PLURISUBHARMONIC DEFINING FUNCTIONS

JOHN ERIK FORNAESS

Let Ω be a bounded pseudoconvex open set in *n*-dimensional complex Euclidean space C^n with a smooth (\mathscr{C}^{∞}) -boundary. It has been known for some time that it is not always possible to choose a defining function ρ which is plurisubharmonic in a neighborhood of $\overline{\Omega}$. We study here the question whether for every point $p \in \partial \Omega$, there exists an open neighborhood on which ρ can be chosen to be plurisubharmonic. Our main conclusion is that this is not always the case.

1. Notation and results. In what follows, Ω will always be a bounded open set in \mathbb{C}^n with \mathscr{C}^{∞} -boundary. This means that there exists a real-valued \mathscr{C}^{∞} -function $\rho: \mathbb{C}^n \to \mathbb{R}$ such that $\Omega = \{\rho < 0\}$ and $d\rho \neq 0$ on $\partial \Omega$. Let $z = (z_1, z_2, \dots, z_n), z_j = x_j + iy_j$, denote complex coordinates in \mathbb{C}^n , and define

$$rac{\partial}{\partial z_j} = rac{1}{2} \Big(rac{\partial}{\partial x_j} - i rac{\partial}{\partial y_j} \Big) \ , \quad rac{\partial}{\partial \overline{z}_j} = rac{1}{2} \Big(rac{\partial}{\partial x_j} + i rac{\partial}{\partial y_j} \Big) \ .$$

DEFINITION 1. The set Ω is pseudoconvex if for every $p \in \partial \Omega$, we have

$$(1) \qquad \qquad \sum_{i,j=1}^n rac{\partial^2
ho}{\partial z_i \partial \overline{z}_j} (p) t_i \overline{t}_j \ge 0$$

whenever

$$t=(t_1, \cdots, t_n)\in {\pmb C}^n-(0) \ \ \, ext{and} \ \ \, \sum_{i=1}^n rac{\partial
ho}{\partial {\pmb z}_i}(p)t_i=0 \ .$$

If we have strict inequality in (1) for all $p \in \partial \Omega$, then Ω is said to be strongly pseudoconvex.

DEFINITION 2. A real-valued C^2 -function, u, defined on an open set V in C^n is plurisubharmonic if

$$\sum_{i,j=1}^{n}rac{\partial^{2}u}{\partial z_{i}\partial\overline{z}_{j}}(p)t_{i}\overline{t}_{j}\geq0$$

whenever $p \in V$ and $t = (t_1, \dots, t_n) \in \mathbb{C}^n - (0)$.

If we have strict inequality for all $p \in V$, then u is strictly plurisubharmonic.

The following results are known:

THEOREM 3 [2]. If Ω is strongly pseudoconvex, then ρ may be chosen to be strictly plurisubharmonic in some neighborhood of $\overline{\Omega}$.

The next example shows that the theorem fails in general if we drop the hypothesis of *strong* pseudoconvexity.

EXAMPLE 4 [1]. There exists a bounded pseudoconvex domain Ω in C^2 , with \mathscr{C}^{∞} -boundary, such that no (\mathscr{C}^2) defining function ρ exists with

$$\sum_{i,j=1}^{n}rac{\partial^{2}
ho}{\partial z_{i}\partial\overline{z}_{j}}(p)t_{i}\overline{t}_{j}\geq0$$

whenever

$$p \in \partial \Omega$$
 and $t = (t_1, \cdots, t_n) \in C^n$.

There exists an example, similar to the one above, which has a real analytic boundary.

EXAMPLE 5. Let

$$egin{aligned} arOmega &= arOmega_{\scriptscriptstyle K} = \{(z_1, \, z_2) \in (C - (0)) imes C; \, \sigma \ &= |z_2 + e^{i \ln z_1 ar z_1}|^2 - 1 + K (\ln z_1 ar z_1)^4 < 0 \} \;. \end{aligned}$$

Then, if, K > 1 is sufficiently large, Ω is a bounded pseudoconvex domain in C^2 with smooth real analytic boundary, such that no \mathscr{C}^2 defining function, ρ , exists such that

$$\sum_{i,j=1}^{2}rac{\partial^{2}
ho}{\partial z_{i}\partial\overline{z}_{j}}(p)t_{i}\overline{t}_{j}\geqq 0$$

whenever $p \in \partial \Omega$ and $(t_1, t_2) \in C^2$.

