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A CUSHIONING-TYPE WEAK COVERING PROPERTY
S. W. DaAvis

We discuss certain covering properties which are based
on Michael’s notion of a cushioned collection. In particular,
we discuss property L of Bacon and certain variations on
property L in connection with isocompactness and the rela-
tionship between ;-compactness and the Lindelof property.
We then introduce property 6L which is a common gener-
alization of property L and weak df-refinability, and consider
uses of this property in similar connections.

0. -Introduction. There are a large number of covering
properties generalizing paracompactness which have been the subjects
of investigation in the last thirty years. Most of these involve
some sort of generalization of the notion of locally finite refinements.
For example, the metacompact, meta-Lindelof, 6-refinable, weakly
0-refinable, df-refinable and weakly d6-refinable spaces are all classes
defined by covering properties of this type.

In 1970, Bacon presented a covering property, property L, which
is based on a generalization of Michael’s characterization of para-
compactness in terms of cushioned refinements. We present certain
variations on property L and discuss how these may be used as
hypotheses in place of weak d6f-refinability in a number of theorems.

We present a new covering property, property 6L, which is a
common generalization of property L and weak d0-refinability and
still implies isocompactness [every closed countably compact subset is
compact]. We discuss certain variations on property 6L, and find
that many of the results obtained using property L or weak 6§6-
refinability remain true when one of these variations is used in place
of property L or weak d6-refinability in the hypothesis. In particular,
we establish a number of results relating ,-compactness with the
Lindelof property and with closed completeness.

We now list certain conventions which will be used in this
paper. A perfect mapping is a closed continuous function with
the property that the inverse image of each point in the range is
compact. We indicate a function f whose domain is the set A and
whose range is contained in the set B by f: A — B. For a collection
&7 of sets, U = U{4: Ae .} and ord (z, %) = [{A:xc Ae ¥}
If f: X — Y and A c X, we write f(A) to indicate the set {f(x): xec A}.

We include for the benefit of the reader the following defini-
tions. Original sources are listed in [16].

DEFINITION 0.1. Suppose X is a space and %7  is an open cover
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of X of the form % = U,.., 7. Consider the following conditions
on 7

(i) For each necw, 7, covers X.

(ii) For each =2eX, there exists #n,€® such that 0<
ord (x, 73,) < R

(iii) For each xeX, there exists n,€®w such that 0<
ord (z, 7;,) = N

(A) If every open cover of X has a refinement 97  satisfying
(iii), then X is called weakly 06-refinable.

(B) If every open cover of X has a refinement %~ satisfying
(i) and (iii), then X is called d0-refinable.

(C) If every open cover of X has a refinement 77~ satisfying
(i), then X is called weakly 6-refinable.

(D) If every open cover of X has a refinement %~ satlsfymg
(i) and (ii), then X is called @-refinable.

1. Property L. In [12], Michael characterized paracompactness
in terms of open covers having cushioned refinements. In this sec-
tion, we present a family of covering properties which generalize
paracompactness using a generalization of the notion of a cushioned
refinement. We denote by Card the class of all infinite cardinal
numbers.

DEFINITION 1.1. For £ €Card, and % and 7 collections of sub-
sets of a space X, we say 7 is k-weakly cushioned in % if and
only if there exists a function f: 7" — % such that if & c 7 with
|| <k and 2: ¥ —-UZ with 2(G)eG for each GeZ, then
{x(@): GeZ}C UAZ).

We say a space X satisfies property £L if and only if for every
open cover Z of X there is a sequence (Z,: n € w) of collections
of subsets of X such that U,., =2, is a covering of X, and for each
new, &, is k-weakly cushioned in wZ. (0% is the set of unions
of countable subcollections of Z.)

When £ = Y,, we have property L as defined by Bacon in [2].

THEOREM 1.2. [2] Every space which satisfies property L is
isocompact.

REMARK. If a < BeCard and X satisfies property BL, then X
satisfies property alL.

The following statement is clear from the definition, but we
state it here since it implies that within the class of spaces having
countable tightness, and thus the class of sequential spaces, we need
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only consider property L in attempting to establish relationships
between classes. Recall that a space X is said to have countable
tightness provided that whenever AC X and z ¢ A, then there is a
countable set Cc A with ze€C

THEOREM 1.8. If X is a space with countable tightness, then
for each ke Card, X satisfies property kL if and only if X satisfies
property L.

