_{\!\!4} = \left(rac{a^2}{l}
ight)_{\!\!4} = \left(rac{p}{l}
ight)_{\!\!4} \;. \end{split}$$

We then have the following table of characters:

Norm\Character	\sqrt{l}	$\pi_{\scriptscriptstyle 1}$	$\pi_{\scriptscriptstyle 2}$
$\varepsilon \sqrt{l}$	1	$\left(\frac{p}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{p}{l}\right)_{\!\scriptscriptstyle 4}$
$a+b\sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	1	$\left(\frac{p}{l}\right)_{4}$
$a-b\sqrt{l}$	$\left(\frac{p}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{p}{l}\right)_{\!\scriptscriptstyle 4}$	1

If $(p/l)_4 = -1$, then only the principal ambiguous class is in the principal genus; by Theorem 1 of [1], we have $H \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$, so that $h \equiv 4 \pmod{8}$.

If $(p/l)_4 = 1$, then all four ambiguous classes are in the principal genus, so that $h \equiv 0 \pmod{16}$.

Theorem 2. Let $m=p_1p_2\cdots p_t\equiv 3\ ({
m mod}\ 4)$ with $(p_i/l)=-1$ for all i. Then

$$h \equiv 2^t \pmod{2^{t+1}}.$$

Proof. H has rank t, so we just need to show that the only ambiguous class in the principal genus is the principal class. Now

$$egin{aligned} \left(rac{p_i,\,d}{\sqrt{\;l}}
ight) = \left[rac{p_i}{\sqrt{\;l}}
ight] = \left(rac{p_i}{l}
ight) = -1 \; , \;\;\; ext{and} \ \left(rac{p_i,\,d}{p_j}
ight) = \left[rac{p_i}{p_j}
ight] = 1 \;\;\; ext{for} \;\;\; i
eq j \; . \end{aligned}$$

It follows that $(p_i, d/p_i) = -1$ and $(\varepsilon \sqrt{l}, d/p_i) = -1$, by the product rule. Thus, no two of the ramified prime ideals belong to the same genus, and so the desired result follows.

THEOREM 3. Let $m=pq\equiv 3\ (\mathrm{mod}\ 4)$ with (p/l)=1 and (q/l)=-1. Then

$$h\equiv 8\ (\mathrm{mod}\ 16) \quad if \quad \left(rac{p}{l}
ight)_4
eq \left(rac{q}{p}
ight);$$

$$\equiv 16\ (\mathrm{mod}\ 32) \quad if \quad p\equiv 1\ (\mathrm{mod}\ 4) \quad and \quad \left(rac{p}{l}
ight)_4 = \left(rac{q}{p}
ight)
eq \left(rac{l}{p}
ight)_4;$$

$$\equiv 0\ (\mathrm{mod}\ 32) \quad if \ either \quad p\equiv 3\ (\mathrm{mod}\ 4) \quad and \quad \left(rac{p}{l}
ight)_4 = \left(rac{q}{p}
ight),$$

$$or \quad p\equiv 1\ (\mathrm{mod}\ 4) \quad and \quad \left(rac{p}{l}
ight)_4 = \left(rac{q}{p}
ight)_4.$$

Proof. Here H has rank 3. Using the notation of Theorem 1, we have that

$$\left(rac{a + b\sqrt{\ l}\ , d}{\pi_{_2}}
ight) = \left[rac{a + b\sqrt{\ l}}{\pi_{_2}}
ight] = \left[rac{2a}{\pi_{_2}}
ight] = \left(rac{2a}{p}
ight)$$
 .

If $p \equiv 3 \pmod 4$, then $(2a/p) = (p/l)_4$, as before. However, if $p \equiv 1 \pmod 4$, then

$$\Big(rac{2a}{p}\Big)=\Big(rac{2}{p}\Big)\Big(rac{a}{p}\Big)=\Big(rac{2}{p}\Big)\Big(rac{a^2}{p}\Big)_{\!\scriptscriptstyle 4}=\Big(rac{2}{p}\Big)\Big(rac{b}{p}\Big)\Big(rac{l}{p}\Big)_{\!\scriptscriptstyle 4}\;.$$

Now $b=2^i c$ with c odd; furthermore, i=1 if and only if $p\equiv 5\pmod 8$. Hence,

$$\Big(rac{2}{p}\Big)\Big(rac{b}{p}\Big)=\Big(rac{2}{p}\Big)^{^{i+1}}\Big(rac{c}{p}\Big)=\Big(rac{c}{p}\Big)=\Big(rac{p}{c}\Big)=\Big(rac{a^2}{c}\Big)=1$$
 ;

we deduce that $(2a/p) = (l/p)_{\bullet}$. Furthermore,

$$\left(rac{a+b\sqrt{t},d}{q}
ight)=\left[rac{a+b\sqrt{t}}{q}
ight]=\left(rac{p}{q}
ight)=\left(rac{q}{p}
ight), \ \ ext{ and } \ \left(rac{q,d}{\pi_1}
ight)=\left[rac{q}{\pi_1}
ight]=\left(rac{q}{p}
ight).$$

