PLURISUBHARMONIC DEFINING FUNCTIONS

John Erik Fornaess

Let Ω be a bounded pseudoconvex open set in n-dimensional complex Euclidean space C^{n} with a smooth (\mathscr{C}^{∞}). boundary. It has been known for some time that it is not always possible to choose a defining function ρ which is plurisubharmonic in a neighborhood of $\bar{\Omega}$. We study here the question whether for every point $p \in \partial \Omega$, there exists an open neighborhood on which ρ can be chosen to be plurisubharmonic. Our main conclusion is that this is not always the case.

1. Notation and results. In what follows, Ω will always be a bounded open set in C^{n} with \mathscr{C}^{∞}-boundary. This means that there exists a real-valued \mathscr{C}^{∞}-function $\rho: \boldsymbol{C}^{n} \rightarrow \boldsymbol{R}$ such that $\Omega=\{\rho<0\}$ and $d \rho \neq 0$ on $\partial \Omega$. Let $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right), z_{j}=x_{j}+i y_{j}$, denote complex coordinates in C^{n}, and define

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) .
$$

Definition 1. The set Ω is pseudoconvex if for every $p \in \partial \Omega$, we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(p) t_{i} \bar{t}_{j} \geqq 0 \tag{1}
\end{equation*}
$$

whenever

$$
t=\left(t_{1}, \cdots, t_{n}\right) \in \boldsymbol{C}^{n}-(0) \quad \text { and } \quad \sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}}(p) t_{i}=0
$$

If we have strict inequality in (1) for all $p \in \partial \Omega$, then Ω is said to be strongly pseudoconvex.

Definition 2. A real-valued \mathscr{C}^{2}-function, u, defined on an open set V in C^{n} is plurisubharmonic if

$$
\sum_{i, j=1}^{n} \frac{\partial^{2} u}{\partial z_{i} \partial \bar{z}_{j}}(p) t_{i} \bar{t}_{j} \geqq 0
$$

whenever $p \in V$ and $t=\left(t_{1}, \cdots, t_{n}\right) \in \boldsymbol{C}^{n}-(0)$.
If we have strict inequality for all $p \in V$, then u is strictly plurisubharmonic.

The following results are known:
Theorem 3 [2]. If Ω is strongly pseudoconvex, then ρ may be chosen to be strictly plurisubharmonic in some neighborhood of $\bar{\Omega}$.

The next example shows that the theorem fails in general if we drop the hypothesis of strong pseudoconvexity.

Example 4 [1]. There exists a bounded pseudoconvex domain Ω in C^{2}, with \mathscr{C}^{∞}-boundary, such that no $\left(\mathscr{C}^{2}\right)$ defining function ρ exists with

$$
\sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(p) t_{i} \bar{t}_{j} \geqq 0
$$

whenever

$$
p \in \partial \Omega \quad \text { and } \quad t=\left(t_{1}, \cdots, t_{n}\right) \in \boldsymbol{C}^{n}
$$

There exists an example, similar to the one above, which has a real analytic boundary.

Example 5. Let

$$
\begin{aligned}
\Omega & =\Omega_{K}=\left\{\left(\boldsymbol{z}_{1}, z_{2}\right) \in(\boldsymbol{C}-(0)) \times \boldsymbol{C} ; \sigma\right. \\
& \left.=\left|z_{2}+e^{i \ln z_{1} \bar{z}_{1}}\right|^{2}-1+K\left(\ln z_{1} \bar{z}_{1}\right)^{4}<0\right\} .
\end{aligned}
$$

Then, if, $K>1$ is sufficiently large, Ω is a bounded pseudoconvex domain in \boldsymbol{C}^{2} with smooth real analytic boundary, such that no \mathscr{C}^{2} defining function, ρ, exists such that

$$
\sum_{i, j=1}^{2} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(p) t_{i} \bar{t}_{j} \geqq 0
$$

whenever $p \in \partial \Omega$ and $\left(t_{1}, t_{2}\right) \in \boldsymbol{C}^{2}$.
The details will be given in the next section.
Example 6. There exists a bounded pseudoconvex domain Ω in C^{3}, with \mathscr{C}^{∞}-boundary, and a point $p \in \partial \Omega$ such that whenever ρ is a σ^{2} defining function for Ω,

$$
\sum_{i, j=1}^{3} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(q) t_{i} \bar{t}_{j}<0
$$

for some $\left(t_{1}, \cdots, t_{n}\right)$ and $q \in \partial \Omega$ arbitrarily close to p.
This example shows that one does not have plurisubharmonic
defining functions for pseudoconvex domains, even locally, in general.