The details will be given in the next section.

EXAMPLE 6. There exists a bounded pseudoconvex domain Ω in C^3 , with \mathscr{C}^{∞} -boundary, and a point $p \in \partial \Omega$ such that whenever ρ is a \mathscr{C}^2 defining function for Ω ,

$$\sum\limits_{i,j=1}^{3}rac{\partial^{2}
ho}{\partial z_{i}\partialar{z}_{j}}(q)t_{i}ar{t}_{j}<0$$

for some (t_1, \dots, t_n) and $q \in \partial \Omega$ arbitrarily close to p.

This example shows that one does not have plurisubharmonic

defining functions for pseudoconvex domains, even locally, in general.

2. Examples.

EXAMPLE 5. Clearly, Ω is bounded in $(C - (0)) \times C$. If $\partial \sigma / \partial z_2 = 0$, then $z_2 = -e^{i \ln z_1 \overline{z_1}}$. Hence, if $d\sigma = 0$, then $0 = z_1 \partial \sigma / \partial z_1 = 4K(\ln z_1 \overline{z_1})^3$. This implies that $|z_1| = 1$ and $z_2 = -1$. At such points, $\sigma(z_1, z_2) = -1$, so $d\sigma \neq 0$ on $\partial \Omega$.

To show that Ω is pseudoconvex, we compute the Leviform

$$\mathscr{L} = rac{\partial^2 \sigma}{\partial z_1 \partial \overline{z}_1} \left| rac{\partial \sigma}{\partial z_2} \right|^2 - rac{\partial^2 \sigma}{\partial z_1 \partial \overline{z}_2} rac{\partial \sigma}{\partial z_2} rac{\partial \sigma}{\partial \overline{z}_1} - rac{\partial^2 \sigma}{\partial \overline{z}_1 \partial z_2} \cdot rac{\partial \sigma}{\partial \overline{z}_1} \cdot rac{\partial \sigma}{\partial \overline{z}_2} + rac{\partial^2 \sigma}{\partial z_2 \partial \overline{z}_2} \cdot \left| rac{\partial \sigma}{\partial z_1} \right|^2$$

to obtain

$$\mathscr{L} = rac{z_2 \overline{z}_2 + K(\ln z_1 \overline{z}_1)^4 + 12K(\ln z_1 \overline{z}_1)^2}{z_1 \overline{z}_1} \cdot |z_2 + e^{i \ln z_1 \overline{z}_1}|^2
onumber \ + 4K rac{(\ln z_1 \overline{z}_1)^3}{z_1 \overline{z}_1} (i \overline{z}_2 e^{i \ln z_1 \overline{z}_1} - i z_2 e^{-i \ln z_1 \overline{z}_1}) + 16K^2 rac{(\ln z_1 \overline{z}_1)^6}{z_1 \overline{z}_1}$$

on $\partial \Omega$.

If $|z_2 + e^{i \ln z_1 \overline{z_1}}| \ge 1/2$, we have

 $\mathscr{L} \geq 3K(\ln z_1\overline{z}_1)^2/z_1\overline{z}_1 - 16K|\ln z_1\overline{z}_1|^3/z_1\overline{z}_1$,

since $|z_2| \leq 2$ on $\partial \Omega$. If K is sufficiently large, then $|\ln z_1 \overline{z}_1| < 3/16$ on $\partial \Omega$ and hence $\mathscr{L} \geq 0$.

Consider next a boundary point where $|z_2 + e^{i \ln z_1 \overline{z_1}}| < 1/2$. Then $K(\ln z_1 \overline{z_1})^4 \geq 3/4$, since $\sigma(z_1, z_2) = 0$. Hence

$$\mathcal{L} \geq -16K |\ln z_1 \overline{z}_1|^3 / z_1 \overline{z}_1 + 16K^2 (\ln z_1 \overline{z}_1)^6 / z_1 \overline{z}_1 \\ = 16K |\ln z_1 \overline{z}_1|^3 / z_1 \overline{z}_1 (-1 + K(\ln z_1 \overline{z}_1)^4 / |\ln z_1 \overline{z}_1|)$$

which is nonnegative if K is sufficiently large.

