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BOUNDED ANALYTIC FUNCTIONS ON UNBOUNDED
COVERING SURFACES

SHIGEO SEGAWA

Let R be an unbounded finite sheeted convering surface
over an open Riemann surface with an exhaustion condition.
In this paper, the necessary and sufficient condition in order
that H”(R) separates the points of R is given in term of
branch points, where H”(R) is the algebra of bounded analy-
tic functions on R.

A covering surface R over a Riemann surface G is said to be
unbounded if for any continuous curve ;2 =2(¢) 0<t=<1) in G
and any point p, in R with z(p,) = 2(0) there exists a continuous
curve 4; p=pt) (0=<t=<1) in R such that »(0) = p, and 2(¢) =
wop(t) (0 £t < 1), where & is the projection of B onto G. For an
unbounded covering surface R over G, the number of points of
7' (z) is constant < o for every ze€(G where branch points are
counted repeatedly according to their orders. If such a number n
is finite, R is said to be n-sheeted.

In [2], Selberg proved the following: Let R be an unbounded
n-sheeted covering surface over the unit disk (2] <1 and {{;} the
projections of branch points with the order of branching #, over
Ci. Let z, be a point in the unit disk over which there exist no
branch points of R. Then there exists a single valued bounded
analytic function f on R such that f takes distinet values at any
two points over z, if and only if Xn.,9(C,, 2,) < <o, where g(-, z,) is
the Green’s function on |z| <1 with pole at z,, Yamamura [5]
extended the above result to the case where base surfaces are
finitely connected plane regions.

On the other hand, Stanton [3] gave another proof of the above
Selberg theorem using the Widom results [4]. The purpose of this
paper is, by using the Widom-Stanton approach, to establish a result
generalizing the Yamamura, and hence the Selberg, theorem to the
case where the base surface |z| < 1 is replaced by certain surfaces
which may be of infinite connectivity and genus.

1. Let R be an open Riemann surface of hyperbolic type and
9z(+, p) the Green’s function on R with pole at p. Denote by H*(R)
the algebra of single valued bounded analytic functions on R. For
any a > 0, set R, = R(a, p) = {gcR; 9x(q, ) > a}. It is easily seen
that, for each a, R, is connected and R — R, has no compact com-
ponents. Suppose that each R, is relatively compact in R. The
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surface R with this property is referred to as being regular. Let
Brla) = Bpla, p) be the first Betti number of R,. Consider the
quantity

m(R) = m(R, p) = exp{ — Sj B,i(cz)da} .

Widom proved that if m(R) > 0, then H*(R) separates the points
of ‘R, i.e., for any two distinct points » and ¢ in R, there exists
an fe€ H*(R) such that f(p) == f(q); it is also shown that m(R) > 0
does not depend on the choice of points p in R. (See [3] and [4].)

2. Hereafter, we suppose that G is an open Riemann surface
of hyperbolic type and R is an unbounded n-sheeted covering sur-
face over G. Then R is also hyperbolic. Let g4(-, 2,) be the Green’s
function on G with pole at z,€G. Suppose that G is regular and
satisfies the condition

Sjﬁa@wda<< oo

where Bia) = B.(a, z,) is the first Betti number of G, = G(«, z,) =
{ze@G; gulz, 2,) > @}. Then, R is also regular.

THEOREM. Under the assumption stated above, the following
four conditions are equivalent by pairs:

(1) m(R)>0;

(ii) H"(R) separates the points of R;

(iii) for any z,€ G — {{.}, where {{,} is the set of projections
of branch points of R, there exists an f in HZ(R) such that f takes
distinct values at any two points of R over z,;

(iv) In9a(Cir 20) < o0
for z,€G — {{,}, where n, is the order of branching over (,.

Since (i) — (ii) has been proved, we only have to show (ii)—
(ii1), (iii) — (iv), and (@iv) — @d).

3. Proof of (ii) — (iii). Let = be the projection of R onto G
and set 77 (z,) = {p,, *+*, .} (distinct points) for 2z, G — {{,}. Since
H*=(R) separates the points of R, there exists an f;; in H*(R) such
that f,;(p,) # fi;(»;), for any pair (i, j) with ¢+ j and 1 <4, § < m.
We set

F.= 11 (fs—fulp)) (A=izn)
djj#éin

and
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f= Zﬂlchz

for suitable constants ¢, specified below. Observe that fe H>(R).
We can choose constants ¢, so as to satisfy f(p,) # f(p;) for any
B

Proof of (iii) — (iv). Let z, be an arbitrary point in G — {{;}
and f a function in H*(R) such that f takes distinct values at any
two points over z,. Then, by the well known argument of algebroi-
dal functions, it is seen that f satisfies the irreducible equation

T g@f T+ e +0.() =0

where g¢,(z), ---, 9.(2) are in H*(G). Let D(z) be the discriminant
of this equation. Observe that D(z) is in H*=(G), vanishes at every
point in {{,}, and does not vanish at z,. Hence, by the Lindelof
principle (cf. [1]), we conclude

2N:96(Cky 20) < o

Proof of (iv)—(i). Let z, be a point in G — {{,} and p, a
point in R with z(p,) = 2, We set

R, = R(a, p,) = {peR; gx(p, p)) > @}
and
Ve ={peR; hip) > a}

where h(p) = g4(n(p), 2,). Denote by Bz(@) and v(a) the first Betti
numbers of R, and V,, respectively. We fix a,(> 0) such that V,,
is connected. Then, V, is also connected for every a < «, By
the maximum principle, h(p) = gz(p, »,), and therefore V,DR,.
Also, by the maximum principle, V, — R, has no relatively compact
components in V,. Therefore

(1) V(@) = Brl@) .

Consider each a with 0 < @ < @, such that there exist no branch
points of R on dV, and no critical points of g¢,(z, z,) on 0G,, where
0V, and 6G, are the boundaries of V, and G,, respectively, and
G, = {2€G; 94z, 2) > a}. Let V, and G. be the doubles of V, and
G., respectively. Then, since V, can be considered as an unbounded
n-sheeted covering surface over the compact surface (A}a, by the
Riemann-Hurwitz and Euler-Poincaré formulas,

2(1 — v(a) = 201 — B.(@)n — 2b(a)
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where By(a) is the first Betti number of G, and b(a) is the total
sum of the branching order of branch points over G,. Thus

(2) Y(a) = Bsla)n + bl@) —n + 1.

Observe that the set of @ such that there exist branch points of
R on 0V, or critical points of g4(z, 2, on 0G, is isolated. Hence,
from (1) and (2), it follows that

(3) | r@da = | "v@da
- ng“"ga(a)da + Saob(a)da +0Q).
Observe that
|b@da = 3 mgoC 2 -
0 (peG—Gy
Therefore, by the assumption,
ag
(4) S bayda < =
and also by the assumption
(5) [soarda < = .
From (8), (4), and (5), it follows that
| Ba@de = “sa@da + 0) < =,
i.e.,
m(R) = exp {—S” Bal@da}> 0.,
0
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