2. Examples.

Example 5. Clearly, Ω is bounded in $(\boldsymbol{C}-(0)) \times \boldsymbol{C}$. If $\partial \sigma / \partial z_{2}=$ 0 , then $z_{2}=-e^{i \ln z_{1} \bar{z}_{1}}$. Hence, if $d \sigma=0$, then $0=z_{1} \partial \sigma / \partial z_{1}=4 K\left(\ln z_{1} \bar{z}_{1}\right)^{3}$. This implies that $\left|z_{1}\right|=1$ and $z_{2}=-1$. At such points, $\sigma\left(z_{1}, z_{2}\right)=$ -1 , so $d \sigma \neq 0$ on $\partial \Omega$.

To show that Ω is pseudoconvex, we compute the Leviform

$$
\begin{aligned}
\mathscr{L}= & \frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{1}}\left|\frac{\partial \sigma}{\partial z_{2}}\right|^{2}-\frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{2}} \frac{\partial \sigma}{\partial z_{2}} \frac{\partial \sigma}{\partial \bar{z}_{1}}-\frac{\partial^{2} \sigma}{\partial \bar{z}_{1} \partial z_{2}} \cdot \frac{\partial \sigma}{\partial z_{1}} \cdot \frac{\partial \sigma}{\partial \bar{z}_{2}} \\
& +\frac{\partial^{2} \sigma}{\partial z_{2} \partial \bar{z}_{2}} \cdot\left|\frac{\partial \sigma}{\partial z_{1}}\right|^{2}
\end{aligned}
$$

to obtain

$$
\begin{aligned}
\mathscr{L}= & \frac{z_{2} \bar{z}_{2}+K\left(\ln z_{1} \dot{\bar{z}}_{1}\right)^{4}+12 K\left(\ln z_{1} \bar{z}_{1}\right)^{2}}{z_{1} \bar{z}_{1}} \cdot\left|z_{2}+e^{i \ln z_{1} \bar{z}_{1}}\right|^{2} \\
& +4 K \frac{\left(\ln z_{1} \bar{z}_{1}\right)^{3}}{z_{1} \bar{z}_{1}}\left(i \bar{z}_{2} e^{i \ln z_{1} \bar{z}_{1}}-i z_{2} e^{-i \ln z_{1} \overline{\bar{z}}_{1}}\right)+16 K^{2} \frac{\left(\ln z_{1} \bar{z}_{1}\right)^{6}}{z_{1} \bar{z}_{1}}
\end{aligned}
$$

on $\partial \Omega$.
If $\left|z_{2}+e^{i \operatorname{in} z_{1} \overline{z_{1}}}\right| \geqq 1 / 2$, we have

$$
\mathscr{L} \geqq 3 K\left(\ln z_{1} \bar{z}_{1}\right)^{2} / z_{1} \bar{z}_{1}-16 K\left|\ln z_{1} \bar{z}_{1}\right|^{3} / z_{1} \bar{z}_{1},
$$

since $\left|z_{2}\right| \leqq 2$ on $\partial \Omega$. If K is sufficiently large, then $\left|\ln z_{1} \bar{z}_{1}\right|<3 / 16$ on $\partial \Omega$ and hence $\mathscr{L} \geqq 0$.

Consider next a boundary point where $\left|z_{2}+e^{i \ln z_{1} \overline{z_{1}}}\right|<1 / 2$. Then $K\left(\ln z_{1} \bar{z}_{1}\right)^{4} \geqq 3 / 4$, since $\sigma\left(z_{1}, z_{2}\right)=0$. Hence

$$
\begin{aligned}
\mathscr{L} & \geqq-16 K\left|\ln z_{1} \bar{z}_{1}\right|^{3} / z_{1} \bar{z}_{1}+16 K^{2}\left(\ln z_{1} \bar{z}_{1}\right)^{6} / z_{1} \bar{z}_{1} \\
& =16 K\left|\ln z_{1} \bar{z}_{1}\right|^{3} / z_{1} \bar{z}_{1}\left(-1+K\left(\ln z_{1} \bar{z}_{1}\right)^{4} /\left|\ln z_{1} \bar{z}_{1}\right|\right)
\end{aligned}
$$

