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STRUCTURE OF I'-RINGS

T. S. RAVISANKAR AND U. S. SHUKLA

In the first part of the present paper, /'-rings are studied
in the setting of modules. The notion of a module over a
I-ring is studied, with the object of developing the
notion of a Jacobson-radical for a I’-ring via modules. This
radical enjoys the usual properties of the corresponding
object in rings. A semisimple right Artinian /’-ring turns
out to be the direct sum of simple ideals; this conclusion is
strengthened to include a corresponding decomposition for
the R-ring I’ also in the case of a strongly semisimple
strongly right Artinian weak /I'y-ring. The Jacobson radical
of a weak ['y-ring R is characterized in different ways, in
one of them as the set of all properly quasi-invertible ele-
ments of R. It is shown how rings, ternary rings and
associative triple systems can be considered as weak /" ,-rings.
The present approach provides a uniform module cum radical
theory not only for I-rings, but also for the associative
triple systems.

The second part of the paper imbeds any weak [ y-ring
R into a suitable associative ring A. Simplicity and semisim-
plicity in R and A are shown to be related. The main result
of this part which generalizes the classical Wedderburn-Artin
theorem for rings to /'-rings, characterizes the strongly
simple, strongly right Artinian weak /" y-rings as the /'-rings
of rectangular matrices over division rings.

The ring of all square matrices over a division ring plays a vital
role in classical ring theory. However, when one considers the set
of all rectangular matrices (of the same type), there appears to be
no natural way of introducing a binary ring multiplication into it.
Various authors like Nobusawa [15], Lister [8] and Hestenes (see
[5]) have tried to offset this difficulty by considering a natural
ternary multiplication in the set of rectangular matrices; their
investigations have led to the respective notions of a I",-ring, associa-
tive triple systems of first kind (ternary rings) and of second kind.
These three structures provide a suitable setting for the study of
rectangular matrices. The above-mentioned authors have obtained
some structural results for these structures, results similar to ones
for rings. The concept of weak I',-ring introduced in this paper
includes all the three above structures, besides rings, as particular
cases. Nobusawa considers a notion of semisimplicity for his I"y-ring
and that does not arise from a radical as in the case of rings.
Coppage and Luh [2] have considered a few radicals among which
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the “strongly nilpotent” radical proves adequate as a radical for
Nobusawa’s semisimplicity. Besides, they also consider a Jacobson
radical in this paper; Luh also considers a notion of primitivity in
the context of density theorem for I'-rings (see [9]). Significantly,
both these concepts are introduced without reference to a concept
of a module, unlike in ring theory. In the present paper, a suitable
notion of a module over a ['-ring is introduced and this provides a
natural setting for both these concepts. Indeed, the notions of
primitivity and Jacobson radical are introduced via modules and the
earlier notions are recovered in this context. The present approach
also provides a simultaneous radical theory for the the associative
triple systems of both the kinds at the same time (an approach of
which type has been lacking so far).

1. [-rings and modules over [-rings. Let I" = {a, 58,7, 6, +--}
be an additive (abelian) group. A I'-ring is an additive group R =
{x, v, z, ---} together with a composition zay in R defined for x,y
in R and « in I satisfying the following conditions:

(1) (¢ + yaz = zaz + yaz, x(a + By = xay + 2By, vy + z2) =
ray + xaz

(2) =a(yBz) = (vay)Bz.

R will be called a I'-ring in the semse of Nobusawa (I'y-ring)
(see [1], [15]), if there is also a similar composition axB in I” defined
for a, 8 in I' and = in R satisfying (1),

(1) (@ + Bxd = axd + Bxd, a(x + y)B = axB + ayB, ax(B +0) =
axlB + axd

(2) (zay)Bz = x(ayp)z = xa(yBe)

(2") (axzB)yo = a(xBy)d = ax(Byd) and

(8) zay = 0 for all z, ¥ in R implies @ = 0 (Nobusawa condition).

In fact, (1) and (2") are redundant in the above definition (see
[10, p. 72]). We shall call a I"-ring R to be a weak I y-ring in case
the composition axg in I" satisfies (1'), (2") and (2”) only. Clearly,
if R is a weak I'y-ring, I' can be thought of as a weak R,-ring.

ExAMPLES. (1) Let D be a division ring and M, (D) denote the
additive group of all p X ¢ matrices whose entries are from D.

(@) M,,D) is a I'ring with I" = M, (D), where the composition
is defined by zaz = z(a')z, a' denoting the transpose of the matrix
a, for all z, ¥y and @ in M, (D).

(b) M, (D) is a I'-ring with I' = M, (D) under the usual matrix
multiplication.

(2) Every associative ring R is a ['-ring with I' = R, but it
need not be a I',-ring in general; however, it is easily seen to be a
weak [I',-ring always.
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(8) Any associative triple system 7T of first (second) kind with
trilinear composition { ) becomes a weak I'y-ring R(=T)for I' =T
if one defines multiplication in R as < ) and in I’ as axB =
{axB)(axB = {Bza)).

An additive subgroup I of a I-ring R is called a right (left)
ideal of R, if zayel (yaxel) for all x in I, @ in " and yin R. A
right ideal which is a left ideal as well is called a two-sided ideal or
simply an ideal. R is said to be simple, if RI'R + 0 and the only
ideals of R are 0 and R. As in the classical case of rings, one can
easily see that the I'-ring in Example 1(b) is a simple I'-ring.

Let R be a I'-ring. An additive (abelian) group M will be called
a right RI-module (to be called just RI-module), if there exists a
map @: M x I’ Xx R— M satisfying (@p(m, «, x) will be denoted by
max in short)

(1) (m + n)ax = max + nax,

(2) malx + y) = max + may and

(3) mBxay)=mpBx)ay, for all x,y in R, &, 8 in I" and m, n in M.

ExampPLES. (i) Every ['-ring R is an RI'-module under the right
multiplication in the I'-ring R.

(ii) Let D be a division ring and D, be the set of all p-tuples
of elements of D. Then D, as well as M, (D) can be made in a
natural way into RI'-modules for I' = M, (D) and R = M, (D).

Let M be an RI'-module. For subsets M, I', R, of M,I, R
respectively, we denote by M,['\R, the additive subgroup of M
generated by elements of the form max with m in M, @ in I, and
2 in R,; same notation also holds for R considered as an RI'-module.
One can define, as in the classical module case, the notions of sub-
modules, proper submodules, quotient module, homomorphism between
RI'-modules, kernel of a homomorphism and direet sum of RI'-modules
etec. Among the usual homomorphism results that hold in the present
case, we record the following result for later reference.