The remaining characters are easily evaluated; if we set $(l/p)_{*} = (p/l)_{*}$ if $p \equiv 3 \pmod{4}$, we have the following table of characters:

Norm\Character	\sqrt{l}	q	$\pi_{_1}$	π_{2}
$\varepsilon \sqrt{l}$	-1	-1	$\left(\frac{p}{l}\right)_{\iota}$	$\left(\frac{p}{l}\right)_{4}$
q	-1	-1	$\left(\frac{q}{p}\right)$	$\left(\frac{q}{p}\right)$
$a+b\sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{q}{p}\right)$	$\left(\frac{q}{p}\right)\left(\frac{p}{l}\right)_{4}\left(\frac{l}{p}\right)_{4}$	$\left(\frac{l}{p}\right)_{4}$
$a-b\sqrt{l}$	$\left(\frac{p}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{q}{p}\right)$	$\left(\frac{l}{p}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{q}{p}\right)\left(\frac{p}{l}\right)_{4}\left(\frac{l}{p}\right)_{4}$

The theorem follows, as before, from an analysis of the various cases.

Theorem 4. Let
$$m=p\equiv 1\ ({
m mod}\ 4)\ \ with\ (p/l)=-1$$
. Then $h\equiv 8\ ({
m mod}\ 16)\ \ \ if\ \ \left(rac{2}{l}
ight)_4
eq \left(rac{2}{p}
ight);$
$$\equiv 16\ ({
m mod}\ 32)\ \ \ if\ \ \left(rac{2}{l}
ight)_4 = \left(rac{2}{p}
ight) = (-1)^{(l+7)/8}\;;$$

$$\equiv 0\ ({
m mod}\ 32)\ \ \ \ if\ \ \left(rac{2}{l}
ight)_4 = \left(rac{2}{p}
ight) = (-1)^{(l-1)/8}\;.$$

Proof. Here, the two prime divisors of 2 in k ramify in K. Put 2 = 2,2 in k, with

$$2^{h_0}_{\scriptscriptstyle 1}=lpha=rac{a\,+\,b\sqrt{\,l\,}}{2}>0$$
 ,

and

$$2^{k_0}_{\scriptscriptstyle 1}=arlpha=rac{a-b\sqrt{l}}{2}>0$$
 .

Then

$$egin{aligned} \left(rac{lpha,d}{\sqrt{l}}
ight) &= \left\lfloorrac{lpha}{\sqrt{l}}
ight
floor = \left(rac{2a}{l}
ight) \ &= \left(rac{4a^2}{l}
ight)_{\!\!4} = \left(rac{2}{l}
ight)_{\!\!4} \;, \ &\left(rac{lpha,d}{p}
ight) = \left\lceilrac{lpha}{p}
ight
floor = \left(rac{2}{p}
ight) \;, \quad ext{and} \ &\left(rac{p,d}{2_1}
ight) = (-1)^{(p-1)/2} = 1. \quad ext{Now} \ &\left[rac{a+b\sqrt{l}}{2}
ight]^2 = rac{1}{2}(a^2-2^{h_0+1}+ab\sqrt{l}) \;, \quad ext{so that} \ &aarlpha \equiv rac{1}{2}(a^2-ab\sqrt{l}) \equiv a^2-2^{h_0} \;(ext{mod } 2_1^2) \;. \quad ext{Thus,} \ &\left(rac{arlpha,d}{2_1}
ight) = \left(rac{a,d}{2_1}
ight) \left(rac{a^2-2^{h_0},d}{2_1}
ight) \ &= (-1)^{(a-1)/2}(-1)^{(a^2-2^{h_0-1})/2} \ &= \left(rac{-1}{a}
ight)(-1)^{2^{h_0-1}} \;. \end{aligned}$$

To evaluate (-1/a), note that

$$\left(rac{a}{l}
ight)=\left(rac{a^2}{l}
ight)_{\!\scriptscriptstylef 4}=\left(rac{2}{l}
ight)_{\!\scriptscriptstylef 4}$$

and

$$\left(\frac{2}{a}\right) = \left(\frac{-l}{a}\right) = \left(\frac{-1}{a}\right)\left(\frac{l}{a}\right) = \left(\frac{-1}{a}\right)\left(\frac{a}{l}\right).$$

Hence,

$$\left(\frac{-1}{a}\right) = \left(\frac{2}{a}\right)\left(\frac{a}{l}\right) = \left(\frac{2}{a}\right)\left(\frac{2}{l}\right)_{\bullet}.$$

Since (2/b) = 1, we have $b^2 \equiv 1 \pmod{16}$, so that

$$a^2 - lb^2 \equiv a^2 - l \equiv 2^{h_0+2} \pmod{16}$$
.