In many cases, the members of a class of spaces satisfy property
kL for every reCard. We demonstrate this fact for certain well
known classes in the next few paragraphs. We see in 1.4 that
symmetrizable spaces satisfy property £L for every r < Card. This
is not true of certain weakenings of symmetrizability, see [5], [6].

THEOREM 1.4. [5] Ewvery symmetrizable space satisfies property
kL for every k€ Card.

THEOREM 1.5. Ewvery 60-refinable space satisfies property kL for
every k€ Card.

Proof. Suppose 7% is an open cover of the §f-refinable space X.
Let U.co 7; be a d6-refinement of %, i.e., for each necw, 7, is an
open refinement of Z/ and covers X, and for each xe€ X, there is
n,€® such that ord(x, 7;) < W, For each Ve .., 7, choose
U, e % with V cU,. For each n € w, we define =, = {{x}: ord (x, 7;) <
W, and we define f,: =, — w0z by f.(z}) = U{UysxeVe 7;}.
Suppose & < 7, and z: & — UZ with ©(G)eG for every Ge <,
and let ye{x(G):Ge Z}. Choose Ve 7, with ye V. Then there
exists GeZ with #(G)e V. Thus ye U, Cf.(G), and so we have
(2(@):Ge £} Uf.(¥). Since no reference is made to |&|, this
completes the proof.

It follows from 1.5 that all semistratifiable [4] and all regular
o-spaces [14] satisfy property kL for every x e Card. We mention
these since they are classes which are of interest to many topologists.
On the other hand, the ordinal space w, does not satisfy property
kL for any k€ Card, thus we cannot get an analogue to 1.5 for the
M-spaces [13], or p-spaces [1], for instance.

We see in the next theorem that each of the properties £ for
k € Card is preserved by closed continuous functions.

THEOREM 1.6. If f: X— Y 4s a closed continuous surjection,
then for each ke Card, if X satisfies property kL, then so does Y.
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Proof. Suppose 7 is an open cover of Y. Then Z* = {f(U):
Ue %} is an open cover of X. Since X satisfies property £L, we may
choose a sequence {(Z¥: n e @) of collections of subsets of X such that
U.co Z¥ covers X and, for each necw, 25 is k-weakly cushioned
in wZ'*. For each ncw, we let &, = {f(D*): D*e &¥}. Since f
is surjective, U.,., =, covers Y. Suppose n€w®. For each De &,
pick A,e =¥ such that D = f(4,). Suppose ¢f: ¥ — wz * is the
function by which &¥ is k-weakly cushioned in wZ *. We define
bus Dy — O by ¢.(D) = f(9¥(Ap)) for each De &,. Suppose ne€ w,
< C 7, with |2°| £k, and y: £ — U< such that y(G) € G for every
GeZ. For each GeZ pick z(G)e A; such that f(@(®)) = y(G).
Then .

{¥G):Gez} ={fx(@):Ge <z}
= f({x(G): Ge <}
=f{z(@):Ge )
Cf(U ¢x({As: Ge £))
= fU {$2(4e): G £
= U{f(9x(4s)): Ge T}
= U{g.(G):Ge =} .

The third equality holds since f is a closed continuous function.
The inclusion holds since [{4;: Ge £} < |Z| < k. The other relations
are obvious, and the theorem is proved.

We see from the next theorem that each of the properties «L
for keCard is preserved by perfect preimages. Thus, for perfect
mappings, we have property kL preserved in both directions, in view
of 1.6.

THEOREM 1.7. If f: X—Y 14s a closed continwous surjection
and, for each yeY, f*'({y}) is Lindelof, then for each ke Card, if
Y satisfies property kL, then so does X.