PROPOSITION 1.1. Let N be a submodule of M. Then there is a
one-to-one correspondence between the submodules of M containing
N and the submodules of M/N.

For an ideal I of a I'-ring R, R/I, the additive group of cosets
of I, forms a I'-ring in a natural way. If I is a right ideal of R
then I is a submodule of the RI-module R; as such, R/I can also
be considered as an RI"-module. We shall call an RI’-module M to be
irreducible if MI'R + 0 and if it has no nonzero proper submodules.

The following two results can be easily obtained as in the classical
case (see [4]) with slight modifications.
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LEmmA 1.2. M s irreducible = for m =0 in M, mI['R = M =
for each m = 0 in M there is an « in I' such that maR = M.

LEmMmA 1.3 (¢f. [4, Lemma 1.1.3]). Let M be an irreducible
RI'-module. Then M = R/I as an RI-module for some maximal
right ideal I of R. Moreover there exists an « in I’ and an e in
R, such that © —eax el for all x in R. On the other hand, for
every such maximal right ideal I of R, R/I is an trreducible RI-
module.

As in the classical case (see [4]), we shall call a right ideal I
of R regular, if there exists an element ¢ in R and an a in I', such
that « — eaxxe I for all  in R.

An RI-module M is said to be a faithful module, if MI'x =0
implies « = 0 (for 2 in R) or equivalently, if the annihilator ideal
AM) ={xeR|MI'x = 0} is zero. R is said to be primitive, if it
admits a faithful irreducible RI-module. An ideal I of R is a
primitive ideal if R/I is a primitive ['-ring. Then we have

ProposITION 1.4. If M 1s an irreducible RI'-module, then R/A(M)
s a primitive I'-ring.

REMARK 1.5. We note here that there is already a notion of
primitivity for I'-rings in the literature due to Luh (see [10]) which
coincides with ours (as shown below). However, the above definition
of a primitive I'-ring seems to be a natural one in the context of
its usefulness as we shall see presently.

THEOREM 1.6. A [-ring R is primitive if and only if R is
primitive in the sense of Luh (loc. cit.).

Proof. Let R be a primitive /I'-ring as defined by Luh. Then
RI'z = 0 will imply # = 0 and the right operator ring O, of R (see
[10]) is primitive. Let M be a faithful irreducible Op-module. M
becomes an RI-module, if we define max = m|e, ], for @ in I" and
z in R ([a, x]€ Oy; see {10]). Clearly M is irreducible as an RI['-
module. Also, if MI'x =0, then Mle, 2] =0 for each a in [}
therefore [a, 2] = 0 for all & in I'; this implies that Rla, ] = 0 for
all @ in I'; hence RI'x = 0 and consequently = 0. Therefore M is
a faithful irreducible R/-module; so R is primitive.

Conversely, let R be primitive and M be a faithful irreducible
RI'-module. M becomes an irreducible Op-module if we define
m[e,, 2, ]=Zmax;,. Let now 3[a,, x;] be in O, such that M3, z,]=
0, i.e., Yma,x,=0 for all m in M; in particular Y(mpBx)x,x,=0, for all
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z in R and B in I'; mBY(xax;) =0 for all m in M and B in I.
Now, the fidelity of M implies that I(xa,x,) = 0; 2 being arbitrary
in R it follows from the definition of O that X[, x;,] = 0.

2. Jacobson radical. As in the case of a ring, we define the
Jacobson radical J(R) of a I'-ring R by J(R) = NAM), where M
runs over all irreducible RI'-modules, if any. In case R does not
possess any irreducible RI’-module, J(R) is defined to be R itself.
Since any irreducible RI'-module M is of the form R/I for a maximal
regular right ideal I of R (see Lemma 1.3) and then AM) =
{xe RIRI't = I} = (R: I), we have

PrOPOSITION 2.1. J(R) = N(R: I), where I runs over all the
maximal regular right ideals of R.

REMARK 2.2. One can easily see (cf. [4, p. 10]) that (R: I) will
be the largest (two-sided) ideal of R contained in I, in case [ is
regular. Further, any proper regular right ideal is contained in a
maximal regular right ideal (Zorn’s lemma).

ProPOSITION 2.3. J(R) = K = N I, where I runs over all maximal
regular right ideals of R.

Proof. Since I is regular, (R: I) & I (by the above Remark); by
Proposition 2.1, J(R) £ K. For the reverse inclusion we first note
that for any element x in K and any B in I', the right ideal S =
{xBy + y|v in R} coincides with R (this can again be proved as in
[4, p. 11]). Let now, if possible, J(B) & K. Then there exists an
irreducible RI'-module M such that MI'"K=+0. In particular, maK =0
for some m(+0) in M and some « in I'. By irreducibility of M,
one has that maK = M. Let t be in K such that mat = —m. As
mentioned above {tay + y|ye R} = R. Since —t is in R, there exists
an z in R such that ¢ + z + taz = 0. Then we have

0 =ma(t + z + taz) = mat + maz + (mat)az
= —m + MAZ — MAZ = — M,

a contradiction.

We shall call an element x in R to be a-right quasi-regular
(e-rt.q.r.) with a-right quasi-inverse ¥y, in case = + ¥y + 2ay = 0.
We note indeed that the elements of J(R) are a-rt.q.r. for every «
in I, as is clear from the above proof. « will be said to be right
quasi-regular (rt.q.r.), if it is a-right quasi-regular for each « in I".
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Similar notions of a-left quasi-regularity etc. can' also be clearly
introduced. An element z in R is then called a-quasi-regular (quasi-
regular), if it is both a-left as well a-rt.q.r. (for each ain I'). An
ideal (left, right or two-sided) s a-rt.q.r. (rt.q.r., quasi-regular) if
each of its elements is so.

REMARK 2.4. (i) J(R) is a right quasi-regular ideal of R.

(ii) =z in R is G-rt.q.r. if and only if {xBy + y|y e R} = R.

(iii) The a-left and a-right quasi-inverses of an a-quasi-regular
element are one and the same (ef. [12, p. 111]).

(iv) If for an z in R, —xax is a-right g¢.r. with quasi-inverse
y, then « is also a-rt.q.r. with »t. quasi-inverse —x + y — aay (cf.
[6, Lemma 19.1]).

(v) Sum of two a-rt.q.r. right ideals of R is again a-rt.q.r.;
indeed any finite sum (in fact, any algebraic sum) of a-rt.q.r.(rt.q.r.)
right ideals is again a-rt.q.r.(rt.q.7.).