If $h_0 = 1$, then $a^2 \equiv l + 8 \pmod{16}$, so that

$$\left(\frac{2}{a}\right) = 1$$
 if and only if $l \equiv 9 \pmod{16}$;

if $h_0 > 1$, then $a^2 \equiv l \pmod{16}$, so that

$$\left(\frac{2}{a}\right) = 1$$
 if and only if $l \equiv 1 \pmod{16}$.

In either case,

$$\left(\frac{\overline{\alpha},\,d}{2_{_{1}}}\right)=(-1)^{_{2}h_{0-1}}\!\!\left(\frac{-1}{a}\right)=(-1)^{_{(l-1)/8}}\!\!\left(\frac{2}{l}\right)_{\!\!\!\!4}\,.$$

Finally, we note that

$$\left(rac{p,\,d}{\sqrt{\;l}}
ight)=\left(rac{p,\,d}{p}
ight)=\,-1$$
 .

This yields the following table of generic characters:

Norm\Characters	\sqrt{l}	p	$2_{_1}$	2_2
p	-1	-1	+1	+1
α	$\left(\frac{2}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1)/8} \left(rac{2}{p} ight)$	$(-1)^{(l-1)/8} \left(\frac{2}{l}\right)_{4}$
$ar{lpha}$	$\left(\frac{2}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1)/8} \left(\frac{2}{l}\right)_{4}$	$(-1)^{(l-1)/8} \left(\frac{2}{p}\right)$

If $(2/l)_4 \neq (2/p)$, then all three lines of the table are distinct and only the principal ambiguous class lies in the principal genus; this implies that $h \equiv 8 \pmod{16}$.

If $(2/l)_4 = (2/p) \neq (-1)^{(l-1)/8}$, then the last two lines are identical, but different from the first. Here, exactly two ambiguous classes lie in the principal genus, and so $h \equiv 16 \pmod{32}$.

In the case $(2/l)_4 = (2/p) = (-1)^{(l-1)/8}$, there are 4 ambiguous classes in the principal genus. Thus $h \equiv 0 \pmod{32}$.

Corollary. If m = 1, then

$$h \equiv 4 \ ({
m mod} \ 8) \quad if \quad \left(rac{2}{l}
ight)_{\!\!\!4} = -1 \; ;$$

$$\equiv 8 \ ({
m mod} \ 16) \quad if \quad l \equiv 9 \ ({
m mod} \ 16) \quad and \quad \left(rac{2}{l}
ight)_{\!\!\!4} = 1 \; ;$$

$$\equiv 0 \ ({
m mod} \ 16) \quad if \quad l \equiv 1 \ ({
m mod} \ 16) \quad and \quad \left(rac{2}{l}
ight)_{\!\!\!4} = 1 \; .$$

Proof. Here t=3 and so H has rank 2. The table of generic characters is obtained by setting (2/p)=1 in the last two lines of

the table in Theorem 4. There are 1, 2 or 4 ambiguous classes in the principal genus according as the condition of the first, second or third line of the corollary holds.

THEOREM 5. If m = 2, then

$$h\equiv 4\,(\mathrm{mod}\ 8)$$
 , $if\ \left(rac{2}{l}
ight)_4=-1$; $\equiv 0\,(\mathrm{mod}\ 16)$, $if\ \left(rac{2}{l}
ight)_4=1$.

Proof. Using the notation of the preceding theorem, we have

$$egin{aligned} \left(rac{ar{lpha},\,d}{2_{\scriptscriptstyle 1}}
ight) &= \left(rac{ar{lpha},\,-2arepsilon \sqrt{l}}{2_{\scriptscriptstyle 1}}
ight) = \left(rac{ar{lpha},\,2}{2_{\scriptscriptstyle 1}}
ight)\!\!\left(rac{ar{lpha},\,-arepsilon \sqrt{l}}{2_{\scriptscriptstyle 1}}
ight) \ &= \left(rac{ar{lpha},\,2}{2_{\scriptscriptstyle 1}}
ight)\!\!\left(-1
ight)^{(l-1)/8}\!\!\left(rac{2}{l}
ight)_{\!\!\!4}\,, \end{aligned}$$

