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REPRESENTATIONS OF WITT GROUPS

JOHN BRENDAN SULLIVAN

This paper gives a tensor product theorem for the co-
ordinate rings of the finite-dimensional Witt groups. This
theorem leads to a demonstration of the equivalence of the
representation theory of the Witt groups with that of
certain truncated polynomial rings.

Introduction. The Steinberg tensor product theorem [1, Ch. A,
§7] for a simply connected, semisimple algebraic group G in
characteristic p displays irreducible G-modules as tensor products
of Frobenius powers of infinitesimally irreducible G-modules (modules
which are irreducible for the kernel G1 of the Frobenius morphism
of G).

A goal of modular representation theory is the expression of
the coordinate ring of G in terms of tensor products of Frobenius
powers of G-modules which are suitably elementary for G1. In this
paper, we give a tensor product theorem for the finite-dimensional
Witt groups. We produce a subcoalgebra C of the coordinate ring
A of the m-dimensional Witt group Wm which is isomorphic to the
coordinate ring of the kernel Wι

m of the Frobenius morphism. A
is the inductive limit of tensor products of Frobenius powers of C
[§3, Theorem].

One can see some things about the representations of Wm.
First, every finite-dimensional representation of Wi, extends to a
representation of Wm on the same representation space [§5]. Second,
a representation of Wm on a finite-dimensional vector space V is
determined by a family {flf •••,/»} of commuting endomorphisms of
V such that ff1 = 0. In other words, the representations of Wm

on V may be studied via the representations of the algebras
{k[xlf •••, Xn]/(x?m, , xΓ))n on V [Theorem, §4]. In particular, the
representations of Wm which correspond to the representations of
fc[ccj/(cciw) give canonical extensions for the representations of TF«.

This linear formulation of the representation theory of Wm

leaves one with the apparently difficult problem of determining the
representation theory of k[x19 •••, xj/(xfm, •••, xζm).

For the definition of the Witt groups, see [2, Ch. 5, §1].

NOTATION. Let A denote the coordinate ring of the m-dimension-
al Witt group Wm, as a reduced, connected group scheme over the
prime field k — Fp. For any subcoalgebra C of A which contains
k, let C{pt) be the image of C under the Λh-power of the Frobenius
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morphism of A. We may form t h e inductive family of coalgebras
{C (x) Cip) (g) (g) C(pn)}ϊ=0, where C (g) • (g) Qpn) =-> C (g) (g> C(2?n) (g)
C ( p ? ι + 1 ) is t h e canonical morphism onto C (g) (g) C ( p W ) <g) fc. Let

> C (g) C ί p > (x) (x) C(3>W) be t h e coalgebra inductive limit of t h e
n

family.
Let Π: A -> A/M{p)A be the quotient morphism, where M(?>) is

the image of the augmentation ideal Munder the Frobenius morphism.
We show in §3 that there is a coalgebra splitting s: A/M{P)A —> A
of Π such that A, as a coalgebra, is isomorphic to > C (x) C(p) (x)

• (g> C(pW) where C = image s.

()• We require some facts from [3, Def* 6] of K* Newman*
Let Wm+1 be the (m + l)-dimensional Witt group over k = Fp, with
coordinate ring Am+1. As an algebra, Am+1 is the polynomial ring
k[Xl9 XP9 XP2, , Xpm] on (m + l)-variables. Grade Am+1 by letting
Xpi have degree pS The coproduct Δ of Am+1 is the following:
ΔXpi = Σ £ o Qy ® Q*w> where Qy is a homogeneous (relative to the
grading) polynomial of degree j . In particular, Qo = 1, Qpi = Xpi
and {Qi}fΓo is a sequence of divided powers.

Since degree Q5 = j 9 Qj lies in k[Xί9 Xpy , Xp»-i] for i < pm.
The coordinate ring A of Wm may be identified with the sub-Hopf
algebra k[Xί9 Xp, , Xpm-i] of Aw + 1.