Proof. Let Z7 be an open cover of X. For each yec Y, there
is an element U of w% which contains f~'({y}). Since f is a closed
continuous function, there exists an open subset V of Y containing
y such that f(V)cU. Thus we have an open refinement %  of
@7/ of the form %7 = {f(V): Ve 7}, where 7 is an open cover
of Y. Apply property £L to " to obtain sequences {Z,:n € w) and
{pn: M € W) With &, k-weakly cushioned in w7 by ¢, for each n c w.
For each n € w, we let o7, ={f'(D): D € 2,} and define +,: .57, — @~
by v.(f7'(D)) = f Y ¢.(D)). Clearly, U,c. o, covers X. We shall
show that for each new, 57, is k-weakly cushioned in %" and
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thus in wZ/. Suppose & C 57, with || < k. Then there exists
& cCca, with |&| <k such that & ={f(D):De&}. Suppose
. & — U2 with (G) € G for each Ge & and ze {2(G): Ge £}. Since
ze{x(f(D)): D e &}, we have that f(z) e {f(x(f(D))): De £} Ud(&).
Thus z€ f (U, (&) = U{f'@(D): De&} = U, (2). This com-
pletes the proof.

COROLLARY 1.7.1. For every k € Card, property £L 1is preserved
by perfect preimages.

2. Property OL. The similarity between the type of results
which one may obtain using property L and weak o6-refinability
(see [5], [17]) leads one to believe that there must be some relation-
ship between these properties. However, Examples 3.3 and 3.4 of
[6] are weakly d6-refinable (in fact, weakly f-refinable [15]) spaces
which do not satisfy property L. Further, for each « e Card, the
set k¥ with the topology generated by the subsets whose compli-
ment’s cardinality does not exceed k, i.e., the co-t£ topology, is a
space which satisfies property x£L and is not odf-refinable. Gary
Gruenhage has recently constructed an example, assuming the con-
tinuum hypothesis, of a space with a point countable base (hence,
satisfying property kL for every k£ < Card) which is not weakly 6-
refinable. At this time, no example is known to the author of a
space which satisfies property L and is not weakly df-refinable. It
seems that such a space must surely exist however.

We now define and discuss a property which generalizes both
property L and weak d66-refinability.

DEFINITION 2.1. For £ e Card, we say a space X satisfies property
0kL if and only if for every open cover 7 of X there exists a
sequence {Z,: n e ) of collections of subsets of X and a sequence
{7.new) of open refinements of Z such that U,., =, covers X
and for each new, U=z, CcU 7, and <, is k-weakly cushioned in
® 7, in the space U Z,.

In analogy with the treatment of property Y, L, we shall refer
to property 6 ¥, L by property L. No confusion will arise between
the notations 0L and kL since we shall never use the symbol 6 to
describe the cardinality of a collection.

Below we list a few results which are immediate from the
definitions of these properties.

ProrosiTION 2.1.1.
(a) For each k€ Card, if X satisfies property kL and A is
an F,-subset of X, then A satisfies property OkL.
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(b) For each ke Card, 1f X has countable tightness, then X
satisfies property 6L if and only if X satisfies property 6L.

(e¢) If @, feCard and a < B, then any space which satisfies
property 0BL also satisfies property OaL.

THEOREM 2.2. Every weakly 60-refinable space satisfies property
kL, for every ke Card.

Proof. Suppose X is a weakly o6-refinable space and % is an
open cover of X. Let U... 7. be a weak df-refinement of %, i.e.,
U.co 7, 18 an open refinement of % which covers X and for each
ve X, there is n,€® such that 0 <ord(z, 7;) < W, Let 2, =
{{z}: 0 < ord (x, 77) = N}, for each new. Define f,: =, > w 7, by
) =U{V:ze Ve 7;}, for each n € ®. Suppose o, 0: o —-UZ
with 2(G)eG for each Ge %, and z€{x(G):GeZ}N U 7,. Since
ze U 7,, we may choose Ve 7, with 2ze V. Then there exists
G ¢ & such that #(G)e V. Thus ze VCf,({z(G)}). Since |Z’| is not
considered in the above argument, we have that <, is x-weakly
cushioned in @ 7, in the space U 7,, for every & e Card.

THEOREM 2.3. For each k€ Card, every space which satisfies
property kL also satisfies property 6kL.

Proof. 1f X satisfies property £#L and % is an open cover of
X, then we let the 7, in the definition of property 0xL be %/ for
each n € w. The theorem clearly follows.

THEOREM 2.4. FEvery space which satisfies property 0L is
tsocompact.

Proof. Since property 6L is clearly closed hereditary, we need
only show that every countably compact space which satisfies property
0L is compact.