the last step following from the calculations of Theorem 4. Now

$$lpha^{_3}=\left(\!rac{a\,+\,b\sqrt{\,l\,}}{2}\!
ight)^{\!3}=\left(\!rac{1}{2}\!
ight)\!(a(a^{_2}-3\!\cdot\!2^{h_0})+b(a^{_2}-2^{h_0})\sqrt{\,l\,})$$
 ,

so that

$$egin{aligned} \left(rac{ar{lpha},\,2}{2_{_1}}
ight) &= \Big(rac{a^{_2}-2^{h_0},\,2}{2_{_1}}\Big) \Big(rac{a(a^{_2}-2^{h_0+1}),\,2}{2_{_1}}\Big) \ &= \Big(rac{2}{a^{_2}-2^{h_0}}\Big) \Big(rac{2}{a}\Big) \Big(rac{2}{a^{_2}-2^{h_0+1}}\Big) \ &= (-1)^{2^{h_0-1}} \Big(rac{2}{a}\Big) = (-1)^{(l-1)/8} \;. \end{aligned}$$

Hence,

$$\left(\frac{\overline{\alpha}, d}{2}\right) = (-1)^{(l-1)/8} (-1)^{(l-1)/8} \left(\frac{2}{l}\right)_{4} = \left(\frac{2}{l}\right)_{4}.$$

We obtain the following table of characters and the result follows by considerations similar to those previously mentioned:

Norm\Character	\sqrt{l}	2,	2_2
$\epsilon \sqrt{l}$	1	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{l}\right)_{4}$
α	$\left(\frac{2}{l}\right)_{l}$	1	$\left(\frac{2}{l}\right)_{i}$
$ar{lpha}$	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{l}\right)_{l}$	1

THEOREM 6. If m = 2p with (p/l) = -1, then

$$h \equiv 8 \pmod{16}$$
 if $\left(\frac{2}{l}\right)_{4} \neq \left(\frac{2}{p}\right)$;
 $\equiv 16 \pmod{32}$ if $\left(\frac{2}{l}\right)_{4} = \left(\frac{2}{p}\right) \neq (-1)^{(l-1)/8}$,
and $p \equiv 3 \pmod{8}$;
 $\equiv 0 \pmod{32}$, otherwise.

Proof. First we note that

$$egin{aligned} \left(rac{\overline{lpha},\,d}{2_{\scriptscriptstyle 1}}
ight) &= \left(rac{\overline{lpha},\,-2parepsilon\sqrt{\,l}}{2_{\scriptscriptstyle 1}}
ight) = \left(rac{\overline{lpha},\,2}{2_{\scriptscriptstyle 1}}
ight)\!\left(rac{\overline{lpha},\,-arepsilon p\sqrt{\,l}}{2_{\scriptscriptstyle 1}}
ight) \ &= (-1)^{(l-1)/8}\!\left(rac{\overline{lpha},\,-arepsilon p\sqrt{\,l}}{2_{\scriptscriptstyle 1}}
ight). \end{aligned}$$

If $p \equiv 1 \pmod{4}$, then the last symbol was evaluated in the proof of Theorem 4 and reduces to $(-1)^{(l-1)/8}(2/l)_{4}$.

If $p \equiv 3 \pmod{4}$, then 2_1 is unramified in the extension $Q(\sqrt{d_1})$, where $d_1 = -\varepsilon p\sqrt{l}$. Thus, the last symbol is equal to 1. Hence

$$\left(\frac{\overline{\alpha}, d}{2_1}\right) = \left(\frac{\alpha, d}{2_2}\right) = \left(\frac{2}{l}\right)_4 \text{ or } (-1)^{(l-1)/8}$$

according as $p \equiv 1$ or $3 \pmod{4}$. Evaluation of the remaining symbols is routine, and we have the following table for $p \equiv 3 \pmod{4}$:

Norm\Character	$ \sqrt{l} $	p	$2_{_1}$	2_2
$\epsilon \sqrt{l}$	-1	-1	$\left(\frac{2}{l}\right)_{l}$	$\left(\frac{2}{l}\right)_{4}$
p	-1	-1	$\left(\frac{2}{p}\right)$	$\left(\frac{2}{p}\right)$
α	$\left(\frac{2}{l}\right)_{l}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1)/8} \left(rac{2}{p} ight) \left(rac{2}{l} ight)_{\!\!4}$	$(-1)^{(l-1)/8}$
$ar{lpha}$	$\left(\frac{2}{l}\right)_{\!\scriptscriptstyle 4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1)/8}$	$(-1)^{(l-1)/8} \left(\frac{2}{p}\right) \left(\frac{2}{l}\right)_{4}$

If $p \equiv 1 \pmod{4}$, the four entries in the lower right-hand corner are replaced by

$$\frac{\left(\frac{2}{p}\right)}{\left(\frac{2}{l}\right)}, \quad \frac{\left(\frac{2}{l}\right)}{\left(\frac{2}{p}\right)}$$

and the desired results follow as before.