1* The coalgebra splitting of Π. M — (X19 XP9 -",Xpm-i) is
the augmentation ideal of A. Let C be the &-span of {QyljΓo"1. C
is an irreducible coalgebra of dimension pm, with k-X1 as its space

of primitive elements. Since the coalgebra map / : C ^ A —> A/Mip)A
has an injective restriction to k X19 f is injective [5, Lemma 11.0.1].
Since (AjMLp)A)* is the restricted universal enveloping algebra of
(M/MT [3, 13.2.3], dim* (A/M<P)A)* = p<"** <*/**>• = p » . Therefore,
dimfc (A/ikf(p)A) = p m and / is an isomorphism, s = f~ι is the co-
algebra splitting of Π that we use.

2. T h e value of Π at Qy Let 0 ^ i < pm. Write i = X S 1 a^
where 0 ^ α̂  < p.

LEMMA. Π{Q5) is a nonzero scalar multiple of Π(Xΐ0X? -Xa

pZ-{)*

Proof. Qj is a linear combination of elements X\»Xh

p

ι Xb

pZ-l
where Σ&iP* = 3 by §0. If {&<}< ̂  {αj^, then bt^p for some ΐ , and
i7(X?°X^ Xb

pz-ϊ) = 0. Therefore, /7(Qy) e & Π(Xΐ°Xa

pi - JSΓ^r}),
where the coefficient of Π{X<ίΰXp"

L - - XaZ-l) is nonzero since the map
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/ of §1 is injective.

3* The coalgebra structure of the coordinate ring* Give the
set of monomials in A the reverse lexicographic total order:
XV>X% Xa

pz-l > Xl'Xp1 X\Z-\ if there is an index k such that
ak > bk and α* = b€ for i > k.

Let {αJΓ"1 be a sequence where 0 ^ a< < p, and let {6JΓ"1 be a
different sequence, where 0 ̂  6*.

LEMMA. 1/ Σ?^ 1 α,p* = Σ £ ϊ ι
 6<PS

Proof. Let k be the maximal index such that ak Φ bk. If
bk > ak, then Σ S 1 btp* > Σ S 1 dtP* since at < p. Therefore, we must
have ak > bk and Xί° Xa

pZ~-\ > JSΓJ0 — X*ϊiί.
Let C be the coalgebra formed in §1.

THEOREM. The map - ^ C (g) C{p) (g) (g) C(2>W) -> A, induced by
n

multiplication', C (x) C{?)) (g) (g) C(ί)W) —> A, ΐs cm isomorphism of co-
algebras.

Proof. Denote the map by g.
Sur jeetivity of g. Suppose that monomials X^Xl1 Xb

pZ~l less
than Xΐ°X*1 Xa

pZz\ in the ordering lie in the image of g. We
show that XpX? Xa

plz\ also lies there.
Write α* = Σ i &ίiΊ>\ where 0 <; ai3- < p. Let ί* = Σ?^ 1 ̂ itp*. By

the lemmas of §2 and §3,

where Yfc is a linear combination of monomials of degree tk and less
than Xtok Xa

pZz\yk in the ordering, and where Uk is a nonzero
scalar. Therefore,

rn—ί , m—1

_o Wtk - 11 t/fe * ^ 1 Λ p « « ^-pm-l i- i. ,

where F is a linear combination of monomials which are less than
XlQXa

p

ι Xa

pZz{. Since ΠΓi)1 Qtk and F lie in the image of g, so
does X^Xp1 ' XpZz\.

Injectivity of g. Since g is sur jective, so is Π © #: ?• C ( x )

C(p) <g) <g) C(ίϊ?1) Λ i U " A/M{P)A for any ί; at the same time, C{pΰ) ^

A -^ A/M(ί><>A has image = k if i ^ t. Therefore, C <g) C(2)) (g) (g)

is surjective. Since dim, (A/M{pt)A) — pmt
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by [4] or by inspection, and dimfc (C ® C{p) (x) (x) Qpt~l)) = pm ί,
/Zomult. is an isomorphism of coalgebras. In particular, C(x)

C{p) (x) (x) C(ί>ί~1} ̂ -> A is injective. Hence, # is injective.