which is nonnegative if K is sufficiently large.
Assume next that ρ is a \mathscr{C}^{2} defining function for Ω such that

$$
\sum_{i, j=1}^{2} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}}(p) t_{i} \bar{t}_{j} \geqq 0
$$

whenever $p \in \partial \Omega$ and $\left(t_{1}, t_{2}\right) \in C^{2}$. In particular, $\rho=h \sigma$ for some \mathscr{C}^{1} function $h>0$. We observe that $\partial^{2} \rho / \partial z_{1} \partial \bar{z}_{1}\left(z_{1}, z_{2}\right)=0$ whenever $\left|z_{1}\right|=1$ and $z_{2}=0$. (All such points are in $\partial \Omega$.) Therefore, $\partial^{2} \rho / \partial \bar{\partial}_{1} \partial z_{2}\left(z_{1}, z_{2}\right)=0$ at these points also. Hence

$$
\left(\frac{\partial h}{\partial \bar{z}_{1}} \frac{\partial \sigma}{\partial z_{2}}+h \frac{\partial^{2} \sigma}{\partial \bar{z}_{1} \partial z_{2}}\right)\left(e^{i \theta}, 0\right) \equiv 0
$$

and so

$$
\frac{\partial}{\partial \bar{z}_{1}}\left(h e^{i \ln z_{1} \bar{z}_{1}}\right)\left(e^{i \theta}, 0\right) \equiv 0 .
$$

Multiplying with $e^{i \mathrm{Log} z_{1}}$ we get that

$$
\frac{\partial}{\partial \bar{z}_{1}}\left(h e^{-2 \operatorname{Arg} z_{1}}\right)\left(e^{i \theta}, 0\right) \equiv 0
$$

which implies that $h\left(e^{i \theta}, 0\right)=c e^{2 \theta}$ for some constant $c>0$. This is of course impossible.

In the next example, we localize the above idea suitably.
Example 6. Let us use coordinates $\left(w, z_{1}, z_{2}\right)$ in C^{3} with $w=$ $\eta+i \zeta$ and $z_{j}=x_{j}+i y_{j}, j=1,2$. We pick a \mathscr{C}^{∞}, convex function $\chi_{1}(t): \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that $\chi_{1}(t)=0$ when $t \leqq 1$ and $\chi_{1}(t)>0$ when $t>0$. Define $\sigma_{1}: \boldsymbol{C}^{3} \rightarrow \boldsymbol{R}$ by

$$
\sigma_{1}=\eta+\eta^{2}+K \zeta^{2}+K\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+\left(y_{1}^{2}+y_{2}^{2}\right) \zeta^{2}+\chi_{1}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

and let $\Omega_{1}=\left\{\sigma_{1}<0\right\}$. Here $K \gg 1$ is a constant which will be chosen later.

Lemma 7. The set Ω_{1} is bounded and pseudoconvex with \mathscr{C}^{∞} boundary for all K sufficiently large.

Proof. Computation shows that $d \sigma_{1}=0$ only at points $\left(-1 / 2, x_{1}, x_{2}\right)$ with $x_{1}^{2}+x_{2}^{2} \leqq 1$. Since $\sigma_{1}=-1 / 4$ at these points, it follows that $d \sigma_{1} \neq 0$ on $\partial \Omega_{1}$. Further computation shows that σ_{1} is plurisubharmonic in a neighborhood of $\bar{\Omega}_{1}$ if K is sufficiently large.

In the following K, sufficiently large, is fixed.
The next step is to make an infinite number of perturbations of the boundary of Ω_{1}. Let $p_{j}=\left(0,1 / 2^{j}, 0\right), j=1,2, \cdots$ and let $\boldsymbol{B}\left(p_{j}, r\right)=\left\{\left(w, z_{1}, z_{2}\right) ;\left(|w|^{2}+\left|z_{1}-1 / 2^{j}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}<r\right\}$ be the ball centered at p_{j} of radius r. Choose functions $\chi^{(j)} \in \mathscr{C}_{0}^{\infty}\left(\boldsymbol{B}\left(p_{j}, 1 / 2^{j+2}\right)\right)$ with $\chi^{(j)} \equiv 1$ on $\boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)$ and $\chi^{(j)} \geqq 0, j=1,2, \cdots$. Observe that $\operatorname{supp} \chi^{(i)} \cap \operatorname{supp} \chi^{(j)}=\varnothing$ whenever $i \neq j$. We may arrange that $\left|d \chi^{(j)}\right|^{2} \leqq C_{j} \chi^{(j)}$ and $\left|\partial \chi^{(j)} / \partial y_{k}\right| \leqq C_{j}\left|y_{k}\right|$ for suitable C_{1}, C_{2}, \cdots, and $k=1,2$. Let $\varepsilon=\left\{\varepsilon_{j}\right\}_{j=1}^{\infty}$ denote a rapidly decreasing sequence, $\varepsilon_{1}>$ $\varepsilon_{2}>\cdots>0$ and define