4. Class numbers divisibility: The case l=2.

THEOREM 7. If m = p, then

$$h \equiv 2 \pmod{4}$$
, $if \quad p \equiv \pm 3 \pmod{8}$;
 $\equiv 4 \pmod{8}$, $if \quad p \equiv \pm 7 \pmod{16}$;
 $\equiv 8 \pmod{16}$, $if \quad p \equiv 1 \pmod{16}$ and $\left(\frac{2}{p}\right)_{4} = -1$;
 $\equiv 0 \pmod{16}$, $if \quad p \equiv 1 \pmod{16}$ and $\left(\frac{2}{p}\right)_{4} = 1$, or $if \quad p \equiv 15 \pmod{16}$.

Proof. If $p \equiv \pm 3 \pmod{8}$ then H is cyclic and

$$\left(\frac{p,\,d}{\sqrt{\,2\,}}\right) = \left(\frac{2}{p}\right) = -1$$
.

Hence, the only ambiguous class in the principal genus is the principal class, and so $H \simeq Z_2$.

If $p \equiv \pm 1 \pmod{8}$ then H has rank 2. Let $p = \pi_1 \pi_2 = (a + b\sqrt{2})$ $(a - b\sqrt{2})$ with $\pi_1 = a + b\sqrt{2} > 0$. If $p \equiv 7 \pmod{8}$, then

$$egin{aligned} \left(rac{\pi_1,\,d}{\pi_2}
ight) &= \left[rac{\pi_1}{\pi_2}
ight] = \left(rac{2a}{\pi_2}
ight] = \left(rac{2a}{p}
ight) = \left(rac{a}{p}
ight) \ &= \left(rac{-1}{a}
ight)\!\!\left(rac{p}{a}
ight) = \left(rac{-1}{a}
ight)\!\!\left(rac{-2b^2}{a}
ight) \ &= \left(rac{2}{a}
ight) = (-1)^{(a^2-1)/8} = (-1)^{(p+2b^2-1)/8} \ &= (-1)^{(p+1)/8} \; , \end{aligned}$$

since b must be odd. Furthermore,

$$barepsilon\sqrt{2} = 2b + b\sqrt{2} \equiv 2b - a \ (\mathrm{mod}\ \pi_{\scriptscriptstyle 1})$$
 ,

so that

$$b^2 \varepsilon \sqrt{2} \equiv 2b^2 - ab \equiv a^2 - ab \equiv a(a-b) \pmod{\pi_1}$$
.

Thus,

$$\left(\frac{\varepsilon\sqrt{\;2}\;,\,d}{\pi_{_1}}\right) = \left[\frac{\varepsilon\sqrt{\;2}\;}{\pi_{_1}}\right] = \left(\frac{a(a\;-\;b)}{p}\right) = \left(\frac{a}{p}\right)\!\!\left(\frac{a\;-\;b}{p}\right)\;.$$

But $(a-b)(a+b) = a^2 - b^2 = p + b^2$, so if $a-b = 2^i c$ with c odd, we have

$$\Big(rac{a-b}{p}\Big)=\Big(rac{2}{p}\Big)^i\Big(rac{c}{p}\Big)=\Big(rac{c}{p}\Big)=\Big(rac{-p}{c}\Big)=\Big(rac{b^s}{c}\Big)=1$$
 .

Hence.

$$\left(rac{arepsilon\sqrt{2}$$
 , $d}{\pi_{_1}}
ight)=\left(rac{a}{p}
ight)=(-1)^{_{(p+1)/8}}$.

Thus, for $p \equiv 7 \pmod{8}$, we have the following table of generic characters:

Norm\Character	$\sqrt{2}$	π_{1}	π_2
$arepsilon\sqrt{2}$	1	$(-1)^{(p+1)/8}$	$(-1)^{(p+1)/8}$
$\pi_\mathtt{i}$	$(-1)^{(p+1)/8}$	1	$(-1)^{(p+1)/8}$
$\pi_{\scriptscriptstyle 2}$	$(-1)^{(p+1)/8}$	$(-1)^{(p+1)/8}$	1

If $p \equiv 7 \pmod{16}$, then none of the above lines are the same, so that $h \equiv 4 \pmod{8}$; if $p \equiv 15 \pmod{16}$, then all of the above lines are the same, so that $h \equiv 0 \pmod{16}$.

