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GENERALIZED RAMSEY THEORY IX:
ISOMORPHIC FACTORIZATIONS IV:
ISOMORPHIC RAMSEY NUMBERS

FRANK HARARY AND ROBERT W. ROBINSON

The ramsey number of a graph G with no isolates has
been defined as the minimum p such that every 2-coloring
of (the lines of) the complete graph Kp contains a mono-
chromatic G. An isomorphic factorization of Kp is a parti-
tion of its lines into isomorphic subgraphs. Combining these
concepts, we define the isomorphic ramsey number of G as
the minimum p such that for all n^p, every 2-coloring of
Kn which induces an isomorphic factorization contains a
monochromatic G. The isomorphic ramsey numbers of all
the small graphs (with at most four points) are determined.
The extension to c > 2 colors is also studied.

1* Introduction. The classical ramsey number, which stems

from the pioneering theorem of Ramsey [16], is written τ(Km, Kn)
and is defined as the minimum p such that every 2-coloring of (the
lines of) Kp contains a red Km or a green Kn. In the first paper
in our series on generalized ramsey theory for graphs [3], the
number r(F, H) was defined by analogy for any two graphs with
no isolates. We write r(F) for r(F, F) and we define a small
graph as having at most four points. The numbers r(F) and the
numbers r(F9 H) were computed for small graphs in [1] and [2],
the next two papers in this series. In [10], we considered the
minimum possible number of monochromatic copies of F in Kr{F).
Then the ramsey number of a digraph was introduced in [8] while
the ramsey number of a plex (a pure 2-dimensional simplicial com-
plex) was studied in [4]. It was shown in [13] that no further
ramsey numbers can arise from the study of the ramsey number
of a network, that is, whenever the ramsey number of a network
exists, it is equal to that of the underlying graph. For a given F,
the smallest number of lines in a graph G such that every 2-color-
ing of G has a monochromatic F, is the subject of [9].

In our first paper ]11] in the second series of the title, we de-
fined an isomorphiG factorization of a graph G as a partition of its
line set E(G) into isomorphic subgraphs F19 F2, , Ft = F. We
then write F\G and FeG/t. Obviously if G/t is not empty, then
t\q{G), the number of lines of G. We proved in [11] that the con-
verse of this necessary condition holds for complete graphs.

Divisibility theorem for complete graphs. If t\p{p — l)/2, then
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Kp/t is not empty.

Analogous considerations for complete multipartite graphs were
studied in [12]. The equivalence of isomorphic factorizations of
graphs with combinatorial designs of several different varieties was
pointed out in [14].

Our present purpose is to combine these two topics, both of
which involve partitioning the line set of a graph. The isomorphic
ramsey number (for two colors) of a given graph G is written f(G)
and is defined as the minimum p such that for all n ^ p, every
2-coloring of the lines of Kn which constitutes an isomorphic fac-
torization contains a monochromatic G. That is, every graph
HeKJ2 contains G as a subgraph.

In the next section we find the isomorphic ramsey numbers of
all the small graphs. We then consider isomorphic ramsey numbers
for c colors with c > 2.

2. Isomorphic ramsey numbers* For completeness Fig. 1
shows the ten small graphs (which have no isolated points). The
notation is the same as in [6] and [1] except that e is written for
an arbitrary line.

2K9

FIGURE 1. The ten small graphs

We state both their ramsey numbers r(G) and their isomorphic
ramsey numbers /((?) in Table 1, and then justify them.

Table 1

G

r(G)

f(G)

K%

2

2

P 3

3

2

K*

6

β

2K2

5

2

P,

5

2

#1,3

6

6

c,

6

6

#i,3+e

7

6

K,-e

10

10

K*

18

18

The ramsey numbers r(G) in Table 1 were determined in [1].
It is important to note the obvious fact that f(G) is at most r(G).
For p ^ r(G) implies that every 2-coloring of Kp contains a mono-
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chromatic G, and so a fortiori does every 2-coloring which gives
an isomorphic factorization of G. It should also be noted that the
residue of f(G) modulo 4 can only be 1 or 2. This is because the

number of lines ί?) in Kp is odd if p is 2 or 3 modulo 4, and so
there are no isomorphic factorizations of Kp into two colors in these
cases.

In order to verify some of the values of f(G) in Table 1, we
shall need to refer to the unique self-complementary graph of order
4, namely P4, and the two self-complementary graphs of order 5,
namely the cycle C5 and the graph called A in Fig. 2 because of
its typographical appearance.

FIGURE 2. Three self-complementary graphs

1. f(K2) = 2. This follows from the fact that K2 ςt K, and
f{K2) ^ r{K2) = 2.

2. /(P3) = 2. Similarly we have P3 φ Kx and /(P8) £ r(Pd) = 3,
but we have noted that r(P3) cannot be 3 modulo 4.

3. f(K3) = 6. To see this, note that although K3 aA,KBς£ C5,
hence f(KB) ^ 6. But r(K3) - 6 so /(iQ = 6.

4. f(2K2) = 2. As 2K2dPi and r(2K2) - 5 and f(2K2) cannot be
3, it follows that f(2K2) - 2.

5. /(P4) = 2. This verification is parallel to that of 2K2.
6. /(JSΓ1>3) = 6. The reasoning is identical to that for f(Kz) = 6.
7. / ( Q = 6. This is similar to both f(K3) = 6 and f(KίΛ) = 6.
8. /(i^1)3 + e) = 6. As r(K1Λ + e) = 7 which is a forbidden iso-

morphic ramsey number, it follows that f(K1>3 + e) ^ 6. But
iΓ1>3 + β <£ C5 hence this value is 6.