$$
\sigma_{2}=\sigma_{1}+\sum_{j=1}^{\infty} \varepsilon_{j} \chi^{(j)} \cdot\left(y_{1}^{2}+y_{2}^{2}\right) \cdot x_{2}^{2} .
$$

Clearly σ_{2} is a \mathscr{C}^{∞}-function, and if $\Omega_{2}=\left\{\sigma_{2}<0\right\}$, then $d \sigma_{2} \neq 0$ on $\partial \Omega_{2}$ and Ω_{2} is a bounded domain which is pseudoconvex at every point in $\partial \Omega_{2}-\bigcup_{j} \boldsymbol{B}\left(p_{j}, 1 / 2^{j+2}\right)$.

Lemma 8. The set Ω_{2} is pseudoconvex if ε decreases sufficiently fast.

Proof. Fix a $j \geqq 1$. It suffices to show that $\sigma_{1}+\varepsilon_{j} \chi^{(j)} \cdot\left(y_{1}^{2}+y_{2}^{2}\right) x_{2}^{2}$ is plurisubharmonic in $\boldsymbol{B}\left(p_{j}, 1 / 2^{j+2}\right)$ for all small enough $\varepsilon_{j}>0$. This is checked by a direct computation.

We fix a sequence $\left\{\varepsilon_{j}\right\}$ decreasing sufficiently fast.
To complete the construction of the example, we will perturbe σ_{2} inside each $\boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)$. More precisely, let $\chi_{(j)} \in \mathscr{C}_{0}^{\infty}\left(\boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)\right)$ with

$$
\int_{R}\left(\frac{\partial \chi_{(j)}}{\partial x_{1}}+\chi_{(j)}\right)\left(0, x_{1}, 0\right) d x_{1} \neq 0
$$

for each $j, \chi_{(j)} \geqq 0$. We may assume that $\left|\partial \chi_{(j)} / \partial \eta\right|,\left|\partial \chi_{(j)} / \partial \zeta\right|,\left|\partial \chi_{(j)} / \partial y_{k}\right|$, $\left|\partial \chi_{(j)} / \partial x_{2}\right| \leqq C_{j}\left(|\eta|+|\zeta|+\left|x_{2}\right|+\left|y_{1}\right|+\left|y_{2}\right|\right), k=1,2, C_{j}$ some constant.

If $\delta=\left\{\delta_{j}\right\}_{j=j_{0}}^{\infty}, \delta_{j_{0}}>\delta_{j_{0}+1}>\cdots>0$ is any sufficiently rapidly decreasing sequence,

$$
\sigma=\sigma_{2}+\sum_{j=j_{0}}^{\infty} \delta_{j} \chi_{(j)} \cdot\left(\eta+\zeta y_{1}\right)
$$

is a \mathscr{C}^{∞}-function and $d \sigma \neq 0$ on $\partial \Omega, \Omega=\{\sigma<0\}$. Moreover, Ω is a bounded domain which is pseudoconvex on $\partial \Omega-\cup \boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)$.

Lemma 9. The set Ω is pseudoconvex if ò decreases sufficiently fast, and j_{0} is sufficiently large.

Proof. Fix a $j \gg 1$. It suffices to show that Ω is pseudoconvex at those boundary points which are in $\boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)$ for all δ_{j} sufficiently small. In $\boldsymbol{B}\left(p_{j}, \mathbf{1} / 2^{j+3}\right), \sigma=\eta+\eta^{2}+K \zeta^{2}+K\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+\left(y_{1}^{2}+y_{2}^{2}\right) \zeta^{2}+$ $\varepsilon_{j}\left(y_{1}^{2}+y_{2}^{2}\right) \cdot x_{2}^{2}+\delta_{j} \chi_{(j)} \cdot\left(\eta+\zeta y_{1}\right)$. Differentiating, we obtain:

$$
\begin{aligned}
\frac{\partial \sigma}{\partial w}= & \frac{1}{2}+\eta-i K \zeta-i \zeta\left(y_{1}^{2}+y_{2}^{2}\right)+\delta_{j} \frac{\delta \chi_{(j)}}{\delta w} \cdot\left(\eta+\zeta y_{1}\right) \\
& +\frac{1}{2} \delta_{j} \chi_{(j)}-\frac{i}{2} \delta_{j} \chi_{(j)} y_{1} \\
\frac{\partial \sigma}{\partial z_{1}}= & -2 i K\left(y_{1}^{3}+y_{1} y_{2}^{2}\right)-i y_{1} \zeta^{2}-i \varepsilon_{j} y_{1} x_{2}^{2} \\
& +\delta_{j} \frac{\partial \chi_{(j)}}{\partial z_{1}} \cdot\left(\eta+\zeta y_{1}\right)-\frac{i}{2} \delta_{j} \chi_{(j)} \cdot \zeta
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \sigma}{\partial z_{2}}= & -2 i K\left(y_{1}^{2} y_{2}+y_{2}^{3}\right)-i y_{2} \zeta^{2}-i \varepsilon_{j} y_{2} x_{2}^{2}+\varepsilon_{j}\left(y_{1}^{2}+y_{2}^{2}\right) x_{2} \\
& +\delta_{j} \frac{\partial \chi_{(j)}}{\partial z_{2}} \cdot\left(\eta+\zeta y_{1}\right), \\
\frac{\partial^{2} \sigma}{\partial w \partial \bar{w}}= & \frac{1}{2}+\frac{K}{2}+\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial w \partial \bar{w}} \cdot\left(\eta+\zeta y_{1}\right) \\
& +\frac{1}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial w}+\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial w} \cdot y_{1}+\frac{1}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{w}} \\
& -\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{w}} \cdot y_{1}, \\
\frac{\partial^{2} \sigma}{\partial w \partial \bar{z}_{1}}= & \zeta y_{1}+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial w \partial \bar{z}_{1}} \cdot\left(\eta+\zeta y_{1}\right)+\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial w} \cdot \zeta \\
& +\frac{1}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{1}}-\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{1}} y_{1}+\frac{1}{4} \delta_{j} \chi_{(j)}, \\
\frac{\partial^{2} \sigma}{\partial w \partial \bar{z}_{2}}= & \zeta y_{2}+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial w \partial \bar{z}_{2}} \cdot\left(\eta+\zeta y_{1}\right)+\frac{1}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{2}}-\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{2}} \cdot y_{1}, \\
\frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{1}}= & 3 K y_{1}^{2}+K y_{2}^{2}+\frac{1}{2} \zeta^{2}+\frac{1}{2} \varepsilon_{j} x_{2}^{2}+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial z_{1} \partial \bar{z}_{1}} \cdot\left(\eta+\zeta y_{1}\right) \\
& +\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial z_{1}} \cdot \zeta-\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{1}} \cdot \zeta, \\
\frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{2}}= & 2 K y_{1} y_{2}-i \varepsilon_{j} y_{1} x_{2}+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial z_{1} \partial \bar{z}_{2}} \cdot\left(\eta+\zeta y_{1}\right)-\frac{i}{2} \delta_{j} \frac{\partial \chi_{(j)}}{\partial \bar{z}_{2}} \cdot \zeta
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial^{2} \sigma}{\partial z_{2} \partial \bar{z}_{2}}= & K y_{1}^{2}+3 K y_{2}^{2}+\frac{1}{2} \zeta^{2}+\frac{\varepsilon_{j}}{2} x_{2}^{2}-i \varepsilon_{j} x_{2} y_{2}+i \varepsilon_{j} y_{2} x_{2} \\
& +\frac{1}{2} \varepsilon_{j}\left(y_{1}^{2}+y_{2}^{2}\right)+\delta_{j} \frac{\partial^{2} \chi_{(j)}}{\partial z_{2} \partial \bar{z}_{2}} \cdot\left(\eta+\zeta y_{1}\right)
\end{aligned}
$$