Now let $p \equiv 1 \pmod{8}$. Then

$$egin{align} \left(rac{\pi_{\mathtt{l}},\,d}{\pi_{\mathtt{2}}}
ight) &= \left(rac{a}{p}
ight) = \left(rac{a^{\mathtt{2}}}{p}
ight)_{\mathtt{4}} = \left(rac{2b^{\mathtt{2}}}{p}
ight)_{\mathtt{4}} \ &= \left(rac{2}{p}
ight)_{\mathtt{4}} \left(rac{b}{p}
ight) \,. \end{split}$$

Setting $b = 2^i c$ with c odd, we have

$$\left(rac{b}{p}
ight)=\left(rac{2}{p}
ight)^i\!\left(rac{c}{p}
ight)=\left(rac{c}{p}
ight)=\left(rac{p}{c}
ight)=\left(rac{a^2}{c}
ight)=1$$
 .

Hence,

$$\left(\frac{\pi_1,\,d}{\pi_2}\right)=\left(\frac{\pi_2,\,d}{\pi_1}\right)=\left(\frac{2}{p}\right)_{\!\scriptscriptstyleullet}$$
 .

Now

$$\left(\frac{\varepsilon \sqrt[]{2}\,,\,d}{\pi_{_2}}\right) = \left(\frac{a}{p}\right)\!\!\left(\frac{a-b}{p}\right) = \left(\frac{2}{p}\right)_{\!\scriptscriptstyle 4}\!\!\left(\frac{a-b}{p}\right)\,.$$

Since $(a - b)(a + b) = p + b^2$, we have

$$\left(rac{a-b}{p}
ight)=\left(rac{p}{a-b}
ight)=\left(rac{-b^2}{a-b}
ight)=\left(rac{-1}{a-b}
ight)$$
 .

A paper of G. Pall [2] contains a table, part of which we re-

produce here:

$$p = a^2 - 2b^2 = u^2 + v^2$$
 , v even

$p\ (\mathrm{mod}\ 16)$	$v \pmod 8$	$a \pmod{8}$	$b \pmod{4}$
1	4	7	0
1	4	5	2
1	0	3	2
1	0	1	0
9	0	1	2
9	0	3	0
9	4	5	0
9	4	7	2

Thus, if $p \equiv 1 \pmod{16}$, then (-1/(a-b)) = 1 if and only if $v \equiv 0 \pmod{8}$, and if $p \equiv 9 \pmod{16}$, then (-1/(a-b)) = 1 if and only if $v \equiv 4 \pmod{8}$, so

$$\left(\frac{-1}{a-b}\right) = (-1)^{v/4} (-1)^{(p-1)/8}$$
.

Now, Dirichlet's necessary and sufficient condition that $(2/p)_4 = 1$ is that $v \equiv 0 \pmod{8}$. Hence, $(2/p)_4 = (-1)^{v/4}$;

$$\begin{split} \left(\frac{\varepsilon \sqrt{2},d}{\pi_1}\right) &= \left(\frac{a}{p}\right)\!\!\left(\frac{a-b}{p}\right) = \left(\frac{2}{p}\right)_{\!\!\!4}\!\!\left(\frac{-1}{a-b}\right) \\ &= \left(\frac{2}{p}\right)_{\!\!\!4}\!\!\left(-1\right)^{v/4}\!\!\left(-1\right)^{(p-1)/8} \\ &= \left(\frac{2}{p}\right)_{\!\!\!4}\!\!\left(\frac{2}{p}\right)_{\!\!\!4}\!\!\left(-1\right)^{(p-1)/8} = (-1)^{(p-1)/8} \;. \end{split}$$

We thus have the following table:

Norm\Character	$\sqrt{2}$	$\pi_{_1}$	$\pi_{_2}$
$arepsilon \sqrt{2}$	1	$(-1)^{(p-1)/8}$	$(-1)^{(p-1)/8}$
$\pi_{\scriptscriptstyle 1}$	$(-1)^{(p-1)/8}$	$(-1)^{(p-1)/8} \left(\frac{2}{p}\right)_{4}$	$\left(\frac{2}{p}\right)_{4}$
$\pi_{\mathtt{z}}$	$(-1)^{(p-1)/8}$	$\left(\frac{2}{p}\right)_{i}$	$(-1)^{(p-1)/8} \left(\frac{2}{p}\right)_4$

If $p \equiv 9 \pmod{16}$, then each line is different; thus, only the principal ambiguous class belongs to the principal genus, and so $H \simeq Z_2 \times Z_2$, $h \equiv 4 \pmod{8}$.

If $p \equiv 1 \pmod{16}$, then there are either two or four ambiguous classes in the principal genus, according as $(2/p)_4 = -1$ or 1. In these cases, $h \equiv 8$ or $0 \pmod{16}$, respectively.