If we denote by J,(R)(J.(R)) the sum of all a-rt.q.r. (right quasi-
regular) right ideals of R, then J,(R)(J*(R)) will itself be a a-
rt.q.r.(rt.q.r.) right ideal in view of the above remark. We also
have J.(R) = Naer J(R). Further, any a-rt.q.r. right ideal is also
a-left quasiregular (easily seen as in the case of rings). Hence
JAR)(J(R)) is also a a-quasi-regular right ideal. Using the last
remark one finds that J(R) is also a quasi-regular ideal. Besides,
J(R) contains all quasi-regular right ideals of R (this easily follows
as in [4, Theorem 1.2,3]). Thus we have

THEOREM 2.5. J(R) is the unique maximal quasi-regular ideal
of R which contains all quasi-regular right ideals (hence also two-
sided ideals) of R.

Since J(R) < J,(R) for each a in I" and J.(R) is a quasi-regular
right ideal of R, we have the

COROLLARY 2.6. For a I'-ring R, J(R) = J(R) = Naer J(R).

REMARK 2.7. It is clear that one could have started with left
RI'-modules and defined a (left) Jacobson radical and obtained left
analogues of the earlier results. However, Theorem 2.5 shows that
we would have still obtained the same Jacobson radical.

ProproOSITION 2.8 (cf. [4, Theorem 1.2.5]). For an ideal I of
R, J(I) = JR)N I.

We also have the following elementwise characterization of the
Jacobson radical.



STRUCTURE OF I'-RINGS 543

PROPOSITION 2.9. J(R) = X = {x € R|x['R is a quasi-regular right
ideal in R} ={ze€ R|xazBy 1is quasi-regular for all x,y in R and
a, B in I'}.

Proof. Clearly J(R) < X. Now, X is easily seen to be a right
ideal of R. Further, for any z in X, —xax (belonging to xzaR) is
a-rt.quasi-regular for all « in I'; x is a-rt.quasi-regular for all & in
I' (by Remark 2.4 (iv)). Thus X is a quasi-regular right ideal;
X £ J(R). The other part is similar.

We note that there is already a notion of Jacobson radical for a
I-ring in the literature due to Luh and Coppage [2]. Indeed they
call an element y in R to be right quasi-regular, if for each 2 in
I’ there exist a; in I' and x; in B(1 =1, 2, ---, ») such that xBy +
Seox, — Jepyox; = 0 for all x in B. Then Jacobson radical is there
defined to be (the ideal) _Z(R) = {xe R|the two-sided ideal (x)
generated by « consists of right quasi-regular elements}. If y is right
quasi-regular in our sense, then for each 8 in I there exists an z in
R such that y + 2 — yBz = 0; hence 2By + 28z — 2ByLBz = 0 for all
2 in R, i.e., y is right quasi-regular in the above sense of [2].
However we are unable to conclude anything about the reverse
implication. All the same we have

THEOREM 2.10. For a I'-ring R, J(R) = _F(R).

Proof. It is clear that J(R) & _#(R). Let, if possible, J(R) &
_Z (R); hence there exists an irreducible RI'-module M such that
MI'_Z(R) # 0; hence ma_s (R) # 0 for some m # 0 in M and a in
I'; by irreducibility of M, ma_#(R) = M. Let m = max for an x
in #(R). Since z is in _#(R) there exist y, in I' and x, in R( =
1,2, ---, n) such that zax + D\, vy, — D, vaxpx, = 0; therefore

0= mw(xax + é rpx, — é_:, xax/xixi>
= (max)axx + g (max)poe; — é ((mox)ocx) p.,
=m + émmx, - imﬁx =m,
a contradiction.

An element x in a I'-ring R is said to be nilpotent if for each
« in I', there exists a positive integer n such that (za)*x =0. An
ideal I (left, right or two-sided) is said to be nil if each of its
elements is nilpotent. The ideal I is said to be nilpotent if (II')*I=0
for some k. It is easily seen that a nil ideal is quasi-regular and
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hence is contained in J(R). For right Artinian I'-rings (defined in
the usual way) one also has

ProPOSITION 2.11 (cf. [4, Theorem 1.8.1]). If R is right Artinian,
then J(R) is nilpotent. In fact, J(R) coincides with the milradical
(sum of all nil ideals of R (see [2])).

As in the case of rings we shall call a I'-ring R to be semisimple
if its Jacobson radical is zero. A proof as in the case of rings yields
the following expected result.

PROPOSITION 2.12. For a I'-ring R, R/J(R) is semisimple.

It is clear that one can introduce a notion of subdirect sum of
I-rings (I" being same for all of them) in an exactly analogous
manner as for rings (see [4]). The following result is then deduced
on exactly same pattern (loc. cit.).

PrOPOSITION 2.13. A nmonzero I'-ring is semisimple if and only
if it is a subdirect sum of primitive I'-rings.

We recall that Nobusawa (see [15]) has called a I'-ring R to be
semisimple (we shall call it N-semisimple), if for each 2(+40) in R, there
exists an « in I" such that zax = 0. We note here that the Jacobson
radical J(R) plays the role of radical for N-semisimplicity also, for
an important class of /'-rings R. Indeed we have

THEOREM 2.14. Let R be a right Artinian weak I y-ring. Then
R is semisimple if and only if R is N-semisimple.

Proof. Let R be semisimple so that J(R) = 0. If x(+0) is in
R, then x ¢ J(R); there exists an irreducible RI-module M such that
MTI'x + 0; max == 0 for some m in M and @ in I'. By Lemma 1.2,
M = (moax)BR for some £ in I'. Hence m = (max)By for some y in
R. Then 0 # max = ((max)fy)ax = ma(x(Bya)x); i.e., xbx = 0 for
0 = By in I'. Thus R is N-semisimple.

Conversely, let R be N-semisimple and right Artinian. If possible,
let J(R) # 0. Then J(R) is nilpotent (by Proposition 2.11), so that
(JRY)"J(R) = 0and I = (J(R)I)“'J(R)+ 0 for some integer n. Then
ITJR)=0; I'l =0; x'x =0 for x + 0 in I, a contradiction to N-
semisimplicity. Thus J(R) = 0 and R is semisimple.