Observe that $\eta=0\left(\zeta^{2}+y_{1}^{2}+y_{2}^{2}\right)$ on $\partial \Omega \cap \boldsymbol{B}\left(p_{j}, 1 / 2^{j+3}\right)$. Hence there is a $D_{j} \gg 1$ such that for all sufficiently small $\delta_{j}>0, \partial^{2} \sigma / \partial w \partial \bar{w} \geqq K / 2$,

$$
\begin{aligned}
& \left|\frac{\partial^{2} \sigma}{\partial w \partial \bar{z}_{1}}-\zeta y_{1}-\frac{1}{4} \delta_{j} \frac{\partial \chi_{(j)}}{\partial x_{1}}-\frac{1}{4} \delta_{j} \chi_{(j)}\right| \leqq D_{j} \delta_{j}\left\|\left(w, i y_{1}, z_{2}\right)\right\|, \\
& \left|\frac{\partial^{2} \sigma}{\partial w \partial \bar{z}_{2}}-\zeta y_{2}\right| \leqq D_{j} \delta_{j}\left\|\left(w, i y_{1}, z_{2}\right)\right\| \\
& \frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{1}} \geqq(3 K-1) y_{1}^{2}+(K-1) y_{2}^{2}+\frac{1}{4} \zeta^{2}+\frac{1}{4} \varepsilon_{j} x_{2}^{2}, \\
& \left|\frac{\partial^{2} \sigma}{\partial z_{1} \partial \bar{z}_{2}}-2 K y_{1} y_{2}+i \varepsilon_{j} y_{1} x_{2}\right| \leqq D_{j} \delta_{j}\left\|\left(w, i y_{1}, z_{2}\right)\right\|^{2}
\end{aligned}
$$

and

$$
\frac{\partial^{2} \sigma}{\partial z_{2} \partial \bar{z}_{2}} \geqq K y_{1}^{2}+3 K y_{2}^{2}+\frac{1}{4} \zeta^{2}+\frac{\varepsilon_{j}}{4} x_{2}^{2} .
$$

We compute the Leviform,

$$
\begin{aligned}
\mathscr{L}_{\sigma}=\sigma_{w \bar{\psi}} t_{0} \bar{t}_{0} & +2 \operatorname{Re} \sigma_{w \overline{z_{1}}} t_{0} \bar{t}_{1}+2 \operatorname{Re} \sigma_{w \overline{z_{2}}} t_{0} \bar{t}_{2} \\
& +\sigma_{z_{1} \bar{z}_{1}} t_{1} \bar{t}_{1}+2 \operatorname{Re} \sigma_{z_{1} \bar{z}_{2}} t_{1} \bar{t}_{2}+\sigma_{z_{2} \bar{z}_{2}} t_{2} \bar{t}_{2}
\end{aligned}
$$

for vectors $\left(t_{0}, t_{1}, t_{2}\right)$ such that

$$
t_{0}=\left(-1 / \sigma_{w}\right) \cdot\left(\sigma_{z_{1}} t_{1}+\sigma_{z_{2}} t_{2}\right) .
$$

Using the above estimates, we obtain

$$
\begin{aligned}
& \mathscr{P}_{\sigma} \geqq\left((3 K-2) y_{1}^{2}+(K-2) y_{2}^{2}+\frac{1}{8} \zeta^{2}+\frac{1}{8} \varepsilon_{j} x_{2}^{2}\right) t_{1} \bar{t}_{1} \\
& +\left((K-2) y_{1}^{2}+(3 K-2) y_{2}^{2}+\frac{1}{8} \zeta^{2}+\frac{\varepsilon_{j}}{8} x_{2}^{2}\right) t_{2} \bar{t}_{2} \\
& +2 \operatorname{Re}\left(2 K y_{1} y_{2}-i \varepsilon_{j} y_{1} x_{2}\right) t_{1} \bar{t}_{2} \\
& +2 \operatorname{Re}\left(\frac{1}{4} \delta_{j} \frac{\partial \chi_{(j)}}{\partial x_{1}}+\frac{1}{4} \delta_{j} \chi_{(j)}\right) \cdot\left[\left(\frac{-1}{\frac{1}{2}+\frac{1}{2} \delta_{j} \chi_{(j)}}\right) \cdot \frac{-i}{2}\right. \\
& \left.\quad \times \delta_{j} \chi_{(j) \zeta t_{1}}\right] \bar{t}_{1}
\end{aligned}
$$

which clearly is nonnegative.
Assume that there exists a \mathscr{C}^{2}-function $\rho: \boldsymbol{C}^{3} \rightarrow \boldsymbol{R}$, such that $\Omega=\{\rho<0\}$ and $d \rho \neq 0$ on $\partial \Omega$, with a nonnegative complex Hessian on some neighborhood U of 0 in $\partial \Omega$.