Theorem 8. If
$$m=p_1\cdots p_t$$
 with $(2/p_i)=-1$ for all $i,$ then $h\equiv 2^t \pmod{2^{t+1}}$.

Comment. The proof is quite similar to the proof of Theorem 2, so we omit it.

THEOREM 9. Let m=pq with (2/p)=1 and (2/q)=-1. If $p\equiv 1 \pmod 8$, then

$$egin{aligned} h &\equiv 8 \ ({
m mod} \ 16) \ , & if \ \left(rac{p}{q}
ight)
eq (-1)^{(p-1)/8} \ ; \ &\equiv 16 \ ({
m mod} \ 32) \ , & if \ \left(rac{2}{p}
ight)_{\!\!\!\!4}
eq (-1)^{(p-1)/8}
eq \left(rac{p}{q}
ight) \ ; \ &\equiv 0 \ ({
m mod} \ 32) \ , & otherwise \ . \end{aligned}$$

If $p \equiv 7 \pmod{8}$, then

$$egin{aligned} h &\equiv 8 \ ({
m mod} \ 16) \ , & if \ \left(rac{p}{q}
ight)
eq (-1)^{(p+1)/8} \ ; \ &\equiv 16 \ ({
m mod} \ 32) \ , & if \ q \equiv 3 \ ({
m mod} \ 4) \ and \ \left(rac{p}{q}
ight) = (-1)^{(p+1)/8} = -1 \ ; \ &\equiv 0 \ ({
m mod} \ 32) \ , & otherwise \ . \end{aligned}$$

Comment. The proof involves straightforward extensions of the tables, constructed in the proof of Theorem 7, so we will omit it.

5. Numerical results. A slight modification of the methods described in [3] allow us to compute the relative class number $h^* = h/h_0$ of K. As $h_0 = 1$ for most small values of l, we have $h^* = h$ for almost all values within the range of our computations. In the tables below we list all fields within the range of our calculations, where the maximum power of dividing h^* exceeds the power predicted in §3. We have only computed values of h^* for the fields discussed in Theorems 1, 4, 5, 6, and 7. The column of the table headed by f gives the prime factorization of h^* .

	Table 1 Table 1 (con				(con't)		
(d =	$(d = -\varepsilon \sqrt{l} \ p, p \equiv 3 \bmod 4)$			$(d = -\varepsilon \sqrt{l} \ p, p \equiv 3 \mod 4)$			nod 4)
\overline{l}	p	h*	f	l	p	h^*	f
17	67	160	25.5	73	71	640	27.5
	103	32	25.	89	67	128	27
	251	1088	28.17	97	47	64	26
	463	160	25.5		103	544	25.17
41	23	32	25	113	7	160	25.5
	59	288	25.9	193	3	160	25.5
	83	1184	25.37		47	576	26·32
	139	832	26.13	233	71	5696	26.89
	163	1312	25.41		107	800	$2^5 \cdot 5^2$
	223	256	28	257*	11	64	26
	271	160	25.5		23	640	26.5
	283	3328	28.13		67	416	25.13
	379	2080	25.5.13	281	59	160	25.5
	491	2592	25.34				

(*) $h_0 = 3$ when l = 257.

***************************************	Tab	ble 2 Table 2 (con't)					
d =	$(d = -\varepsilon \sqrt{l} \ p, p \equiv 1 \bmod 4)$			$(d = -\varepsilon \sqrt{l} \ p, p \equiv 1 \bmod 4)$			
\overline{l}	p	h^*	f	l	p	h^*	f
17	149	320	26.5	41	173	1856	26.29
	157	512	29		181	1088	26.17
	229	640	27.5		197	2048	211
	293	640	27.5		229	1600	26.52
	353	1024	210		269	1600	$2^6 \cdot 5^2$
	389	1600	$2^6 \cdot 5^2$		293	3200	$2^7 \cdot 5^2$
	409	832	26.13		373	4096	212
41	53	832	26.13		389	2176	$2^7 \cdot 17$
	61	320	$2^6 \cdot 5$		433	5248	27.41
	109	576	$2^6 \cdot 3^2$	73	41	320	26.5