9. f(K4 - e) = 10. The 9-point graph L of Fig. 3 does not
contain a copy of if4 — e. It is straightforward to verify that L is
self-complementary. It now follows from r(K± — e) = 10 that
/(iΓ4 - β) = 10.

10. f(K4) = 18. We need to appeal to the ingenious construc-
tion by which Greenwood and Gleason [5] established that r(iΓ4)> 17.
They took the field Z17 as the point set of K17, that is, the numbers
0,1, 2, , 16. They then colored the line joining points i and j
red if ί — j is a quadratic residue; otherwise the line is colored
green. In this 2-coloring of K17 there is no monochromatic if4. In
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L:

FIGURE 3. The line graph of Kz>z

addition, one sees that the red and green graphs are isomorphic on
multiplying all the elements of ZιΊ by 3. Hence f(KA) ^ 18, but
r(K4) = 18 so we are done.

3* Ramsey numbers involving three colors* Our object is to
establish the values of isomorphic ramsey numbers with three colors
for all six of the small graphs having at most three lines. We list
the results in tabular form and include the 3-color ramsey numbers
of these graphs.

G

r(G; 3)

f(G; 3)

κ2

2

2

Pz

5

5

Table 2

2ϋΓ2

5

5

P4

6

5

JSΓl.8

8

8

K,

17

17

Much as before, /((?; 3) is not greater than r(G; 3). Also /((?; 3)
cannot take a value which is congruent to zero modulo 3 as there
can be no isomorphic factorization of Kp with three colors if p is
congruent to 2 modulo 3.

The numbers r(G; 3) in Table 2 are very easy to verify except
for r(K3; 3) = 17, due to Greenwood and Gleason [5].

f(K%;Z) = 2 and /(P3; 3) = f(2K2; 3) - 5

The first of these is trivial. For the remaining two numbers, we
show in Fig. 4 the two isomorphic factorizations of iΓ4 into three
parts.

The factorization 2K2\K^ proves that /(P3; 3) > 4; on the other
hand {K^VjP^K^ implies f(2K2; 3) > 4. Since the 3-color ramsey
numbers of both P3 and 2K2 are 5, it follows that both their iso-
morphic ramsey numbers are 5.
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x
FIGURE 4. The graphs in KJZ

f(P<; 3) - 5

This number is more than 4 by Fig. 4, and is at most 6 by
/(Pa 3) ^ r(P4; 3) = 6. But 6 is impossible since it is divisible by
3, so the number is 5.

f{Kuύ 3) - 8

The well-known isomorphic factorization of K7 into three copies of
C7 shows this number to be at least 8. It is at most 8 because
r(K1>3; 3) = 8.

f(K3; 3) = 17

The proof that τ{Kz\ 3) = 17 is given in Greenwood and Gleason
[5], so this number is at most 17. Their method of showing
r(K?; 3) > 16 begins by taking the points of K1Q as the members of
the field of order 16. The nonzero elements of GF [16] are parti-
tioned into the three multiplicative cosets of the set of five non-
zero cubes in GF [16]. The edge joining ί to j for i Φ j is colored
according to the coset containing i — j . They verified that there is
no monochromatic K3 in the resulting 3-coloring of K16. It is seen at
once that the three factors of KίQ are isomorphic by the map obtained
from multiplying each member of GF [16] by a fixed element which
is not a cube in this field. Therefore f(Kd; 3) is greater than 16,
and so must be exactly 17.

It has been shown by Kalbfleisch and Stanton [15] that there
are exactly two different isomorphic factorizations of K1Q into three
parts not containing K3. In the literature of combinatorial designs,
these are called proper colorings. Whitehead [18] showed how to
obtain the second proper coloring of Kί6 from a sumfree set in
Zι 0 Z4. Street gives a complete account of the construction of the
proper colorings of K1Q, including the remarkable fact that the in-
dividual factors in the two factorizations are all isomorphic to one
another [17, Lemma 8.3] and an elegant drawing of this unique
factor graph.

4* Unsolved problems

A. There are many other ramsey numbers which have been
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determined, including those for stars, paths, cycles, and other
graphs. Results and references can be found in [7]. What are
the corresponding isomorphic ramsey numbers ?

B. It is conceivable that there exists a graph G for which
f(G) can be found without knowing r{G). Is there any such graph?

C. It is immediate that if n < r(G) then some 2-coloring of Kn

avoids a monochromatic G. We conjecture the corresponding state-
ment for isomorphic ramsey numbers. That is, if n < f(G) and
KJ2 is not empty then not every graph in KJ2 contains G.

This would follow at once if it could be shown that if n < p
and KJ2 is not empty then every member of Kp/2 contains a
member of KJ2. This seems highly plausible, and is a well-known
fact when p = n + 1. However since KJ2 is empty for n = 2 or 3
(modulo 4), this fact alone is insufficient to prove the desired result.

D. We also make the conjecture for isomorphic ramsey numbers
involving any c > 2 colors which is analogous to the preceding con-
jecture. That is, if n<f(G;c) and KJc is not empty, then not
every graph in KJc contains G.

E. It would be wonderful if a convenient general method could
be found for determining r(G) or f(G) for arbitrary G. We doubt
it because of the intrinsically intransigent nature of the problem.

Our methods can be applied to evaluate the isomorphic ramsey
numbers of several families of graphs, including the paths Pn> the
stars KUn and the bars nK2. We plan to present this in a forth-
coming communication.
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