THEOREM 2.15. A I'-rimg is semisimple right Artintan if and
only if it is isomorphic to a finite direct sum of simple right
Artinian I'-rings.
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Proof. Let R be a semisimple right Artinian I’-ring; then 0 =
J(R) = NA(M), where M runs over all irreducible RI'-modules.
A(M)’s being right ideals of R, the right Artinian condition on R
implies the existence of a finite set {M,, M,, ---, M,} of irreducible
RI'-modules such that M7, A(M;) =0 and ;.; A(M;) # 0 for each ¢
in (1,2, ---,n). From Proposition 1.4, R/A(M;) will be primitive.
Being a homomorphic image of R it will also be right Artinian so
that R/A(M,;) will be a simple I'-ring for each 4 (by [10, Theorem
3.6]). Consider the map

6: R — @ >, RIAGM,)
x— (X, Xy +--, 2,), Where x; =« + AM;).

We claim that © is an isomorphism of I'-rings. O is clearly a I'-
homomorphism; it is injective, in view of the fact that M, A(M,) =0.
By the choice of M,, M,, ---, M,, there exists an element %*(5£0) in
Ni.: A(M,) such that y*¢ A(M,). Therefore y! =0 for 7 # k and
yt#0. Hence O(y*) =(0,0, -+, 5 0, --+, 0). Since R/A(M,) is simple,
R/A(M,) = {y%>, where {(y%) is the ideal generated by v% in R/A(M,).
By considering the elements of the ideal {yf> one can easily conclude
(as in [12, p. 60]) that for any element z, in R/A(M,) there exists an
2 in R such that O(x) = (0,0, ---, 0, 2;, 0, ---, 0). Since k is arbitrary
in (4,2, --+, ), it is clear that @ is onto. Thus R is isomorphic to
the direct sum of the simple I'-rings R/A(M;) which are also right
Artinian. The converse part of the theorem is straightforward.

Part of the above proof was inspired by that of [12, Theorem
3.18].

Nobusawa has obtained earlier (see [15, Theorem 3]) a simul-
taneous decomposition for R and I" under the stronger hypothesis
of R being a right and left Artinian N-semisimple I",-ring. We also
obtain below, a result with a similar but apparently stronger con-
clusion, using a possibly stronger hypothesis than that of Nobusawa.
The choice of this hypothesis is anticipated by Corollary 8.5 proved
later. For this we define a weak I",-ring R to be strongly semisimple
(strongly simple, strongly right Artinian) if R is semisimple (simple,
right Artinian) as a weak I'y-ring and I" is semisimple (simple, right
Artinian) as a weak R,-ring. We then have

THEOREM 2.16. Let R be a strongly semisimple strongly right
Artinian weak I y-ring. Then

R=R@®R®---®R, and
r=rer.o---or.,,
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for ideals R, of R and I'; of I', such that R, is a strongly simple,
strongly right Artinian weak [ ,y-ring for 1 =1,2, -+-, n.

Proof. By the previous result we can write R=R, QO R, D ---BR,
and ' =1, Plr,o---PH I, for simple [-rings R, and simple R-
rings I';. Since R,I'R, 0, RI";R, +0 for at least one j. R,/[;R, =
R,, in view of the simplicity of R,. In view of the direct sum
decomposition of I" it is clear that there can be only one j = j,
with RJI'; R +0. For this j, R/I';R =R, so that R =
RI';(RI';R) =R, ([';RI;)R; [I';RI[l; +0. By simplicity of
I, I'sRI';, =1I';. Thus, for each ¢ in (1,2, --+, n) there exists a
unique j, in (1,2, ---, m) (necessarily distinct) such that R./"; R, =
R, and I';,R,I';, = I';,. Since we can reverse the role of R and
I, it is clear that m = n. By a rearrangement of the indices of
I';, one obtains the required decomposition. Rest of the assertions
in the theorem are easily seen.

3. Jacobson radical for weak [ y-rings. In this section we
obtain a few characterizations of the Jacobson radical valid for weak
I’ ,-rings. Since any ring can be congidered as a weak [",-ring, our
results in fact include some results on rings as well. We indicate
this connection towards the end of this section.

Let R be a weak [',-ring and « be a fixed element in I'. Then
we denote by R the associative ring obtained by defining the
composition zo,y = xay in the additive group E. Clearly, a right
ideal of R is also a right ideal of the ring R“; further, an « in R
is a-rt. quasi-regular if and only if z is right quasi-regular in the
ring R“. In particular, the maximal a-rt.q.». right ideal J,(R) of
R (see §2) is also a right quasi-regular right ideal of R*®. In this
setting we have

THEGREM 3.1. Let R be a weak I’ ,-ring. Then J(R) = NacrJ (R,
where J*(-) denotes the Jacobson radical of an associative ring.

Proof. From the remarks preceding the theorem it is clear that
J(R) S J*(R™) for each a in I'; J(R) & (Nacr J*(R“) (by Corollary
2.6). For proving the reverse inclusion we first recall Remark 2.4(ii)
that « in R is a-rt.q.r. if and only if the map 6, . R — R defined
by 0..y) =y + xay is surjective. Let now & [Neer J*(R™); then
0, is surjective for each 0 in /'. In particular, 6,5, = 0, s is
surjective for all &, 8 in I" and y in R; xRy is a-rt.q.r. for each «
in I'. So z['R is a right quasi-regular right ideal of R; therefcre
x € J(R), by Proposition 2.9. Thus N, J*(R™) = J(R).
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Let A be any associative ring and ¢ be in A. Then the ring
A got by introducing the multiplication acb = aob in the additive
group A is known as the c-homotope of 4 (see [13, §2]). The R@®
considered above is a somewhat similar structure. In fact, for A
considered as a weak I"y-ring, the two concepts are identical. Inspired
by the associative case (see [13, Proposition 1]), we can call an element
2 in a weak I',-ring R to be properly (right) quasi-invertible (p.q.1.)
if x is right quasi-regular in each R“. We then note that the p.q.7.
elements are precisely the ones that we have already called as the
right quasi-regular elements. As such, elements of J(R) are p.q.
invertible. On the other hand, if x is p.¢.7. in R, then x is in J(R)
(as can be seen from the proof of the above Theorem 3.1). Thus
we have '

THEOREM 3.2. In a weak I ,-ring R, J(R) is precisely the set of
all p.q.7. elements of R.

We now note that the weak I',-ring structure on R enables us
also to consider I' as a weak R,-ring. As such, for an element z
in R, I''® denotes the x-homotope of the weak R,-ring I'.

THEOREM 3.3. For a weak I y-ring R,

JR) = {we R|J*(['™) = =)} .

