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A SINGULAR NONLINEAR BOUNDARY
VALUE PROBLEM

JACK W. MACKI

We consider the singular nonlinear boundary value
problem (BVP)

(1) y - v + yF{y\t) = 0 , ee(0,oo)

(2) y(0) = 0, lim y(t) = 0, y(0) exists, #(ί) > 0 on (0, oo).

The problem is singular in a second way, in that we will
allow F{η, t) to have a singularity at t = 0.

The problem is motivated by a nuclear model due to Takahashi
[6], his equation (after some simplifications by Synge [5]) was
x + (2/t)x = x - x\x\k~ι with k = 2; Nehari [2] wrote a?(ί) = t~ιy(t) to
transform this equation into

(3) # _ j , + y M l = o .

Nehari showed that the BVP (3) (2) has a (not necessarily unique)
solution for 1 < k <J 4. If one drops the requirement that j/(0) exist,
then there is a solution for 1 < k < 5. Sansone used techniques
entirely different from those of Nehari in an exhaustive study [4]
in which he showed that (3) (2) has a unique solution for 1 < k < 5;
he used an extension of a counterexample of Nehari to show that
there is no solution of (3) (2) for k ^ 5.

Ryder [3] extended the variational techniques of Nehari, as
developed in [1], [2], to the more general problem (1) (2). However,
his results when applied to the special case of (3) (2) only yield ex-
istence for 1 < k < 4; if one drops the requirement that Λ(0) exist,
then his techniques prove existence for 1 < k < 5.

In this paper we improve the results of Ryder, with the result
that when we specialize to the BVP (3) (2) we prove existence for
the full range 1 < k < 5, thus improving Nehari's results as well.
Throughout the remainder of this paper we will assume:

( I ) F(η, t) β C([0, oo) x (0, oo)), F(η, t) > 0 for η > 0.
(II) 3<? > 0 such that for each t > 0, ψδF(τ], t) is strictly in-

creasing in Ύ] on [0, oo). In particular, lim^o7]~δF(τ], t) exists for
t > 0.

(III) lim^oo JP(C2, ί) = 0 for any constant c.
(IV) For some fixed ε > 0 (hence for all smaller values of ε)

t, t)dt converges for any constant c.
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The first three assumptions coincide with those of Ryder. In

place of IV, he assumes \ t{1/2)~εF(c% t)dt converges for all sufficiently
Jo

small ε > 0 (he uses IV to prove weaker results). Our version of
IV allows F to be more strongly singular at t = 0.

Our approach is the same as that of Ryder, which in turn is
based on that of Nehari, although we present our facts in a different
order. However, since Ryder in turn refers to two different papers
of Nehari for certain details, we feel it is necessary for the reader's
sake to present a complete development. Also, our improvements
come into Ryder's proofs in such a way that it is easier to do the
entire proof. In order to help the continuity of the presentation,
we have relegated all proofs to an appendix. The crucial new idea
is Lemma 4.

CV2

We define G(y2, t) — \ F(η, t)dη, and consider the variational
Jo

problem
( 4 ) min J(y) = min I [y2 + y2 — G(y2, τ)]dτ ,

A A Jo

A = [y\y(0) = 0, y{t) * 0, y e £>'[0, <*,), y(t) ^ 0, j j (y2 + y2)dt

= Γ y2F{y\ τ)dτ\

Note that admissible functions are differentiate at t — 0, and that
J(y) might be an improper integral at t = 0 since G might be singular
there.

LEMMA 1. If y satisfies yeD'[0, oo), y(0) = 0, y{t) ξέ 0, y(t) ^ 0,
and if

S oo

(y2 + y2)dt exists ,
0

S oo ί oo

y2F(y2, t)dt and \ G{y2, t)dt both exist, and la > 0 such that
o Jo

ay eA.
Proof. Appendix.
Thus the last condition in the definition of A may be viewed as

a normalization.

LEMMA 2. Inf A J(y) — λ ^ 0. There exists a minimizing sequence
{yn} a A that converges on [0, oo), uniformly on compact subintervals,
to y(t)eC[0, oo), and J(yn) ^ δ(δ + l ) " 1 ^ , where δ is defined in II.

Proof. A p p e n d i x . W e d o n o t c l a i m yeA or e v e n yeDf[0, oo),
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thus J{y) may not exist. Throughout the remainder of this paper,
{yn} will be a minimizing sequence.

LEMMA 3. For each yn(t), and any constant an>0, the function

( 6 ) un(t) = ane~ι Γ (sinh τ)ynF(ylτ), dτ + an sinh t Γ e~τynF{yl, τ)dτ
Jo Jt

is in C^O, oo) π C2(0, co) and solves

( 7 ) iίn-un + anynF(yl, t) = 0 , t e (0, oo) , un(0) = 0 = lim un(t).
t-*oo

Also, (8) limt_>0 ύn(t) exists, lim*^ ύn(t) = 0. We can choose an so
that un 6 A, and we will then have {an} bounded, and J(un) <^ J(yn)
for all n. Furthermore, J(u%) = J(yn) if and only if un == y%.
Finally, 3%0 6 C[0, oo) such that limΛ^ un(t) = uo(t) for te[O, oo),
uniformly on compact subsets.