Suppose X is a space which satisfies property 0L and < is an
open cover of X. Let C(%’) be the collection of all subsets of X
which are covered by a countable subcollection of 7. Apply the
definition of property 6L to % to obtain sequences (7,:n e ),
(7:nmew)and (f,:new) such that, for each new, 7, is an open
refinement of %, U &7, c U 7, and =7, is a collection of subsets of
X which is Y,-weakly cushioned in @ 7, is the space U 7, by the
function f,: &, » 0 7;, and U,., <, covers X. Let C, = U=, for
each new. If Xe(C(%), then Z contains a finite subcover. There-
fore, we assume X ¢ C(%). We define n, to be the first element of
the set {m:C,, ¢ C(%)}. Let B, = X\U_ where _#Z C%Z is countable
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and covers C; for each j < m,. Suppose k < @ and E;, n; are chosen
for j < k such that:

(1) E; is closed.

(2) m; = first element of the set {m: E; N C, ¢ C(%)}.

(3) E;,CE, whenever E,,, is defined.

(4) E;NC,= 0, for m < n;.

Let B = E\U 7,,. We claim that B¢ C(%). Suppose &2 C
is countable and Bc Uz Since E,NC,, ¢ C(%), it follows that
there exists a,¢ (E, N C,)\U~%. Choose D,c =, such that a,€D,.
Let U, = f,,(D,). Suppose m < ® and a;, D;, U; are chosen for
J < m such that:

(i) a;eD;e =z,

(i) @€ (BN Co\Uici fusD)) U U ).

(i) U; = fo, D)\ a,: s < j}.

The set Ujsnfo,(D;) is the union of a countable subcollection of
7.,- Hence there exists a countable subcollection 77~ of %/ such
that Uiz, fo, (D) U USZ C U %7. By (2) above, there exists a,., €
(ENC)N\U%". Choose D, ,, € =, such that a,..,€D,,, and let U,,.,=
FuDuid\la;: 3 < m}. In this way we construct {a,: m € w}, {U,.: m € w}
and {D,:mew}. Suppose zc{a,:mecw}. By the construction,
x¢ Usz, but xe B, since E, is closed. Thus xe(E\USX)CU 7.,
and so zef{a,mew}nNUyU 7,,. Now =, is W,-weakly cushioned in
® 7,, in the space U 7;; thus, v € Uncofo,(Dn). It follows from
the W,-weak cushioning of =, in w 7, that {U,: me »} is a coun-
table open cover of {a,: m € ®} with no finite subcover. Of course,
{a,.: me w} is a closed subset of X; hence, it is countably compact.
This contradiction establishes that B¢ C(Z’). There exists mew
such that BNC, ¢ C(z/). Let m,,, be the first such m. Let 77  be a
countable subcollection of Z covering BNC; for each j<m,,,. Let
E..,=B\U % The set E,,, = B\U%Z = (E.\U 7,)\U% is clearly
closed. By choice of n,,, and by the observation above, (2) and (3)
are satisfied. Since (Uj<,,,, C)NBC U 77, condition (4) is satisfied.
Note that n,,,>mn,, by construction, and thus, by 4), N{E.:kcw}=02.
However, (E,: k€ w) is decreasing sequence of nonempty closed sets.
This contradiction to the countable compactness of X establishes the

result.
The above proof combines the ideas of the proof of the lemma

in [5] with the proof in [16] of the isocompactness of weakly d6-
refinable spaces. This style of proof can be used to obtain certain
strengthenings of theorems of Blair [3] as we see in the following
three theorems.

Recall that a space is called closed-complete [9] (respectively,
realcompact [10]) in case every closed (respectively, z-) ultrafilter
with the countable intersection property is fixed. (In addition, real-
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compact spaces are required to be completely regular and T,.)

THEOREM 2.5. If X is a T, W,-compact space which satisfies
property 0N, L, then X 1is closed-complete.

Proof. Suppose .+ is a free closed ultrafilter on X which has
the countable intersection property. Let % = {X\F:Fe.7}. The
collection 77 is an open cover of X with no countable subcover. As
we did in the proof of 2.4, we shall construct a sequence (E,: k< ®)
satisfying (1)-(4) of the proof of 2.4. Our proof here will differ
(in the notation of the proof of 2.4) in the way we show that
BeC(z). To see that this is true, we continue the construction
used in the proof of 2.4 to obtain sets {a.. a < w}, {U: a < @}, and
{D,: @ < ®,} such that:

(1) For each a < ®,, a.€ D, € &,,.