Assume next that ρ is a \mathscr{C}^2 defining function for Ω such that

$$\sum_{i,j=1}^{2}rac{\partial^{2}
ho}{\partial z_{i}\partial\overline{z}_{j}}(p)t_{i}\overline{t}_{j}\geq0$$

whenever $p \in \partial \Omega$ and $(t_1, t_2) \in \mathbb{C}^2$. In particular, $\rho = h\sigma$ for some $\mathscr{C}^{1,2}$ function h > 0. We observe that $\partial^2 \rho / \partial z_1 \partial \overline{z}_1(z_1, z_2) = 0$ whenever $|z_1| = 1$ and $z_2 = 0$. (All such points are in $\partial \Omega$.) Therefore, $\partial^2 \rho / \partial \overline{z}_1 \partial z_2(z_1, z_2) = 0$ at these points also. Hence

$$\Big(rac{\partial h}{\partial \overline{z}_1}rac{\partial \sigma}{\partial z_2}+hrac{\partial^2\sigma}{\partial \overline{z}_1\partial z_2}\Big)\!(e^{i heta},\,0)\equiv 0$$

and so

$$rac{\partial}{\partial \overline{z}_1}(he^{i\ln z_1\overline{z}_1})(e^{i heta},\,0)\equiv 0$$
 .

Multiplying with $e^{i \operatorname{Log} z_1}$ we get that

$$rac{\partial}{\partial \overline{z}_{_1}}(he^{-2\mathrm{A}\,\mathrm{rg}\,z_1})(e^{i heta},\,0)\,\equiv\,0$$

which implies that $h(e^{i\theta}, 0) = ce^{2\theta}$ for some constant c > 0. This is of course impossible.

In the next example, we localize the above idea suitably.

EXAMPLE 6. Let us use coordinates (w, z_1, z_2) in C^3 with $w = \eta + i\zeta$ and $z_j = x_j + iy_j$, j = 1, 2. We pick a \mathscr{C}^{∞} , convex function $\chi_1(t): \mathbf{R} \to \mathbf{R}$ such that $\chi_1(t) = 0$ when $t \leq 1$ and $\chi_1(t) > 0$ when t > 0. Define $\sigma_1: C^3 \to \mathbf{R}$ by

$$\sigma_{_1}=\eta+\eta^{_2}+K\zeta^{_2}+K(y_{_1}^{_2}+y_{_2}^{_2})^{_2}+(y_{_1}^{_2}+y_{_2}^{_2})\zeta^{_2}+\chi_{_1}(x_{_1}^{_2}+x_{_2}^{_2})$$
 ,

and let $\Omega_1 = \{\sigma_1 < 0\}$. Here $K \gg 1$ is a constant which will be chosen later.

LEMMA 7. The set Ω_1 is bounded and pseudoconvex with \mathscr{C}^{∞} -boundary for all K sufficiently large.

Proof. Computation shows that $d\sigma_1 = 0$ only at points $(-1/2, x_1, x_2)$ with $x_1^2 + x_2^2 \leq 1$. Since $\sigma_1 = -1/4$ at these points, it follows that $d\sigma_1 \neq 0$ on $\partial \Omega_1$. Further computation shows that σ_1 is plurisubharmonic in a neighborhood of $\overline{\Omega}_1$ if K is sufficiently large.

In the following K, sufficiently large, is fixed.

The next step is to make an infinite number of perturbations of the boundary of Ω_1 . Let $p_j = (0, 1/2^j, 0), j = 1, 2, \cdots$ and let $B(p_j, r) = \{(w, z_1, z_2); (|w|^2 + |z_1 - 1/2^j|^2 + |z_2|^2)^{1/2} < r\}$ be the ball centered at p_j of radius r. Choose functions $\chi^{(j)} \in \mathscr{C}_0^{\infty}(B(p_j, 1/2^{j+2}))$ with $\chi^{(j)} \equiv 1$ on $B(p_j, 1/2^{j+3})$ and $\chi^{(j)} \ge 0, j = 1, 2, \cdots$. Observe that $\sup \chi^{(i)} \cap \sup \chi^{(j)} = \emptyset$ whenever $i \neq j$. We may arrange that $|d\chi^{(j)}|^2 \le C_j \chi^{(j)}$ and $|\partial \chi^{(j)}/\partial y_k| \le C_j |y_k|$ for suitable C_1, C_2, \cdots , and k = 1, 2. Let $\varepsilon = \{\varepsilon_j\}_{j=1}^{\infty}$ denote a rapidly decreasing sequence, $\varepsilon_1 > \varepsilon_2 > \cdots > 0$ and define