Proof. Appendix. Note that the BVP for un(t) may be singular
at t = 0. Since {an} is bounded, we shall assume henceforth, by
using a subsequence if necessary, that lim^oo an = a0.

Lemma 3 implies that {un} is a minimizing sequence of admissible
functions. Thus we can repeat the procedure described in Lemma
3, starting with {un} as our new minimizing sequence. We can do
this any finite number of times. We will still call the solution un9

and the last-used minimizing sequence {yn}.

LEMMA 4. We can iterate the procedure of Lemma 3 a finite
number of times, to obtain yn(t) = 0(f), uniformly in n, as t-+ 0.

Proof. Appendix. If is interesting that Sansone also uses an
iterative procedure in a completely different context to get the full
parameter range 1 < k < 5. (Cf. [4], pp. 22-29.)

By Lemma 4, we may assume throughout the remainder of this
paper that yn{t) = 0(ί) as t —> 0, uniformly in n.

LEMMA 5. {ΰn(t)} is a Cauchy sequence, uniformly on [0, oo),
hence lim^^ ύn(t) = ύo(t) exists on [0, oo).

Proof. Appendix.

LEMMA 6. u0 e A, l i m ^ J(un) = J(u0), and λ = inf A J(y) =
im^oo J(un) = J(u0) > 0, hence u0 is minimizing and nontrivial.

Proof. Appendix.
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LEMMA 7. l i m ^ α ^ = a0 = 1, and uo(t) solves the BVP (1) (2).
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APPENDIX. Proofs. Throughout this section, K, L, M will
denote various unimportant constants needed in the course of argu-
ments.

Proof of Lemma 1. For 0 <> y e D'[0, °o) with y(0) = 0, we have,
for t small

(10) y{t) = y(O)[t + o(t)] :g Kt , K = K(y)

while standard inequalities imply

(11) y\t) = βy(τ)dτj ^ t^y\τ)dτ ^ t ^ (y2 + y*)dτ = tσ\t) ^ tσ2 ,

(12) y\t) = 2 \y{τ)y{τ)dτ ^ Γ (y2 + y2)dτ = σ\t) ^ σ2

Jo Jo

(11) is useful for t small, (12) for t large. Now if σ2 exists for a

S T /ri cτ\

y2F(y2, τ)dτ — ί I + i )[y2F(y2, τ)]dτ, so we can use
(11) in the first integral, and (12) in the second, to obtain

τ)dτ ^ [ σ2τF(σ2τ, τ)dτ + Γ y2F(σ2, τ)dτ .
Ja Ji

The first integral on the right converges as a —> 0, by IV, and the

S oo

G(y2, τ)dτ, we
note that (13) G(y2, τ) = \ F(η9 τ)dη ^ y2F(y2

f τ). We now define
Jo

H(a) = \ y2F(a2y2, τ)dτ σ2. (This integral is easily shown to con-

verge.) By II,

0 < a < 1 => H(a) ^ a2Ή(l) ,

l£a=~ a2δH(l) ^ H(a) ,

which implies that H{a) maps (0, ©o) onto (0, c»). Thus H(a) — 1
for exactly one a > 0 (H is strictly increasing). Then ay will
satisfy the normalization condition.



A SINGULAR NONLINEAR BOUNDARY VALUE PROBLEM 379

Proof of Lemma 2. If y is admissible, σ2 exists by the normali-

zation condition in the definition of A, thus 1 G(y2, τ)dτ exists by
Jo

Lemma 1, and J(y) may be computed. By (12),

J(y) =σ*- \~G(y\ τ)dτ ^σ2- \~y2F(y2, τ) = 0 .
J J

Clearly there exists a minimizing sequence of nontrivial functions
{yn} c A such that J(yn) -* λ Ξ= infA J(y) ;> 0. Therefore, there exists
a number p2 > 0 such that J(yn) <; p2 for all n.

Now by II and the normalization condition for A, if y e A,

\ τ)dτ =

^ (δ + I)" 1 S y2F(y\ τ)dτ =
J

thus J{y) = σ2 - Γ G(/, r)dr ^ δ(δ + l)"1^2. For the minimizing
Jo

sequence {yn}, we conclude that

P2 ^ J(yn) ^ δ(δ + iYισl > δ(δ + I)" 1 (°° yldτ .
Jo

Since ^(0) = 0, the Ascoli-Arzela theorem applies, and by using a
subsequence if necessary we can assume limw_*oo yn(t) = y(t) exists, the
convergence is uniform on compact subintervals, and yeC[0, °o).