4* Representation theory of Wm. The dual algebra U =
(A/M{p)A)* is the restricted universal enveloping algebra of the
abelian p-Lie algebra L = (M/Mψ [5, 13.2.3].

L E M M A . There is a k-basίs f09 •• , / w _ i for L, where fl = fi+ι

for i < m — 1 αweZ /JUi = 0.

Proof. Define fs on the Λ-basis X19 XP9 , Xpm-ι for Λf/Λί2 by
fj(Xpi) — δiS. We have the following to complete the proof.

(1) If iΦj + 1, then fP(Xpi) = {®pfό)(Ap-ιXvi) is 0, since
Ap~1Xpi is homogeneous of degree pί under the grading of ® p A
induced from the grading of A, while ®p fj can be nonzero only at
monomials in ® P A of degree pj+ι.

(2) One may check that f%Xpi+i) = 1.
To proof is complete.

By this lemma, the algebra map from the polynomial ring k[f]
to U mapping / to /x induces an isomorphism of fc-algebras

Denote by Rn the set of isomorphism classes of finite-dimensional
representations of Wm whose coefficients lie in C ® C{p) (x) (g)
C{pn) ^ A. The canonical map C(x)C(p)® (x)C(2)%) ̂  C(x)C{p) <g) (g)
Qp%) (X) C(ί)W+1) induces Rn^Rn+ι. Then i? = U»#* is the set of
isomorphism classes of finite-dimensional representations of Wm.

Let Bdenote the quotient of the polynomial ring FP[XQ, 9Xnf •]
on generators {Xt}ΐ=0 by the ideal (XΓ, •••, Xim, •••)• Denote by B
the set of isomorphism classes among those finite-dimensional repre-
sentations of B in which all but a finite number of the Xt act as the
zero endomorphism. Denote by Bn the set of isomorphism classes of
finite-dimensional representations of k[X09 , Xn]/(Xpm, , X*m). The
map k[Xor ,X., ]/WV ,XΓ, •) - Λ[X0, Λ]/(XΓ, ,XT),
Xί H-> Xi for i ^ w and X{ h-> 0 for i> n, induces .β% ̂ ^ B, and JB =

THEOREM. There is a canonical bisection R-+ B, under which
Rn and Bn correspond.

Proof. Since C = A/M{p)A as coalgebras, C* = U as algebras.
Since A is reduced, the Frobenius morphism on A is injective, and
C = C{pi). Therefore,
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( 1 )
The first isomorphism is induced by the maps I7->(C(g> C(3>)(g) .(g)C(pn>)*

which are dual to the maps r.^rs*) t)
C{pi), where βj is the counit of Qp3)\ the second isomorphism is induced
by Xt *-» l 0 (x) (x) li-i ® /i (8) li+i <8> ® 1»» where ly is the identity
of Uj. Here us is the i t h copy of u in ®*+ 1%. Moreover,

( 2 ) under dualization, the canonical map C (g) C(2>) (g) (x) C(2)%) <=-»
C(g) C^ (8) <g> C ( ^ + 1 ) yields the map fc[/0, , Λ+1]/(/?m, , Λ ^ ) ->
&[X0, , XJ/(XΓ, , X Γ ) where X, κ> X, for i£ n and X%+1 K- 0.

The isomorphism (C(8)C(?))(8) -<8>C{pn))*^k[XQ,- -,Xn]/(Xim,---fXZm)

of (1) induces a bisection Rn —> 5 % such that £ p commutes

by (2). Therefore, R^ B.

5. Representations of Wi, The coalgebra C constructed in §1
is isomorphic to the coordinate ring A/M{p)A of Wί, under the
mapping π: A -> A/M{p)A restricted to C Therefore, the representa-
tions of Wm with coefficients in C correspond to the representations
of Wi, via the isomorphism between the coefficient coalgebras C and
A/M{p)A, and very finite-dimensional representation of Wx

m extends
to a representation of Wn on the same representation space.
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