$$\sigma_{\scriptscriptstyle 2} = \sigma_{\scriptscriptstyle 1} + \sum\limits_{j=1}^\infty arepsilon_j \chi^{(j)} {\,cdot\,} (y_{\scriptscriptstyle 1}^2 + y_{\scriptscriptstyle 2}^2) {\,cdot\,} x_{\scriptscriptstyle 2}^2 \;.$$

384

Clearly σ_2 is a \mathscr{C}^{∞} -function, and if $\Omega_2 = \{\sigma_2 < 0\}$, then $d\sigma_2 \neq 0$ on $\partial \Omega_2$ and Ω_2 is a bounded domain which is pseudoconvex at every point in $\partial \Omega_2 - \bigcup_j B(p_j, 1/2^{j+2})$.

LEMMA 8. The set Ω_2 is pseudoconvex if ε decreases sufficiently fast.

Proof. Fix a $j \ge 1$. It suffices to show that $\sigma_1 + \varepsilon_j \chi^{(j)} \cdot (y_1^2 + y_2^2) x_2^2$ is plurisubharmonic in $B(p_j, 1/2^{j+2})$ for all small enough $\varepsilon_j > 0$. This is checked by a direct computation.

We fix a sequence $\{\varepsilon_i\}$ decreasing sufficiently fast.

To complete the construction of the example, we will perturbe σ_2 inside each $B(p_j, 1/2^{j+3})$. More precisely, let $\chi_{(j)} \in \mathscr{C}_0^{\infty}(B(p_j, 1/2^{j+3}))$ with

$$\int_{R} \left(\frac{\partial \chi_{(j)}}{\partial x_{1}} + \chi_{(j)} \right) (0, x_{1}, 0) dx_{1} \neq 0$$

for each $j, \chi_{(j)} \ge 0$. We may assume that $|\partial \chi_{(j)} / \partial \eta|$, $|\partial \chi_{(j)} / \partial \zeta|$, $|\partial \chi_{(j)} / \partial y_k|$, $|\partial \chi_{(j)} / \partial x_2| \le C_j (|\eta| + |\zeta| + |x_2| + |y_1| + |y_2|)$, $k = 1, 2, C_j$ some constant. If $\delta = \{\delta_j\}_{j=j_0}^{\infty}, \delta_{j_0} > \delta_{j_0+1} > \cdots > 0$ is any sufficiently rapidly decreasing sequence,

$$\sigma = \sigma_2 + \sum_{j=j_0}^{\infty} \delta_j \chi_{(j)} \cdot (\eta + \zeta y_1)$$

is a \mathscr{C}^{∞} -function and $d\sigma \neq 0$ on $\partial \Omega$, $\Omega = \{\sigma < 0\}$. Moreover, Ω is a bounded domain which is pseudoconvex on $\partial \Omega - \bigcup B(p_j, 1/2^{j+3})$.

LEMMA 9. The set Ω is pseudoconvex if δ decreases sufficiently fast, and j_0 is sufficiently large.