Proof. Let x be in J(R). Then x is B-quasi-regular for each
B in I'. In particular, x is (—axa)-quasi-regular for each a in I'.
So, let y be such that ¢ + ¥y + a(—axa)y = 0; hence —axa — aya +
a(x(axa)y)oe = 0, i.e., —azxa + (—aya) + (—axa)x(—aya) = 0. This
implies that —axa is an x-right quasi-regular element of I". There-
fore, by Remark 2.4 (iv) a is x-right quasi-regular, i.e., «a is right
quasi-regular in the associative ring I'*”. «a being arbitrary in I,
clearly J*(I'*") = I''™.,

Conversely, let « be in R such that J*(/"®) = I''*®, Hence, every
B in I' is right quasi-regular in I'*®, Therefore the map @;,: 1" —1I"
defined by @, . (@) =a + Brxa is surjective. for each B in I'. So
P—vivas = Pazare 18 surjective for each a in I'. This implies that
—a is (xax)-right quasi-regular. Let B8 be in I" such that —a +
B — a(xax)B = 0. This implies that 0 = —xzax + xBx — x(a(xax)B)x =
—gax + xBx + (—xax)a(xBxr). Thus (—xax)is a-right quasi-regular;
hence = is a-right quasi-regular (by Remark 2.4 (iv)). «a being
arbitrary in I', x is ».q. invertible; therefore 2 is in J(R) (by Theorem
3.2).
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REMARK 3.4. Dualizing the above result we also have that
JUI) ={ael'|lJ*(R*) = R} in a weak I',-ring R.

For later use we record the following immediate

COROLLARY 3.5. If R is a weak I y-ring such that I’ is semi-
simple, then R 1s a I y-ring, i.e., RaR = 0 implies a = 0.

REMARK 8.6. Lister has developed in [8] a structure theory for
the so-called ternary rings. These are easily seen to be also weak
I y-rings; besides, the notion of Jacobson radical for such a ternary
ring T coincides with that of the weak I'y-ring T (see {8, Theorem
9]). As such, our earlier results hold for that case also. The radical
theory there also is developed via a module theory.

For applying our results to the case of rings we first need the
following result.

THEOREM 3.7 (cf. [2, Theorem 10.1]). Let J*(A) be the Jacobson
radical of a ring A and J(A) be the Jacobson radical of A considered
as a weak I y-ring (see §1, Example 2). Then J*(A) = J(A).

Proof. J(A) is clearly a right ideal of the ring A, by Proposition
2.9. Further, if a is in J(4), then a is (—a)-quasi-regular in the I'-
ring A. Hence there exists an a’ in A such that a+a’'—aaa’'=0. One
can then easily verify that a is right quasi-regular in the ring A
with right quasi-inverse —a — aa’ + a’a’. Thus J(4) is a right
quasi-regular right ideal of the ring A and hence is contained in
J*(A).

Let, if possible, J(A4) & J*(4). Then there exists an irreducible
Al-module M such that MI'J*(A) = 0. Let m in M and @ in I'(=A)
be such that maJ*(A) = 0. By the irreducibility of M, maJ*(4) =
M; maa=—m for some a in J*(A). But aax e J*(A4); hence aa+a’'+
aca' =0 for some o' in A. We have

0 = ma((ax + o’ + (ax)a’)a)
= ma(((aa)a) + a'a + ((ex)a’)a)
= (maa)xa + ma(a'a) + (maa)a(a’'a)
=m + ma(a'a) — ma(a'a) = m,

a contradiction.

REMARK 8.8. One can also directly prove that the maximal
regular right ideals of the ring A are also maximal regular right
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ideals in the I'-ring A and vice versa. The above theorem can then
be deduced also from this fact, using Proposition 2.3 and [4, Theorem
1.2.2].

Now we recall that an element a in an associative ring A4 is said
to be properly quasi-invertible (p.q.?), if ab is right quasi-regular in
A for each b in A. It is clear that an element a in A is right
quasi-regular if and only if the map 6,: A — A defined by 6,(b) =
b + ab is surjective. Also, a is right quasi-invertible in the b-homotope
A® if and only if the map 6,,: A — A defined by 6,,(c) = c + abe
is surjective. Since 6, , = 0,,, the following known proposition is
immediate.

ProrosITION 3.9 (cf. [13, Proposition 1]). An element a in an
associative ring A is p.q.i. if and only if a is right quasi-invertible
wn each homotope A™.

From the remarks preceding Theorem 3.2 and from Proposition
3.9 it is clear that an element a in an associative ring A is p.q.7.
in A if and only if it is p.q.¢. in the I'-ring A. Hence, in view
of Theorem 3.7, the following corollary is a direct consequence of
Theorems 3.1, 3.2, and 3.3.

COROLLARY 38.10. For an associative ring A, J*(A) is the set of
all p.q.i. elements of A. Further,
J¥(A) = N J*(A") ={ac A|J*(A™) = A} .

a€Ad

4, [-algebras. In this section we show how our results also
apply to the case of ternary algebras and triple systems (see [11],
(14]). For this we need the concept of a I'-algebra which we define
below.

Let ©={a, b, ---} be a commutative associative ring with identity
and ' ={a, 5, +-+}, E = {x, y, ---} be unitary right modules over 0.
Then E is said to be a I'-algebra over 0O, if K is a I'-ring satisfying
(xay)a = xa(ya) = x(aa)y = (xa)ay. If further K is also a weak I'y-
ring we shall call £ to be a weak I y-algebra. It is clear that
every [-ring R can be considered as a I'-algebra over the ring Z of
integers. Throughout this section E will denote a I'-algebra over
a fixed ring © of scalars.

We shall call a ©-module M to be an algebra module over E (to
be called an E*I'-module), if M is an El-module over the [-ring E
and if (max)a = ma(xa) = m(aa)r = (ma)ax, for m in M,« in I"
and a in ©. The notions of E*I'-submodules, algebra ideals etec. are
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self-evident. We shall further call an algebra right ideal I of E to
be regular if it is regular as a I'-ring ideal.

ProPOSITION 4.1. A maximal regular algebra right ideal of E
18 also a maximal regular ring right ideal of the I'-ring E and vice
versa.

Proof. It clearly suffices to prove that a maximal regular ring
right ideal I of E is also an algebra right ideal of E; in fact, it is
enough to show that I6 C I. If I6 £ I, then IO + I being also a
I-ring right ideal, maximality of I implies that I + 16 = E. By
regularity of I there exists an e¢ in £ and an « in [I" such that
y —eayel for all y in E. But eel + IO; so, e =2 + >, x,a,, for
2,2, in I and a;, in O(¢ =1,2, ---, n). Then eaxe = xae + 3(x,0,)xe =
xae + Jx,a(ea,)e I. But e — eae already belongs to I. So ecl, a
contradiction. Thus 16 C I.

