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REGULAR FPF RINGS

S. PAGE

It is shown that a von Neumann regular ring is FPF
(i.e., very faithful finitely generated module is a generator)
iff it is self-injective of bounded index.

1. Introduction. An associative ring R is called a left (F)PF
ring if every (finitely generated) faithful module generates the
category of left R-modules. Azumaya [1], Osofsky [7], and Utumi
[9, 12] characterized the left PF rings as those rings for which any
one of the following equivalent conditions holds:

(PF,) R is left self-injective, semiperfect, and has essential left
socle.

(PF,) R is left self-injective with finitely generated essential
left socle.

(PF,) R=@& >, Re;,,e; =e, and Re, is injective with simple
essential socle.

(PF,) R is an injective cogenerator in R-mod.

(PF,) R is left self-injective and every simple left R-module
embeds in R.

C. Faith in [3, 4] has studied semiperfect left FPF rings. In
this note we are concerned with von Neumann regular rings which
are left FPF. As the conditions PF,-PF, readily point out a von
Neumann regular ring which is PF must be semi-simple artinian.
In this note we show that if R is von Neumann regular, then R is
FPF iff R is of bounded index and left self-injective. It follows
that for regular rings left FPF implies right FPF also.

II. Preliminaries. In what follows R will denote an associa-
tive ring with unity and all modules will be unitary left R-modules
unless otherwise noted.

A ring R is von Neumann regular if for every a e R there is
an ¢ € R such that axa = a. We will just say R is regular.

DEFINITION. For a set Sc M, M an R-module, let ‘'S ={reR:
rs =0 for all seS}. If M is a right R-module, define S* = {re R:
sr = 0 for all seS}.

DEFINITION. Let M be an R-module. Let Z (M) be the left
singular submodule of M i.e., Z(M) is the set of elements of M
whose annihilators are essential left ideals of R. M is called non-
singular if Z(M) = 0.
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DEFINITION. A ring R is of bounded index if there exists an
integer N > 0 such that if x” = 0 then 2" = 0.

DEFINITION. Let M and N be R-modules. Let N — dim M =
sup{n: P>, NycM, Ny=N, i =1, -+, n}. Also, let DWM) =
sup {N — dim M, N € R-mod]}.

The following result of Utumi [10] gives the connection between
rings of bounded index and FPF rings. We include the proof for
completeness.

THEOREM 1. Let R be a ring with zero simgular left ideal.
Then R is of bounded index if D(R) < « and in case R is regular
D(R) equals the smallest bound on the index of milpotence.

Proof. We can suppose R is regular for the maximal ring of
quotients, Q(R), is regular and R is an essential submodule of Q(R).
Suppose 2" = 0 but x“;‘lzt 0, for some ze€ R. Let K, = *(2*™) and
congider 0 > K, — R 2 Rz —0. The sequence splits by regu-
larity of R, so R2 W, = Rz~ and W, N K, =0. Let K, = *{x"%}n
Rz and form 0 — K, — Rx — Rx" ' — 0 which also splits. Therefore
there exists W, £ Rx with W,N K, =0 and w, = Rz"™* so that w,=
W,. Also since K, N W, =0 and ReCc K W,n W, =0.

By n — 1 applications of the above technique we obtain W, =
W,= .. = W,_, with Re** S K, = “{&"*} N Rx?, and W,N K, =0.
It follows that D(R) = n since (6 D7 W,) 6 Rx" ' C R.

Next suppose {L,}7, is an independent set of left ideals in R
with L, = L; for all 7 and j < n. Since R is regular we can assume
the L, are all idempotent generated, by e,e, ---,¢,, say, with
ee; =0 for 4,5 =1,-++,m,1#J. Let ¢, Re, = Re;. Then ¢,; is
right multiplication by e,r,;e; for some r,;e B. Let x = Ye,», . .e,.,,.
Then z" = 0 but z"* += 0.

COROLLARY 1.1. If R is a domain which is not a left Ore
domain, Q(R) is of unbounded index, where Q(R) is the maximal
left quotient ring of R.

Another fundamental result is the following of Bumby [2].

ProrosIiTION 1.2. Let M, and M, be injective modules with 0 —
M, — M, and 0 - M, — M,. Then M, = M,.

III. Regular FPF rings. We start with commutative rings,
then using Morita equivalence build up to the more general case.
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THEOREM 2. The following are equivalent for a commutative
regular ring R.

(i) R is self-injective.

(ii) R s FPF.

(iii) The trace of every finitely generated faithful module is
finitely generated.

Proof. If R is injective and M is a finitely generated faithful
module, then R embeds in a finite direct sum of copies of M as a
direct summand. This gives (i) = (ii).

That (ii) implies (iii) is trivial.