Proof. Fix a $j \gg 1$. It suffices to show that Ω is pseudoconvex at those boundary points which are in $B(p_j, 1/2^{j+3})$ for all δ_j sufficiently small. In $B(p_j, 1/2^{j+3})$, $\sigma = \eta + \eta^2 + K\zeta^2 + K(y_1^2 + y_2^2)^2 + (y_1^2 + y_2^2)\zeta^2 + \varepsilon_j(y_1^2 + y_2^2) \cdot x_2^2 + \delta_j \chi_{(j)} \cdot (\eta + \zeta y_1)$. Differentiating, we obtain:

$$egin{aligned} rac{\partial \sigma}{\partial w} &= rac{1}{2} + \eta - iK\zeta - i\zeta(y_1^2 + y_2^2) + \delta_jrac{\partial \chi_{(j)}}{\partial w}ullet(\eta + \zeta y_1) \ &+ rac{1}{2}\delta_j\chi_{(j)} - rac{i}{2}\delta_j\chi_{(j)}y_1 \ , \ &rac{\partial \sigma}{\partial z_1} &= -2iK(y_1^3 + y_1y_2^2) - iy_1\zeta^2 - iarepsilon_jy_1x_2^2 \ &+ \delta_jrac{\partial \chi_{(j)}}{\partial z_1}ullet(\eta + \zeta y_1) - rac{i}{2}\delta_j\chi_{(j)}ullet\zeta \ , \end{aligned}$$

$$\begin{split} \frac{\partial \sigma}{\partial z_2} &= -2iK(y_1^2y_2 + y_2^3) - iy_2\zeta^2 - i\varepsilon_j y_2 x_2^2 + \varepsilon_j (y_1^2 + y_2^2) x_2 \\ &+ \delta_j \frac{\partial \chi_{(j)}}{\partial z_2} \cdot (\eta + \zeta y_1) , \\ \frac{\partial^2 \sigma}{\partial w \partial \overline{w}} &= \frac{1}{2} + \frac{K}{2} + \frac{1}{2}(y_1^2 + y_2^2) + \delta_j \frac{\partial^2 \chi_{(j)}}{\partial w \partial \overline{w}} \cdot (\eta + \zeta y_1) \\ &+ \frac{1}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial w} + \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial w} \cdot y_1 + \frac{1}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{w}} \\ &- \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{w}} \partial \overline{z}_1} \cdot (\eta + \zeta y_1) + \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{w}} \cdot \zeta \\ &+ \frac{1}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_1} - \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_1} y_1 + \frac{1}{4} \delta_j \chi_{(j)} , \\ \frac{\partial^2 \sigma}{\partial w \partial \overline{z}_2} &= \zeta y_2 + \delta_j \frac{\partial^2 \chi_{(j)}}{\partial \overline{w} \partial \overline{z}_2} \cdot (\eta + \zeta y_1) + \frac{1}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_2} - \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_2} \cdot y_1 , \\ \frac{\partial^2 \sigma}{\partial z_1 \partial \overline{z}_1} &= 3Ky_1^2 + Ky_2^2 + \frac{1}{2} \zeta^2 + \frac{1}{2} \varepsilon_j x_2^2 + \delta_j \frac{\partial^2 \chi_{(j)}}{\partial \overline{z}_1} \cdot (\eta + \zeta y_1) \\ &+ \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_1} \cdot \zeta - \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_1} \cdot \zeta , \\ \frac{\partial^2 \sigma}{\partial z_1 \partial \overline{z}_2} &= 2Ky_1y_2 - i\varepsilon_j y_1 x_2 + \delta_j \frac{\partial^2 \chi_{(j)}}{\partial \overline{z}_1 \partial \overline{z}_2} \cdot (\eta + \zeta y_1) - \frac{i}{2} \delta_j \frac{\partial \chi_{(j)}}{\partial \overline{z}_2} \cdot \zeta \end{split}$$

and

$$egin{array}{lll} rac{\partial^2 \sigma}{\partial z_2 \partial ar z_2} &= K y_1^2 + 3 K y_2^2 + rac{1}{2} \zeta^2 + rac{arepsilon_j}{2} \chi_2^2 - i arepsilon_j x_2 y_2 + i arepsilon_j y_2 x_2 \ &+ rac{1}{2} arepsilon_j (y_1^2 + y_2^2) + \delta_j rac{\partial^2 \chi_{(j)}}{\partial z_2 \partial ar z_2} igchtarrow (\eta + \zeta y_1) \ . \end{array}$$