(ii) For each a < w,, a.€ (Ey N Co)\(UscaSn,(Ds) U U ZZ).

(iiif) For each a < w,, U, = f,,(D)\{as: B < a}.

Reasoning similar to that used in the proof of 2.4 shows that
{Usa < ®} is an open cover of {a. a < w,}, but for each g < w,,
Us; N{e;: @ < ®} = {a;} which contradicts the 3{,-compactness of X.
For each k€ w, no countable subcollection of 7 covers E,, and thus
E.NF = @ for each Fe . However, .& 1is a closed ultrafilter,
and so E,e.» for every kew. But N{E, kecw}= ¢ contradicting
the countable intersection property and the result is established.

From the proof above and the proof of 2.2, we have the follow-
ing analogue of Corollary 3.2 of |3].

COROLLARY 2.5.1. If every uncountable discrete subset of X has
a 2-limit point tn X, then the following are equivalent:

(a) X 1s closed complete.

(b) If & 4s any free closed ultrafilter on X, them we may
apply 0N L to {(X\F:Fe. 7 }. (In saying “we may apply 603,L to
(X\F: Fe.o}, we mean that if we let 7z = {X\F:Fe 7} then
we may obtain sequences {Z,:me®) and { 7,:mecw) asin 2.1 with

K= }tz-)

THEOREM 2.6. If X 1s an W,-compact T, closed subspace of a
product of regular spaces which satisfy property 0W,L, then X 1is
closed-complete.

Proof. This can be established exactly as 3.4 of [3], since
inverse projection mappings preserve weak cushioning.

A space X is a cb-space [11] provided for each decreasing
sequence (F,:mew) of closed subsets of X with N,., F, = & there
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is a sequence (Z,:new) of zero-sets of X such that Z,DF, for
each new and Nieo Z, = @.

THEOREM 2.7. If X is a T, completely regular 3R,-compact cb-
space, then the following are equivalent.

(a) X s realcompact.

(b) X can be embedded as a closed subspace of a product of
regular weakly 66-refinable spaces.

(e¢) If F s any free closed ultrafilter on X, then {X\F: Fe 7}
has a weak 66-refinement. '

(d) X can be embedded as a closed subspace of a product of
regular spaces which satisfy property 0W,L.

(e) If F 1s any free closed ultrafilter on X, then we may
apply W, L to {X\F: Fe. 7 }.

If, in addition, X is mormal, then (a), (b), (c), (d), (e) are also
equivalent to (f) and (g).

(£f) If .7 is any free z-ultrafilter on X, then {X\Z: Ze .27}
has a weak 66-refinement.

(g) If .o is any free z-ultrafilter on X, then we may apply
ON.L to {X\Z: Ze .7},

Proof. The equivalence of (a), (b), (¢) and, for normal X, (f)
is due to Blair [3]. It is clear that (¢) implies (e), (b) implies (d)
and (f) implies (g). The fact that (d) implies (a) and (e) implies (a)
follows from 2.5, 2.6 and the result of Dykes [9] that aT, completely
regular closed-complete cb-space is realcompact. The fact that, for
normal spaces, (g) implies (e) can be proved in exactly the same
manner as Blair’s proof that (f) implies (¢c). Hence the theorem is
established.

As we saw in 2.1.1, we may replace “6%,L” in the above with
“6L” under the additional assumption that the spaces with which
we are working have countable tightness.

Within the framework of isocompact spaces, it has been a ques-
tion of considerable interest whether \,-compactness will imply the
Lindelof property, [15], [8], [5]. We see in [5] that the answer is
“yes” for T, spaces satisfying property W.,L, and hence for T, spaces
with countable tightness satisfying property L. Let us now consider
similar results for spaces satisfying property 6xL. We will not have
so nice a theorem as was obtained for property L, of course, since
the example given in [8] is weakly #-refinable (hence, satisfies
property 6k L for every k € Card by 2.2), Y,-compact and not Lindelof.
We do obtain several results by assuming that certain of the con-
ditions are satisfied hereditarily, or by assuming that closed subsets
are G;-sets. Analogues of 2.8 and 2.10 have previously been obtained
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for weakly 66-refinable spaces. These results were communicated to
the author by H. H. Wicke.