Assume (iii) and let ¢ €@, the injective hull of R. Form Rq +
R = M. Now trace (M) is finitely generated since M is finitely
generated and faithful. Since R is regular and trace (M) is finitely
generated, we have that trace (M) = Re, ¢® =e. Let 1l ={reR:
rqe R}, an essential ideal. Then multiplication by ¢ defines a map
of M into R and this map sends 1 into 7 so IC trace (M). Now
take /i M — R. Let fl¢g) =x, and f(1) = y,. Then for every zel
we have f(zq) = zqy, so z(x, — qy,) = 0, hence x, = qy, and y,el. I
is generated by idempotents so we can take y,=: so that x,=xy,,
that is, trace (M) & I too. Since I = Re and I is essential, I = R
and hence ¢q € R.

COROLLARY 2.1. If R 1s a strongly regular ring (all idempo-
tents are central) then R is FPF ff R is self-injective.

Proof. If R is strongly regular left ideals are ideals and are
generated by idempotents. Also if M is finitely generated by x,
cee, 2, say M = N7, Yz} for strongly regular rings. With these
observations the previous proof goes through.

If D is a division ring and R = End,(v) then R is FPF iff v is
finite dimensional over D, but R is always self-injective and regular.
The significant observation is that if v is infinite dimensional over
D and feR is a map with one dimensional range Rf is finitely
generated and faithful but ecan not generate R because roughly R
contains infinitely many copies of Rf i.e., Rf — dim R = oo,

We do have the following.

ProOPOSITION 8. Let R be a ring with Z(R) =0. If R is left
FPF then every left ideal is an essential submodule of a direct
summand of R.

Proof. Let L be any left ideal and B a left ideal maximal
with respect to LN B =0. Form R/L@ R/B=M. M is faithful
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and finitely generated so generates B. Now if f/: M — R, let f((1+
L,0)) =z, and f((0,1 + B)) =¥, Then x,€L* and y,€ B" so since
M is faithful L+ 4+ B* = R. This gives *(L* + B*) =0 or *(L*) n
1(BY) =0. Since L £ *(L*) and B < *(B*) the maximality of B
gives B = *(B*). Also, if we now take L, DL and maximal with
respeet to L, N B =0, L, is an essential extension of L, and *(L,))=
L, as we have just seen. Now we have 0 = (L, + B)* since L, + Bis
essential, hence Li N B* = 0. Also Li+B*=R by the above which
yields L{ = eR, ¢ = e so that *(Li) = R(L —e) a direct summand,
as promised.

PROPOSITION 4. If R is a regular ring which is left FPF, then
R is left self-imjective.

Proof. If R is regular then certainly Z(R)=0 and by Proposi-
tion 3 each left ideal is essential in a direct summand of R. In
regular rings it is trivial that a left ideal isomorphiec to a direct
summand is a direct summand. These two properties constitute the
definition of left continuous and the last corollary of Utumi [11,
Corollary 8.4] states that if R and any matrix ring over R are both
continuous R is self-injecture. Since both FPF and regularity are
easily checked to be Morita invariant properties, it follows that R
is left self-injective.

REMARK. The integers are FPF but lack the second part of
the definition of left continuous.

PROPOSITION 5. Let {R;};e; be a collection of rings. Let R =
ic: R; as rings. Then R is left FPF iff each R, 1s left FPF and
for each collection {M;: M, a finitely generated faithful R.-module
1€ I} such that wM,; is a finitely generated R-module, there exists
an integer N > 0 such that R, is a homomorphic image of a direct
sum of N copies of M, for each 1€ I.

Proof. Routine coordinate wise computation yields the proposi-
tion.

The previous proposition points out that if R is a product of
matrix rings over division rings in order that R be left FPF the
matrix rings had better not become to “large”. It also suggests
we look at the types given by Kaplansky and refined by Goodearl
and Boyle [5].

DEFINITION. A regular left self-injective ring R is called type
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I if for every direct summand L of R, L2 L'+ 0, a left ideal,
such that for any left ideals A+ 0 and B == 0 contained in L!,
Hom (A4, B) = 0. If L = L' L is called abelian.

DEFINITION. A ring R is called Dedekind finite if ay =1 iff
yx = 1, otherwise we say R is Dedekind infinite.

DEFINITION. A regular left self-injective ring R is called type
Il if R contains an idempotent e such that Re is faithful, eRe is
Dedekind finite but R contains no abelian left ideals.

DEFINITION. A regular left self-injective ring R is type III if
0 == ¢ = ¢ then eRe is not Dedekind finite.

Type III rings are characterized by the fact that for any direct
summand, L, then L = L @ L.

THEOREM [Kaplansky [6], Goodearl, Boyle [5, Corollary 7.7, p.
48]. If R 1is a regular left self-injective ring, then R = [[-, R,,
where R, is type I and Dedekind finite, R, is type I and Dedekind
infinite, R, 1s type II and Dedekind finite, R, is type II and
Dedekind infinite, and R, is type III.