The following proposition is a direct consequence of Proposition
4.1 if one observes that the irreducible E/-modules (E*I-modules)
are precisely the modules of the form E/I for maximal regular I'-
ring (algebra) right ideals I of E (see Lemma 1.3).

PROPOSITION 4.2. Any trreducible E*I"-module is also 1rreducible
as an EI-module. Conversely, any irreducible EI'-module can be
made into an E*I-module.

As usual, we define the Jacobson radical J(E) of a I'-algebra E
as N A(M), where M runs over all the irreducible E*I'-modules.
Then, from Proposition 4.2 we immediately have

PROPOSITION 4.3. Let E be a I'-algebra. Then J(E) = J(E).

REMARK 4.4. We note that all our earlier results could also have
been obtained in the setting of algebras with suitable modifications.
In particular, J(E) would also be the intersection of all maximal
regular algebra right ideals of E (Proposition 2.3).

We now recall that a ternary algebra T over O is a unital
(right) ©®-module with a trilinear composition (x, ¥, 2) — {xyz) such
that {((axyzyuv) = (xlyzu)v) = {xy{zuv)) (see Myung [14]). Clearly,
T is also a weak [",-algebra with I" = T.

Now, let T be a ternary algebra over ©. Then, by very definition,
the notion of p.q. invertibility in the ternary algebra T (see [14])
coincides with the same notion in the weak I',-ring T (see §83).
Noting that the Jacobson radical Rad T of T (as defined by Myung)
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consists precisely of the p.q.i. elements of T, we immediately have
PROPO_SITION 4.5. Let T be a ternary algebra over O. Then
Rad T = J(T) = J(T).

In view of the above proposition, the following (known) results
(see [14, Theorem 3 and Corollary 1]) are direct consequences of
Theorems 2.5, 3.1 and 3.3.

PROPOSITION 4.6. Let T be a ternary algebra over ©. Then
Rad T = J(T) is the unique maximal quasi-regular ideal in T.
Further, Rad T = Nyer JX(T®) = {2 e T|J*(T®) = T™}.

REMARK 4.7. The above results show in particular that the
concept of Jacobson radical for a ternary algebra could also have
been developed in a natural way via a module theory for ternary
algebras.

REMARK 4.8. The ternary algebras are also known in the literature
(see [11], [14]) as associative triple systems of first kind. Indeed, an
associative triple system of second kind is a unital ©-module T
together with a trilinear composition <{xyz) such that {((axyz)uv) =
(eduzyyvy = {xylzuvyy. If (T, (->) is an associative triple system
of the second kind, then T also becomes a weak I ;-algebra, if one
defines the ternary compositions as follows: I' = T and the I'-ring
composition in T be same as {-); the weak I'y-ring composition in
I’ is defined by (axB) = {Bxa). Also, the Jacobson radical of T (as
defined in [11]) coincides with J(T) as defined in the present paper.
Thus, our set-up provides a uniform module cum radical theory for
the triple systems of both kinds at the same time.

REMARK 4.9. Hestenes considers in [5] a special type of (finite
dimensional) ternary algebra over complex numbers. This algebra
also becomes a weak I'y-ring in a natural way and in fact it is also
semisimple in the sense of Nobusawa (see Condition 4 in Hestenes’
definition). As such, some of his results can also be deduced from
ours.

REMARK 4.10. Stephenson considers in [16] certain ternary rings,
earlier introduced by Hestenes; such ternary rings, by very definition,
are associative triple systems of second kind. Stephenson raises
certain questions concerning the Jacobson radical for such systems.
We note here that almost all his querries find their answers in the
preceding material.

5. Imbedding of a weak [ y-ring into an associative ring. In
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this section we describe a construction by which a weak I',-ring
can be imbedded into an associative ring with identity. This cons-
truction is similar to the one given in [11] for associative triple
systems.

Let R be a weak I'y-ring. For z in R and a in I', let L(x, o),
L(a, x), R(x, @), and R(a, x) respectively denote the mappings y — zay,
B8 —axB, 8— Bxa and y — yax. Clearly, L(x, @) and R(a, x)e
End R, R(x, ) and L(a, x)cEndI’. Now consider the ring FE =
End R (End I")?. For = in R and @ in I, let l(x, @) denote the
element (L(z, @), R(z, @)) in E. We denote by L the subring of F
generated by {l(z, @)} for  in R and « in I". The multiplication in
E shows that I(x, a)l(y, B) = lzxay, B) = l(x, ayB). In a similar way
one can associate with @ in I' and z in R the element r(a, x) =
(R(a, x), L(a, x)) in (End R)? @ End " = E°*. Again, let S denote
the subring of E°* generated by {r(a, x)} for ¢« in I and = in R.
Multiplication in E°? shows that r(«, x)r(B, ¥) = r(axB, y) = r(a, ©BY).
Let E, and E, respectively denote the identity elements of E and
E*. We set &¥ =ZE, + L and &% = ZE, + S, Z denoting the set
of integers. R and I respectively become F — E°* and E* — E
bimodules with respect to the following module multiplications: For
(P,0) in E,(P, 6, in E* (P, P, in End R and 0, 0, in Endl"), « in
R and «a in I, (P, O)x = P(z), (P, 6, = P/(x), a(P, ®) = O(a) and
(P, 0)a=06,(x). Consequently, R and I" can also be considered respec-
tively as & — % and # — & bimodules. We shall use these
module multiplications in the sequel without explicit mention.

Now we consider the sum A=_PRPI'P.cZ, where @ denotes

(additive) group direct sum. Denoting the elements of A by <ﬁ¥ jf)

with [ in &£ 2 in R, « in I" and 7 in &2, we introduce a multiplication
in A by defining

( 1) (ll xl) (ZZ x2> — <l1l2 + l(xlr aZ) llxz + xl”.Z >

a, 1)\ 7, al, + 7., (@, ©,) + 17/ .

Then one can easily verify that A is an associative ring with respect

to this multiplication with identity element Id = <§1E(') ) Further,
2.

the elements z, @, and r of R, I, & and <& can be respectively

identified with the elements (8 ”g), (g 8), (3 8) and <8 3) of A. The

weak I'y-ring multiplications are preserved by this identification; so
we can assume that R and I” are imbedded in A in the above manner.
From the definition of multiplication in A the following results are
easily deduced.

PROPOSITION 5.1. A =LA RPIPS is an ideal of A.
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PrOPOSITION 5.2 (cf. [11], Theorem 2 (v), p. 30]). E, is an idem~
potent in A and the Peirce spaces of A relative to E, are given by:
A, =LA =R, Ay =T and Ay, = F.