Now J(yn) ^ p2 for all n implies σ2 ^ ((δ + l)/δ)ρ2, so by relabel-
ling the constant we can write, by (11), (12),

(14) (a) ylit) ^ ρ2t (b) yl(t) ^ p2 uniformly in n .

Proof of Lemma 3. Following Ryder, we rewrite (6) as un(t) =
ane~ιQ(t) + αM(sinh t)R(t). We can use (14a), IV, and the fact that
sinh t = 0(ί) for t small to conclude that

(15) Q(t) = Γ(sinh τ)yJF{yl, τ)dτ ^ J^ί1/2+£Γ τι-εF(p2τ, τ)dτ = o(t1/2+ε)
Jo Jo

as £ —> 0, uniformly in n. If we use (10) instead of |(14a), and II,
we get

(16) Q(t) ^ Lnt
1+ε [ τι~*F{K2

nτ
2, τ)dτ ^ Mj1+ε+δ [ τχ- F(τ, τ)dτ .

Jo Jo

Thus Q(t) = On(t1+ε+δ), which is considerably stronger (for a given
M) then the uniform bound (15). To estimate R(t) for t small, we
use (14), I, III, and IV to obtain
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(sinh t)i2(ί) Ξ sinhί(T + V\e~τynF(y2

Hf τ)dτ)

/ 1 7) ^ (sinh ί)^ e"1 / 2 Γ τ1/2~εpz1/2F(p2τ, τ)dτ + sinh t Γ e~Tp2F(p\ τ)dτ

S oo

e~rcίτ

- 0(ί) ,

as t -> 0, uniformly in w. If we use the nonunif orm bound (10) we
get sinh tR{t) = OΛ(ί).

Applying II and (14b), we get for t large and 0 < T <t,

τpτ1/2F(p2τ, τ)dτ + Le~ι I eτ

t

0 JT

If we choose Γ so that F(|θ2, τ) < ε for τ > T, the above inequality
implies lim s u p ^ β"*Q(ί) ^ LjOε, thus l i m ^ e~*Q(ί) = 0. For R(t) we
get

(19) (sinh t)R{t) ^ e*Γ e~τρ*F{ρ\ τ)dτ^ρ2 max ί\<02, τ) = o(l) as ί-̂  oo .
Jί [ί,oo)

It is easy to see that ύn(t) = — e~*Q(t) + (cosh t)R(t), and that %n(£)
solves the differential equation in (7) on (0, oo). The boundary con-
ditions are easily verified, using the estimates above. Using the
(nonunif orm) estimates sinh tR(t) = On(t) as t -» 0, we see that
R(t) = OΛ(1), and we can conclude that ύn(0) exists, since the integral
defining jβ(O) must either diverge to + °° or exist as a real number.
Also, lim^oo ύn(t) — 0 follows easily from the above estimates. If
we alternately multiply (7) by un(t), yn(t), and integrate by parts,
we obtain respectively

(20) 8»(Γ) = \\ύi + ul)dτ = an \unynF(yl, τ)dτ + un(T)ύn(T) ,
Jo Jo

(21) Γ(ftA, + VnUjdτ = an \° ylF(yl, τ)dτ = an V(yl + yϊ)dτ = a.
JO JO JO

Now by (11) and (14a),

[unynF(yi, τ)dτ ^ sn(T)p [τF(yl, τ)dτ , and similarly
JO JO

S T CT /CT \ l / 2 / f Γ \l/2

i unynF(y%, τ)dτ ^ max F(p\ τ) ^ u,yn ^ K^ ulj (^ yl)

Then (20) implies s%(T) ^ Lnsn{T) + un(T)ύn(T), so (βl(Γ) - LJ2)2 ^

{Ll/4) + un(T)ύκ(T). Therefore Γ (ύl + ul)dτ Ξ S2 exists. We then
Jo
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conclude from Lemma 1 that aun is admissible for some a > 0.
This just corresponds to an appropriate choice of an in the integral
(6) that defines un9 and we so choose an. In exactly the same way
as for {yn}, we can then show lim^oo un(t) = uQ(t) exists.