REMARK. All type III rings are Dedekind infinite. Also, we
will adopt Kaplansky [6, p. 11] notation and say R is type I if R
is type I and Dedekind finite, type I, if type I and Dedekind infi-
nite, type II; if-.-, type II,---.

ProprosITION 6. If R is regular and FPF then R is biregular.

Proof. Let xeR. We wish to show RxR is generated by a
central idempotent. Let H = ‘(RxR). If H =0, then Rx gener-
ates so ReR = R. If H=0, then H is the left ideal maximal with
respect to H N RxR = 0. It follows that H is a direct summand
of R because R is self-injective. Now H @ Rx is a finitely gener-
ated faithful module, hence a generator, so trace (H@ Rx) =
HO® RxzR = R.

ProposITION 7. If R 18 regular left FPF, R is Dedekind finite.

Proof. 1If not, then by [5, Prop. 7.4, p. 48] R = R, X R, with
R, # 0 and purely infinite, i.e., for every 0 # ¢, a central idempotent
in R,, eR,e is not Dedekind finite. So assume R = 0 and purely
infinite.
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By [5, Thm. 6.2, p. 41] there is in R a sequence of idempotents
e, 6, --- such that for each ¢, Re, = R, and >, Re, is direct,
essential and R = E(Q 2, Re;). Let M = R/>>, Re,. We claim M
is faithful. If not, there exist x e R such that R x RS M. By
Proposition 6, RxR = Re for some central idempotent e. Since
eM = 0 it follows that Re & >, Rx,. But then Re & 3., Rx; for
some N large enough. This implies Re N Rx; = 0 for j > N, which
implies ex; = 0 7 > N since e is central. However, since Rz, = Rx;
for all 7 and j and e is central, then ex, = 0 for all 7, a contradic-
tion.

Thus M is faithful. M is also singular, hence R is singular so
must be zero.

COROLLARY 7.1. If R is regular FPF type I, then R is of
bounded index.

Proof. By [5, p. 30] we see that if R is type I, R contains an
idempotent such that eRe is strongly regular and Re is faithful. It
follows that R is Morita equivalent to a strongly regular ring.
Then using Tominaga [8, Lemma 1, p. 139] we see that R is of
bounded index.

PROPOSITION 8. Let R be a regular left FPEF ring of type II;.
Then R = {0}.

Proof. Let 0+ R be as above. We claim R can not be a
simple ring. If R were a simple ring since it is type II it cannot
be a semi-simple ring, hence must have an essential left E. But
then R/E is faithful by the simplicity of R hence a generator of
R. This says Z(R) = R, ridiculous. Since R is not simple there
must exist an idempotent ¢, ¢ R such that 0 # Re,R #+ R. Now let
H, = *(Re,R). If H, =0 then Re, generates R which it does not, so
H, =+ 0. H, is the left ideal maximal with respect to H, N Re,R=0,
so H, is a summand by injectivity of R. It follows that H, P
Re.R = R as above. Now H, and Re,R are type II; left FPF rings
80 we can repeat the process to Re,R to obtain an ideal H, & Re,R.
Continuing in this way we obtain H P H,P--- C R each H, a
nonzero two sided direct summand of R. Since each H; is type II;
we can choose an idempotent f;e H, such that H, = @ 3., Rfi,
Rf, = Rf;; for all j =i. Next take Rg = E(® XH,). Rg is a two
sided ideal for the hull of any two sided ideal in a semiprime left
self-injective ring is complemented by its left annihilator whieh is
a two sided ideal. We can assume then that g is a central idem-
potent. Form [[, Rf; and let M be the cyclic submodule generated
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by R((f)ic;). Let N=MPRA —g). Then yN =0 iff ylg — 1) =0
and yRf, = 0 for all 4, so yRf;R =0 for all s. Then y(3 2, H,)=0.
But since yg = y there exists an essential left ideal E such that
Ey < >, H, and (Ey)® =0 implies ¥y =0 so N is faithful. Since
R is left FPF, N generates R so R((f)):.;) must generate Rg. It
follows that for a fixed » > 0 there are maps >\, Rf;;, » H; — 0
for every ¢. But if ¢ > n we see by Bumbys result H, P Rf, = H,
and R is not Dedekind finite.
Putting the above facts together gives:

THEOREM 9. A regular vring is left FPF iff it is left self-
injective of bounded index.

COROLLARY 9.1. A regular ring s left FPF +ff it is Morita
equivalent to a strongly regular left self-imjective ring.

COROLLARY 9.2. A regular ring s left FPF iff it is right FPF.

Proof. By Utumi [13, Thm. 1.4] a strongly regular ring is left
self-injective iff it is right self-injective.
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