	Table 2 (con't)			Table 2 (con't)				
(d =	$-\varepsilon\sqrt{l} p$, $p\equiv 1$ n	nod 4)	(d =	$(d = -\varepsilon \sqrt{l} \ p, p \equiv 1 \bmod 4)$			
\overline{l}	p	h^*	f	l	p	h^*	\int	
78	89	512	29	137	73	1280	28.5	
	109	2368	26.37		109	3136	$2^6 \cdot 7^2$	
89	73	2560	29.5	193	101	10816	$2^6 \cdot 13^2$	
	97	2560	29.5	233	29	1280	28.5	
97	53	512	29		37	2304	$2^8 \cdot 3^2$	
	101	832	26.13	241	5	128	27	
	109	3904	26.61		61	4608	29.3	
113	17	320	26.5		97	16000	$2^7 \cdot 5^3$	
	41	1088	26.17	257	17	832	26.13	
	53	832	26.13		41	2560	29.5	
	73	1600	$2^6 \cdot 5^2$		73	3200	$2^7 \cdot 5^2$	
	89	3712	27.29		89	4672	26·73	
	97	4352	28.17	281	29	1600	$2^6 \cdot 5^2$	
	109	1664	$2^{7} \cdot 13$		101	2176	$2^7 \cdot 17$	
137	5	128	27		109	6400	$2^8 \cdot 5^2$	
	53	1664	27.13					

Note: For tables 1 and 2, p < 500 when l = 17 or 41 and p < 110 otherwise.

	Table 3						
	$(d=-marepsilon\sqrt{l},m=1 ext{ or }2)$						
\overline{l}	m	h*	f				
257	1	32	25				
337	1	256	2^8				
89	2	64	2 ⁶				
113	2	32	2^5				
233	2	128	2^7				

Table 4				Table 4 (con't)					
	(d = -2)	$2\varepsilon\sqrt{l} p$	$(d=-2arepsilon\sqrt{l}\ p)$						
\overline{l}	p	h*	f	l	p	h)*	f	
17	5	32	25	113	7	3	20	26·5	
	37	320	26.5		23	6	40	27.5	
	47	320	26.5		31	11	52	27.32	
	61	256	28		41	23	68	$2^6 \cdot 3^7$	
41	3	32	25		53	16	00	26.52	
	11	256	28		71	16	64	27.13	
	13	128	27		73	37	12	27.29	
	19	512	29	137	13	5	12	29	
	23	256	28		43	26	24	26.41	
	31	640	27.5		67	39	04	26.61	
	53	576	26.32		7 3	39	04	26.61	
	67	512	29	193	5	3	20	26.5	
73	17	832	26.13		7	11	52	$2^7 \cdot 3^2$	
	37	576	26.32		13	33	28	28.13	
	41	3200	$2^7 \cdot 5^2$	1	37	33	92	27.53	
	71	4352	28.17		53	16	64	27.13	
89	11	512	29		61	110	72	26.173	
	17	320	26.5	233	19	12	80	28.5	
	67	1600	$2^6 \cdot 5^2$		23	33	28	$2^8 \cdot 13$	
	73	1600	$2^6 \cdot 5^2$		37	37	12	27.29	
97	5	320	26.5		71	52	48	27.41	
	13	320	26.5		73	33	28	$2^8 \cdot 13$	
	47	3200	$2^7 \cdot 5^2$						
	Table 5				Table 5 (con't)				
	$(d=-arepsilon\sqrt{2}p)$				$(d = -\varepsilon\sqrt{2} p)$				
	h^*		f	p			<i>f</i>		
	_				_				
47	35		25	239				6·5	
127	160	}	25.5	257	160		25.5		
223	160	U 2	2⁵•5	271	160	160		$2^{5} \cdot 5$	

,	Table 5 (co	n't)	Table 5 (con't)			
($d = -\varepsilon \sqrt{2}$	<i>p</i>)	$(d=-arepsilon\sqrt{2}\;p)$			
\overline{p}	h*	f	p	h*	f	
367	160	25.5	1279	640	27.5	
431	320	$2^6 \cdot 5$	1423	1088	26.17	
463	640	$2^7 \cdot 5$	1439	1600	$2^6 \cdot 5^2$	
479	160	$2^5 \cdot 5$	1553	800	$2^5 \cdot 5^2$	
577	416	$2^{5} \cdot 13$	1601	640	27.5	
751	576	$2^6 \cdot 3^2$	1663	1088	2 ⁶ ·17	
1039	800	$2^5 \cdot 5^2$	1759	1664	$2^7 \cdot 13$	
1151	640	$2^7 \cdot 5$	1823	1184	25.5.17	
1153	544	$2^{5} \cdot 17$	1889	1184	25.37	
1201	1088	$2^6\!\cdot\! 17$	1951	1312	25.41	
1217	512	2^9				

REFERENCES

- 1. Ezra Brown and Charles J. Parry, The 2-class group of certain biquadratic number fields, J. reine und angew, Math., 295 (1977), 61-71.
- 2. Gordon Pall, Discriminantal divisors of binary quadratic forms, J. Number Theory, 1 (1969), 525-533.
- 3. Charles J. Parry, Real quadratic fields with class number divisible by 5, Math. of Comp., 31 (1977), 1019-1029.

Received February 23, 1977.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VA 24061