THEOREM 2.8. If X satisfies property 0L and is hereditarily
W.-compact, then X ts Lindelof.

Proof. Suppose 77 is an open cover of X with no countable
subcover. Apply the definition of property 6L to obtain (Z,: n € w)
and { 7;: n € ®) as in 2.1 with £ = W,. There exists n € ® such that
no countable subcollection of ¥, covers U.<,. We apply the
lemma in [5] in the space U 7, to obtain functions a: v, — U=,
D:w,— 2, and U: w, — {the open subsets of U 7.} such that the
following are true:

(1) For each acw, a,€ UZ,\Uscaln(Ds)-

(2) For each a¢cw,a,cD,.

(8) For each acw,U, N {a;: BE®} = {a,}.

(4) Uazea:, Ua = Uaewlf'n(Da)'

(5) {awa< ol =R,

(f, is the cushioning function for the nth level.) The set {a.. a < ®}
is uncountable and relatively discrete. This contradiction establishes
the result.

COROLLARY 2.8.1. A space ts hereditarily Lindelof if and only
if it is hereditarily Y,-compact and hereditarily satisfies property
oL.

THEOREM 2.9. For each k€ Card, if X is perfect and satisfies
property 0kL, then X satisfies property kL.

Proof. Suppose Z is an open cover of X. Apply the definition
of property 0xL to obtain sequences {(Z,:ne€w) and { 7,: n € ®) as
in 2.1. Note that we may assume the collection =, to be a disjoint
collection, for each mew. For each % cw, choose a sequence
(F(n, k): ke @) of closed sets such that U 7, = Uieco F(1, k). We
define 2%, = {DN F(n, k): De =,}. For each (n, k)e w X w, F(n, k)
is a closed set which is contained in U 7,. Since <, is k-weakly
cushioned in w 7, in the space U 7, and ¥, refines % for each
new, and UD¥E.,C U2, NF(n, k) for each (n, k) e w X @, we easily
see that &}, ., is k-weakly cushioned in wZ for each (n,k)ew X w
by the cushioning function ff , defined in the obvious way from
fn, and the theorem follows.

We can use 2.9 together with 3.6 of [5] to obtain the follow-
ing results. These could also be obtained from 2.8 using 2.1.1a.
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THEOREM 2.10. If X is a perfect, T,, W,-compact space which
satisfies property 6L, then X is hereditarily Lindelof.

COROLLARY 2.10.1. If X is a T, space, then X is hereditarily
Lindelof if and only if X is perfect, W,-compact and satisfies
property OL.

The following can be proved in the same way that we proved
1.7. Unfortunately, we do not know if the analogue of 1.6 holds
for property 6xL.

THEOREM 2.11. If f: X —Y 18 a closed continuous swrjection
and, for each yeY, f'({y}) is Lindeldf, then for each ke Card, if
Y satisfies property 0kL, then so does X.

COROLLARY 2.11.1. For each k € Card, property 0kL is preserved
under perfect preimages.

Examples are readily available to demonstrate that property 6L
is strictly weaker than property L. In fact, the examples in [8]
and Y in [7] both have property 6xL for every ke Card but do not
satisfy property L. It is inconceivable to the author that property
0L could imply weak d6-refinability; however, at this writing no
example is known. Of course, an example of a space which satisfies
property L and is not weakly d6-refinable would supply the needed
example here as well.

3. Questions. The following is a list of some open questions
regarding the properties discussed in this paper.

Question 3.1. Is the closed continuous image of a weakly d6-
refinable space necessarily weakly d6-refinable?

Question 3.2. Does the closed continuous image of a space which
satisfies property AL necessarily satisfy property 6L?

Question 3.3. Is there a T,, Y,-compact space which satisfies
property L and is not Lindelof?

Of course, such a space could not satisfy property W.,L, and
therefore could not have countable tightness. Also, such a space could
not be hereditarily Y,-compact, and therefore could not be perfect.

Question 3.4. Is there a T,, W,-compact space which satisfies
property 6L (or L) and is not closed-complete?
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Such a space could not have countable tightness or satisfy proper-
ty 0W,L.

Question 38.5. Is there a space which satisfies property L
(preferably with countable tightness) and is not weakly d6-refinable?
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