Using (21) and the Cauchy-Schwarz inequality, we obtain

(22)
\an ^ylF(yl, τ)dτj < £(ώ« + u%)dτ ζ(yl + yl)dτ

= Γ ulF(ul, τ)dτ Γ ylF(yl, τ)dτ ,
Jo Jo

which implies a\ [°°ylF(yl, τ)dτ ^ [°u2

nF(ul, τ)dτ. Now by (20) and
Jo Jo

the normalization condition,

Q τ)dτ

^ a\ \ulF(yl, τ)dτ \ylF(yl, τ)dτ
Jo Jo

combining the two above results, we get

(23) ΓwlF« τ)dτ ^ \"ulF(yl, τ)dτ .
J J

Since F(η, t) is strictly increasing in η, the function G(rj91) =

S η
F(y, t)dy is strictly convex and

0

(24) Γ < ? « τ)dτ ̂
Jo

where equality holds if and only if ui(τ) = y\(τ) on [0, T]. There-
fore, using (23), we obtain

Γ [ulF(ul, τ) ~ G « τ)]dτ ̂  Γ[» F(»i, τ)
Jo Jo

But J(w) = Γ [^2JP7('M;2, r) - G(w\ τ)]dτ for w 6 A, hence, the above
Jo

inequality implies J(un) <̂  J(^/J. If J(un) = J(i/J, then (24) reduces
to an equality, and un(t) Ξ= yΛ(t) on [0, ©o).

Finally, we shall show that {an} is bounded. We have by (22)

(25) a\ £ [jo°° ylF(yl, τ)dτjl J" ulF(ul, τ)dτ .

Using (14) (since {un} is minimizing), I and III, we obtain

Γ ulF{ul, τ)dτ ^ ρ2 [ τF(ρ% τ)dτ + ρ2 max F(ρ\ r) ,
JO Jo [l,oo)
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so the numerator in (25) is bounded above. To bound the denomina-
tor below, we use the normalization condition (11), and (12), to
obtain

σl = Γ (yl + yϊ)dτ = [° y2

nF(y2

n, τ)dτ ^ \ σ\τF{σ\τ9 τ)dτ
Jo Jo Jo

+ σl max F(σ*n, τ) ,
[l,oo)

thus

(26) 1 ^ [ τF(σlτ, τ)dτ + max F(σ2

n9 τ) ^ Kσ2

n

δ .
JO [l.oo)

Therefore σl ^ M > 0 for all w, and this implies that the denomina-

S oo

VlF(yl, τ)dτ = σl.
0

Proof of Lemma 4. Without loss of generality, we shall assume
that lim an = a0 exists for any specific given minimizing sequence
{yn} and corresponding solutions of (7), {un}. Since the members of
the first minimizing sequence satisfy yjjb) ^ pt1/2 on [0, 1] and {an}
is bounded, (15) and (17) imply un(t) = 0(ί1/2+e) as t -> 0, uniformly
in n. Now suppose we have iterated p ^ 0 times and obtained
un(t) = O(t1/2+μ) with 1/2 + μ < 1. We then parallel the derivation
of (15), (17) to write

Qit) ^κ[ ττ1/2+μF(Πτι+2'% τ)dτ ^ K2
Jo

where

2δ) .

Clearly we can make v > 1 after a finite number of such iterations,
beginning with μ = ε.

Proof of Lemma 5. We may assume, using Lemma 4, that
yn(t) = O(t) as ί—•(), uniformly in n. Now ώn(ί) = — e'*Qn(t) +
(coshί)i?w(ί); where we have introduced subscripts to indicate
dependence on yn. It is now easy to show that {Qn}, {Rn} converge
uniformly on [0, ©o), hence so does {ύn(t)}; for example,

(27) \Rn(t) - Rm{t)\ ^ ( j | + \)e-r\y»F(yl, τ) - ywF(Λ, τ)\dτ

2, τ) + Γ β~Ό(l)dτ + Γ e~τ2ρF(p2, τ)dτ ,
Jί0 JT
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where we have used Lemma 4 (yn(τ) ^ Mτ) in the first integral, and
the 0(1) in the middle integral is as n, m -» °o, uniformly on a fixed
interval [tQ, T] (since {yn} is uniformly Cauchy there). We choose t0

so small that the first integral is less than ε/3, T so large that the
last is less than ε/3 (both are uniform in m, n), then let m, n —» oo
in the middle.

Proof of Lemma 6. By standard arguments, Lemma 5 implies

lim un{t) = uo(t) , lim ύn(t) = ύo(t) ,

uniformly on compact subsets. However, uniform estimates like
those in (27) enable us to conclude lim J(un) = J(u0) (see Ryder, pp.
489-490 for details). By the remarks following (26), we have
Γ yϊ + vl = Γ vlF(y%, τ)dτ ^ A2 > 0, and by Lemma 2, J(yn) ^
Jo Jo

A2> 0.

Proof of Lemma 7. We pick uo(t) for the function y(t) appearing
in the BVP (7). Then u(t) as defined by (6) must satisfy J(u) S
J(u0) which implies J(u) — J(u0), thus u(t) = uo(t). Therefore uQ(t)
solves (7) with y(t) = uo(t), and some aQ > 0. In particular lim^o uo(t) =

oô o(«) = 0. By (20) (letting T-> oo),

u ϊ)dτ = a0 Γ
Jo

then by the normalizing condition for A, aQ = 1. Thus uQ(t) solves
(1) (2).
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