Observe that $\eta = 0(\zeta^2 + y_1^2 + y_2^2)$ on $\partial \Omega \cap B(p_j, 1/2^{j+3})$. Hence there is a $D_j \gg 1$ such that for all sufficiently small $\delta_j > 0$, $\partial^2 \sigma / \partial w \partial \bar{w} \ge K/2$,

$$egin{aligned} &\left|rac{\partial^2\sigma}{\partial w\partial\overline{z}_1}-\zeta y_1-rac{1}{4}\partial_jrac{\partial\chi_{(j)}}{\partial x_1}-rac{1}{4}\partial_j\chi_{(j)}
ight|\leq D_j\partial_j||(w,\,iy_1,\,z_2)||\ ,\ &\left|rac{\partial^2\sigma}{\partial w\partial\overline{z}_2}-\zeta y_2
ight|\leq D_j\partial_j||(w,\,iy_1,\,z_2)||\ ,\ &rac{\partial^2\sigma}{\partial z_1\partial\overline{z}_1}&\equiv (3K-1)y_1^2+(K-1)y_2^2+rac{1}{4}\zeta^2+rac{1}{4}arepsilon_jx_2^2\ ,\ &\left|rac{\partial^2\sigma}{\partial z_1\partial\overline{z}_2}-2Ky_1y_2+iarepsilon_jy_1x_2
ight|\leq D_j\partial_j||(w,\,iy_1,\,z_2)||^2 \end{aligned}$$

and

$$rac{\partial^2 \sigma}{\partial z_2 \partial ar z_2} \geq K y_{\scriptscriptstyle 1}^2 + 3 K y_{\scriptscriptstyle 2}^2 + rac{1}{4} \zeta^{\scriptscriptstyle 2} + rac{arepsilon_j}{4} x_{\scriptscriptstyle 2}^2 \ .$$

We compute the Leviform,

$$\mathscr{L}_{\sigma} = \sigma_{w\overline{x}}t_0\overline{t}_0 + 2\operatorname{Re}\sigma_{w\overline{z}_1}t_0\overline{t}_1 + 2\operatorname{Re}\sigma_{w\overline{z}_2}t_0\overline{t}_2
onumber \ + \sigma_{z_1\overline{z}_1}t_1\overline{t}_1 + 2\operatorname{Re}\sigma_{z_1\overline{z}_2}t_1\overline{t}_2 + \sigma_{z_2\overline{z}_2}t_2\overline{t}_2$$

for vectors (t_0, t_1, t_2) such that

$$t_0 = (-1/\sigma_w) \cdot (\sigma_{z_1} t_1 + \sigma_{z_2} t_2)$$
.

Using the above estimates, we obtain

$$egin{aligned} &\mathscr{L}_{\sigma} \geqq \left((3K-2)y_{1}^{2}+(K-2)y_{2}^{2}+rac{1}{8}\zeta^{2}+rac{1}{8}arepsilon_{j}x_{2}^{2}
ight)t_{1}\overline{t}_{1} \ &+\left((K-2)y_{1}^{2}+(3K-2)y_{2}^{2}+rac{1}{8}\zeta^{2}+rac{arepsilon_{j}}{8}x_{2}^{2}
ight)t_{2}\overline{t}_{2} \ &+2\operatorname{Re}\left(2Ky_{1}y_{2}-iarepsilon_{j}y_{1}x_{2}
ight)t_{1}\overline{t}_{2} \ &+2\operatorname{Re}\left(rac{1}{4}\delta_{j}rac{\partial\chi_{(j)}}{\partial x_{1}}+rac{1}{4}\delta_{j}\chi_{(j)}
ight)\cdot\left[\left(rac{-1}{rac{1}{2}+rac{1}{2}\delta_{j}\chi_{(j)}
ight)\cdotrac{-i}{2} \ & imes\delta_{j}\chi_{(j)}\zeta t_{1}
ight]\overline{t}_{1} \end{aligned}$$

which clearly is nonnegative.

Assume that there exists a \mathscr{C}^2 -function $\rho: \mathbb{C}^3 \to \mathbb{R}$, such that $\Omega = \{\rho < 0\}$ and $d\rho \neq 0$ on $\partial\Omega$, with a nonnegative complex Hessian on some neighborhood U of 0 in $\partial\Omega$.