REMARK 5.3. If R is a weak [ ,-ring, then I' is also a weak
R,-ring. As such, we could have as well started with /" and obtained,
through the above construction, another associative ring 4’ = <@
I D RPD . However, one can easily see that there is a natural
isomorphism between A and A’ which preserves the structure of
the components individually; thus, this second construction does not
yield any new structure.

PROPOSITION 5.4. If I is an ideal of A, then

(1) I=60 21‘:0,1 Dlimoa (LN Agj).

(ii) INR and INT are ideals of R and I' respectively.
(i) If I€ &< P ., then I =0.

Proof. (i) and (ii) are clear (see [11, Lemma 7, p. 18]). For (iii),
let I€ & @ .. By (i) and Proposition 5.2, I = (IN )P UINR)D
INTIHUINA); by hypothesis, INR =0 and INT =0; hence
I=(INX)UNZ). Also INLX)RSURN(FRZINR=0
and I'IN¥) = DHnNnT) S INT = 0; therefore IN.&¥ = 0;
similarly IN.<#Z =0. Thus I =0.

For a ['y-ring R, the rings L and S can be identified in a natural
way with the left and right operator rings of R (for definitions see
[10]). To see this we need the following

LEMMA 5.5. Lel R be a I'y-ring. Then, for an I in L(r in S)
ly = 0(yr =0) for all y in R if and only if 1 = 0(r = 0).

Proof. Let [ = > Yoy, @) = (PL(x,, a,), SE(x;, ;) be in L
such that Iy =0 for all y in R; hence YL(x,, )y =0 for all y in
R,i.e., XL(x;, @;) = 0 in End R. Further, 2(3Bz.a,)y = z8(Zr,0.y) =0
for any «,y in B and B8 in I'. Hence, by the Nobusawa condition,
0 = XBxr,a; = BEXR(%;, ;) = YR(x,;, @,)(B) for all Bin I, i.e., TR(x,, @,) =
0 in End I". Thus [ = 0. The other part is similar.

PROPOSITION 5.6. Let R be a I'y-ring and 0F, 0 respectively
denote the left and right operator rings of R (see [10]). Then 0F = L
and 0E = S.

Proof. The map ¢: 0% — L defined by (32, [, @.]) = 3or, U(x,, ;)
is well-defined in view of the above lemma. Further, it can be
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easily seen to be a ring epimorphism; that ker ¢ = 0 follows from
the definition of left operator ring. Thus ¢ is the required iso-
morphism. The other part is similar.

The following result can be verified on the same lines as the
above proposition; it is also implicit in the proof of Lemma 5.5.

PROPOSITION 5.7. Let R be a I'y-ring and I' be an Ry-ring.
Then 0F = 0f and 0% = 0L,

6. Strongly semisimple weak [ y-rings. In this section we
shall show the equivalence of the semisimplicity (and minimum
condition) of 4 and strong semisimplicity (and strong Artinian con-
dition) of R. Towards this we first have

PROPOSITION 6.1. An element x in a weak I'y-ring R is p.q.
invertible (see §3) in R if and only if it is p.q. tnvertible in the
assoctative ring A.

Proof. Let x be p.q. invertible in the weak ['y-ring R = A4, =
E.A(Id — E,). Hence x is right quasi-regular in R, for each « in
I' = A, = (Id — E)AE,; thus, for each a in A there exists a y in
Rsuchthat 0 =x + y + 2((Id — E)aE)y =« + y + (x(Id — E))a(E,y).
Since z, y are in A,, this implies that z + ¥y + xay = 0; hence z is
right quasi-regular in each homotope A‘“,i.e., x is p.q. invertible
in A.

Conversely, let £ in R be right quasi-regular in A for each a
in A; in particular, « is right quasi-regular in A for each « in /.
If 4=+ Yo+ Yn + Yo (With y;; in Ay, 4,5 =0,1) be the right
quasi-inverse of z in A, then one can see (using the multiplication
rules among the A,;’s) that v, is a right quasi-inverse of x in R,
Hence z is p.q. invertible in R.

By a similar reasoning as above, we have

PROPOSITION 6.2. Let R be a weak I y-ring. Then an « in I’
18 p.q.1. in I’ if and only if a is p.q.i. in A.

The following corollary is immediate from Propositions 6.1, 6.2
in view of Theorem 3.2 and Corollary 3.10.

COROLLARY 6.3. Let R be a weak I y-ring and let J(R), J(I")
and J*(A) respectively denote the Jacobson radicals of R, I’ and A.
Then J(R) = RN J*(A) and JUI') = I' N J*(A).
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By Proposition 5.4(i) we have J*(4) = (J*(A)N.Z) B (J*(A)NR)P
J* AN P IJT*(A)N.#). We then use Corollary 6.8 and [11,
Theorem 5 (ii), p. 18] to obtain

LEMMA 6.4. J*(A) = J( ) D J(R)D JI') D J*(#).

THEOREM 6.5. R s strongly semisimple if and only if A is
semisimple.

Proof. If A is semisimple then R is strongly semisimple, by
Lemma 6.4. Conversely, if R is strongly semisimple then J*(4) =
J( )P JNA) = ¥ DA Since J*(A) is an ideal of A4, it follows
from Proposition 5.4 (iii) that J*(A) = 0; hence A is semisimple.

If ,oI,D--- is a strictly descending chain of right ideals of
R, then one can easily see that I(I, ") + I,DI(I,I') +I,D+-- is a
strictly descending chain of right ideals of A. As such, if A is
right Artinian, then R (and similarly I') is also right Artinian, i.e.,
R is strongly right Artinian. The converse however needs certain
extra assumptions. Towards that we first have

LEMMA 6.6. If R is a strongly right Artinian, strongly semi-
simple weak I y-ring, then L and S are also semisimple and right
Artinian.

Proof. By Theorem 2.14, R and I' are semisimple in the sense
of Nobusawa. As such we can write (see [15, Theorem 1]) R =
e 0EP---Pe0land I = a,05, P --- P ,05 for minimal right ideals
e, 0% (a;05) of R(I'). One can then easily verify that

R __
rt T 4

%

M

[ajy ei] ft

n

1]
_

1j

and that [a;, ¢,]0% is a minimal right ideal of 0% for all ¢, j. 0% will
be a finite direct sum of minimal right ideals of 0% (see |7, Lemma
on p. 442]). Then, 0% being an operator group with a composition
series will be right Artinian. In a similar way we can show that 0Z,
is also right Artinian. Since R is a I'y-ring and I" an Ry-ring (by
Corollary 8.5) we can use Propositions 5.6 and 5.7 to conclude that
L and S are right Artinian. L and S are semisimple, being ideals
of the semisimple rings & and .22 respectively (by using Theorem
6.5 and Lemma 6.4).