Let $\gamma_{i}, i=1,2,3,4$, be straight lines in the (x_{1}, x_{2})-plane,

$$
\begin{aligned}
& \gamma_{1} \text { goes from }\left(\frac{1}{2^{j}}-\frac{1}{2^{j+2}}, 0\right) \text { to }\left(\frac{1}{2^{j}}+\frac{1}{2^{j+2}}, 0\right) \\
& \gamma_{2} \text { goes from }\left(\frac{1}{2^{j}}+\frac{1}{2^{j+2}}, 0\right) \text { to }\left(\frac{1}{2^{j}}+\frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \\
& \gamma_{3} \text { goes from }\left(\frac{1}{2^{j}}+\frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \text { to }\left(\frac{1}{2^{j}}-\frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \text { and } \\
& \gamma_{4} \text { goes from }\left(\frac{1}{2^{j}}-\frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \text { to }\left(\frac{1}{2^{j}}-\frac{1}{2^{j+2}}, 0\right)
\end{aligned}
$$

We fix j so large that each $\gamma_{i} \subset U$. The function $\rho=\sigma h$ for some \mathscr{C}^{1}-function $h>0$.

We will show that $\int_{r_{1}} d(\ln h) \neq 0$ for all small enough $\delta_{j}>0$, while

$$
\int_{\gamma_{i}} d(\ln h)=0, i=2,3,4 .
$$

First consider the curves γ_{2} and γ_{4}. There $\rho=\left(\eta+\eta^{2}+K \zeta^{2}+\right.$ $\left.K\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+\left(y_{1}^{2}+y_{2}^{2}\right) \zeta^{2}\right) h$ from which it follows that $\partial^{2} \rho / \partial z_{2} \partial \bar{z}_{2} \equiv 0$ on $\gamma_{2} \cup \gamma_{4}$. Hence $\partial^{2} \rho / \partial w \partial \bar{z}_{2} \equiv 0$ on $\gamma_{2} \cup \gamma_{4}$ as well. This reduces to the equation $\partial h / \partial \bar{z}_{2}=0$ from which it follows that $\int_{r_{i}} d(\ln h)=0, i=2,4$. Similarly $\int_{r_{3}} d(\ln h)=0$.

Finally, consider the curve γ_{1}. Here $\sigma=\eta+\eta^{2}+K \zeta^{2}+K\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+$ $\left(y_{1}^{2}+y_{2}^{2}\right) \zeta^{2}+\varepsilon_{j} \chi^{(j)} \cdot\left(y_{1}^{2}+y_{2}^{2}\right) \cdot x_{2}^{2}+\delta_{j} \chi_{(j)} \cdot\left(\eta+\zeta y_{1}\right)$. Clearly $\partial^{2} \rho / \partial z_{1} \partial \bar{z}_{1} \equiv 0$ on γ_{1} and hence $\partial^{2} \rho / \partial w \partial \bar{z}_{1} \equiv 0$ there also. This reduces to the equation

$$
\partial^{2} \sigma / \partial w \partial \bar{z}_{1} \cdot h+\partial \sigma / \partial w \cdot \partial h / \partial \bar{z}_{1} \equiv 0 \quad \text { on } \quad \gamma_{1} .
$$

Hence

$$
\frac{\partial}{\partial x_{1}}(\ln h)=\left(-\delta_{j}\right)\left(\partial \chi_{(j)} / \partial x_{1}+\chi_{(j)}\right) /\left(1+\delta_{j} \chi_{(j)}\right)
$$

Since we choose $\chi_{(j)}$ such that

$$
\int_{R}\left(\frac{\partial \chi_{(j)}}{\partial x_{1}}+\chi_{(j)}\right)\left(0, x_{1}, 0\right) d x_{1} \neq 0
$$

it follows that $\int_{r_{1}} d(\ln h) \neq 0$ for all small enough $\delta_{j}>0$.
So $\int_{r_{1}+\cdots+r_{4}} d(\ln h) \neq 0$, which contradicts the assumption that h was well ${ }^{\gamma_{1}+\cdots+\gamma_{4}}$ defined.

References

1. K. Diederich and J. E. Fornaess, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math, Ann., 225 (1977), 275-292.
2. J. Morrow and H. Rossi, Some theorems of algebraicity for complex spaces, J. Math. Soc. Japan, 27 (1975), 167-183.

Received May 12, 1978.

Princeton University

Princeton, NJ 08544