Let γ_i , i = 1, 2, 3, 4, be straight lines in the (x_1, x_2) -plane,

$$\begin{array}{l} \gamma_1 \ \text{goes from} \ \left(\frac{1}{2^j} - \frac{1}{2^{j+2}}, 0\right) \quad \text{to} \quad \left(\frac{1}{2^j} + \frac{1}{2^{j+2}}, 0\right), \\ \gamma_2 \ \text{goes from} \ \left(\frac{1}{2^j} + \frac{1}{2^{j+2}}, 0\right) \quad \text{to} \quad \left(\frac{1}{2^j} + \frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right), \\ \gamma_3 \ \text{goes from} \ \left(\frac{1}{2^j} + \frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \quad \text{to} \quad \left(\frac{1}{2^j} - \frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \quad \text{and} \\ \gamma_4 \ \text{goes from} \ \left(\frac{1}{2^j} - \frac{1}{2^{j+2}}, \frac{1}{2^{j+2}}\right) \quad \text{to} \quad \left(\frac{1}{2^j} - \frac{1}{2^{j+2}}, 0\right). \end{array}$$

We fix j so large that each $\gamma_i \subset U$. The function $\rho = \sigma h$ for some \mathscr{C}^1 -function h > 0.

We will show that $\int_{i_j} d(\ln h) \neq 0$ for all small enough $\delta_j > 0$, while

$$\int_{\tau_i} d(\ln h) = 0, \, i = 2, \, 3, \, 4 \; .$$

First consider the curves $\gamma_{\scriptscriptstyle 2}$ and $\gamma_{\scriptscriptstyle 4}$. There $ho = (\eta + \eta^{\scriptscriptstyle 2} + K\zeta^{\scriptscriptstyle 2} +$ $K(y_1^2+y_2^2)^2+(y_1^2+y_2^2)\zeta^2)h$ from which it follows that $\partial^2
ho/\partial z_2\partial \overline{z}_2\equiv 0$ on $\gamma_2\cup\gamma_4$. Hence $\partial^2
ho/\partial w\partial\overline{z}_2\equiv 0$ on $\gamma_2\cup\gamma_4$ as well. This reduces to the equation $\partial h/\partial \overline{z}_2 = 0$ from which it follows that $\int_{\tau_i} d(\ln h) = 0$, i = 2, 4. Similarly $\int_{\tau_i} d(\ln h) = 0$.

Finally, consider the curve γ_1 . Here $\sigma = \eta + \eta^2 + K\zeta^2 + K(y_1^2 + y_2^2)^2 + \chi^2$ $(y_1^2+y_2^2)\zeta^2+arepsilon_j\chi^{(j)}ullet(y_1^2+y_2^2)ullet x_2^2+\delta_j\chi_{(j)}ullet(\eta+\zeta y_1)ullet.$ Clearly $\partial^2
ho/\partial z_1\partialar z_1\equiv 0$ on γ_1 and hence $\partial^2 \rho / \partial w \partial \overline{z}_1 \equiv 0$ there also. This reduces to the equation

$$\partial^2\sigma/\partial w\partialar z_1\cdot h\,+\,\partial\sigma/\partial w\cdot\partial h/\partialar z_1\equiv 0\quad ext{on}\quad \gamma_1\;.$$

Hence

$$rac{\partial}{\partial x_1}(\ln h) = (-\delta_j)(\partial \chi_{(j)}/\partial x_1 + \chi_{(j)})/(1+\delta_j \chi_{(j)}) \; .$$

Since we choose $\chi_{(j)}$ such that

$$\int_{R} \left(rac{\partial \chi_{_{(j)}}}{\partial x_{_{1}}} + \chi_{_{(j)}}
ight) (0, x_{_{1}}, 0) dx_{_{1}}
eq 0$$
 ,

it follows that $\int_{\tau_1} d(\ln h) \neq 0$ for all small enough $\delta_j > 0$. So $\int_{\tau_1+\cdots+\tau_4} d(\ln h) \neq 0$, which contradicts the assumption that hwas well defined.

References

1. K. Diederich and J. E. Fornaess, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math, Ann., 225 (1977), 275-292.

2. J. Morrow and H. Rossi, Some theorems of algebraicity for complex spaces, J. Math. Soc. Japan, 27 (1975), 167-183.

Received May 12, 1978.

PRINCETON UNIVERSITY PRINCETON, NJ 08544