LEMMA 6.7. If R 1is strongly right Artinian and strongly
semisimple, then L = <, S = . and hence A, = A.
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Proof. From the previous lemma and from [3, Corollary 1, p.
32] it follows that L and S have identity elements. Let | =2Xi(x,, ;) =
2(L(x;, a;), R(x;, @,)) be the identity element of L; then [ is the
identity element of EF=End RB(End")°*. If not, either YL(x;, a)(y)#y
for some y in R or YR(x,;, ,)(B) = B for some Bin I'. For example,
if Yz, y —y # 0, then by Corollary 3.5 there exist B and ¢ in I
such that 0 = g(Qw.ay — y)o = B((2l(z;, a))l(y, 9)) — Bl(y, 0) =
Bl(y, 0) — Bl(y, ) = 0, a contradiction. Thus [ = £, and hence L =
< Similarly S = ..

THEOREM 6.8. Let R be a weak I -ring. Then R is strongly
semisimple strongly right Artinian if and only if A is semisimple
and right Artinian.

Proof. It only remains to prove that 4 is right Artinian when
R is strongly semisimple and strongly right Artinian. Using Lemma
6.7 we can write A = AE, P AE, = (RHS)P (" B L). Further, any
right ideal I of A can be written as [ = [E, @ IFK,, where IE,(IE)
is a right ideal of the ring AFE,(AE)). In view of this it is enough
to show that AE, and AE, satisfy right Artinian conditions. Since
R and S are semisimple and right Artinian (by Lemma 6.6) we have
R=eSPH---Pe,Sand S=FSPH --- DSf.S with ¢s in R and f;’s
in S such that ¢S and f;S are minimal right ideals of the weak
I'y-ring R and the ring S respectively. Then AE, = 3e¢,S @ 2f;S =
e, AE, P Xf;AE,. e, AE, and f;AE, are easily seen to be minimal
right ideals of AFE,. As before (see the proof of Lemma 6.6) AF,
is seen to be right Artinian. Similarly AE, will be right Artinian;
hence A is right Artinian.

The following corollary is immediate from the above theorem if
one recalls that a semisimple ring is right Artinian if and only if
it is left Artinian (see [6]).

COROLLARY 6.9. Let R be a strongly semisimple weak I y-ring.
Then R is strongly right Artinian if and only if R is strongly left

Artinian.

7. Strongly simple ['-rings. In this section we characterize
completely the strongly simple strongly right Artinian weak I",-rings.

ProPOSITION 7.1. If A is simple then R is stromgly simple.

Proof. It suffices to observe that for a nonzero proper ideal
I(I') of R(I"), ATIA(AI' A) is a proper ideal of A containing I(I",).
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THEOREM 7.2. Let R be a weak I'y-ring. Then R is strongly
simple strongly right Artinian if and only if A is simple and right
Artinian.

Proof. Let R be strongly simple and strongly right Artinian.
Then R is also strongly semisimple, so that A is right Artinian (by
Theorem 6.8). If I be a nonzero ideal of A then INR(INT) is an
ideal of R(I"). Strong simplicity of R implies that IN R =0 or R
and that INI" =0or I'. If INR=0 and INI =0, then by
Proposition 5.4 (i) and (iii) 7=0, a contradiction. If however INR=R,
then ' =T'RI =T'UNR)I <1 so that INTI" =1I. Therefore 12
R@I. Since I is an ideal of A, I2I'R=S and I2R[ = L.
Therefore I2LPRPTIHS=A4, By Lemma 6.7, I=A4,= A. Hence
A is also simple. The converse is immediate from Proposition 7.1
and Theorem 6.8.

THEOREM 7.8. Let R be a strongly simple strongly right Artinian
weak I y-ring. Then there exists a division ring D and positive
integers m, n such that R = M,, (D) and I' = M, (D) with the weak
I y-ring multiplications being the ordinary matriz multiplications
(see §1, Example 1(b)).

Proof. By Theorem 7.2, A is simple and right Artinian; hence
A is isomorphic to a matrix ring of the form M, (D), for some
division ring D (see [6]). Without loss of generality we can assume
that the idempotent E, in A has the following matrix representation
with respect to the above identification of 4 with M, (D).

I’nvn On,m
E1 = ) ’
Om,m

0,0
m, n being integers with m + n = k. The element E, = Id — E, will
consequently have the representation

( On,n On,m )

Om,n Im,m '

By appealing to Proposition 5.2 we have the following further identi-
fications of the components of A with subsets of M, (D).

On,m)
Im,m

I’lby”b On,'m’ O’ny'n
R =FKEA(ld — E,)) = ( ‘ ) M, (D)

My

m,n mym

( 0,. Mn,mw))
“No.| 0nn /
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On,m Inm On.m
M,,(D) )

Im.m Om,n Om,m
On,m>
Opn/

The conclusions of the theorem clearly follow from the above
representations of R and 7.

Onm
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REMARK 7.4. Under the hypothesis of the above theorem we
can also identify the left operator ring 0f of R with M, (D), a
complete matrix ring, and the right operator ring 0% with the complete
matrix ring M,, (D) (as in the above theorem, using Proposition 5.6,
Corollary 8.5 and Lemma 6.7).

REMARK 7.5. A ternary ring T in the sense of Lister (see [8])
is also a weak ['y-ring with I’ = T (see Remark 3.6). An ideal of
T is defined as a two-sided ideal which is also medial. However in
the case of a weak [',-ring the notion of a medial ideal deoes not
exist. As such, a ternary ring T which is simple as a weak I",-ring
is also simple as a ternary ring. One can easily show by example
(see [8]) that a simple ternary ring need not be simple as a weak
I y-ring.

REMARK 7.6. Recalling that a Hestenes ternary algebra is also
a semisimple weak I",-ring (see Remark 4.9) we note that the main
Theorem 6.6 of [5] has a bearing to our Theorem 7.3.

Professor J. Luh has kindly communicated to us a weaker form
of the following result:

If R is strongly semisimple then R is strongly right Artinian
if and only if R is right and left Artinian. One way (only if part)
follows from Corollary 6.9. The other part can be deduced from
Nobusawa’s structure theorems (see [15]) using Theorem 2.14. Pro-
fessor Luh’s proof for the first part of the particular case is different
from ours.
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