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POLYNOMIAL COVERING SPACES AND HOMOMORPHISMS
INTO THE BRAID GROUPS

VAGN LUNDSGAARD HANSEN

A polynomial covering space is the zero set for a para-
metrized family of complex polynomials. Such covering
spaces arise naturally in several contexts in the study of
holomorphic mappings. There are fruitful connections
between polynomial covering spaces and certain homo-
morphisms into the Artin braid groups. We shall establish
these connections and use them to obtain an algebraic
classification of the polynomial covering spaces.

1* Introduction* Covering spaces defined by parametrized
families of complex polynomials arise naturally in several contexts
in the study of holomorphic mappings, e.g., in connection with the
Weierstrass preparation theorem. A study of the topology of such
covering spaces within a proper topological framework was suggested
in [6] by the introduction of polynomial covering spaces. Roughly
speaking, an n-ΐolά polynomial covering space over a connected,
topological space X is the zero set for a continuously varying family
of simple, normed, complex polynomials of degree n parametrized
by X. It is well known that an ?ι-fold covering space over X is
classified by a conjugacy class of homomorphisms of the fundamental
group of X into the symmetric group on n letters. The purpose
of this paper is to examine the relationship between n-ίold polynomial
covering spaces over X and homomorphisms of the fundamental
group of X into the Artin braid group on n strings. What we are
looking for are necessary and sufficient conditions, for a finite
covering space over X to be equivalent to a polynomial covering
space over X, and for two polynomial covering spaces over X to be
equivalent as coverings.

In [4] and later papers, see e.g., the references cited in [5],
Gorin and Lin also study parametrized families of simple, normed
complex polynomials, but not from the point of view of examining
the topological types of the associated covering spaces. The purpose
of Gorin and Lin is to investigate, when a continuous family of
polynomials admits a continuous factorization in polynomials of
degree 1 over the parameter space. The existence of such a factori-
zation is equivalent to the associated polynomial covering space be-
ing trivial. Of other papers somehow related to the work in this
paper, we note in particular the papers by ArnoPd [1] and Zjuzin
and Lin [9].
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Now a short description of the contents of the paper. The link
from ^-fold polynomial covering spaces over X to homomorphisms
of the fundamental group of X into the braid group on n strings
is established in §2 via the introduction of root maps and their
induced homomorphisms. In §3 we describe certain characteristic
homomorphisms for an n-ί old polynomial covering space over X, with
Lemma 3.1 as the key result. Section 4 contains a geometric
criterion for a polynomial covering space to be trivial, stated as
Theorem 4.1. This is the point, where contact is made with the
work of Gorin and Lin [4]. We comment on that in Remark 4.2.
Section 4 closes with Example 4.3, which shows among others that
a nontrivial homomorphism into the braid group on n strings can
determine a trivial w-fold covering space. The main results in the
final §5 are Theorem 5.1, where we give an algebraic criterion for a
covering space to be equivalent to a polynomial covering space, and
Theorem 5.7, where we give a solution to the problem, when two
homomorphisms of the fundamental group of X into the braid group
on n strings determine equivalent n-ΐo\d polynomial covering spaces
over X. Theorem 5.7 provides thereby an algebraic classification
of the w-fold polynomial covering spaces over X.

The author is indepted to the University of Warwick for
hospitality in the month of July 1977, when part of this work was
done, and to the referee for pointing out to him the work of Gorin
and Lin.

2* The link from polynomial covering spaces to homo-
morphisms into the braid groups* Throughout this paper X denotes
a connected topological space with the homotopy type of a CW-com-
plex and with a nondegenerate base point x0 e X. The fundamental
group of X with base point x0 e X will be denoted by πt(X).

First we recall the basic definitions from [6]. A simple
Weierstrass polynomial P(x, z) over X is a polynomial function
P IxC^Cof the form

n

P(xf z) = z* + Σ «*(»)«*"* ,

where alf •- ,an:X-*C are complex valued, continuous functions,
such that for any fixed xeX, P(x, z) has no multiple complex roots.
Associated with P(x, z) there is an n-ί old covering map π: E —> X
defined by the diagram,

E <=—> X x C
\ /

X
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where E — {(x, z) e X x C\P(x, z) = 0} and proJ! is projection onto the
first factor, π: E —> X is called the n-ίold polynomial covering map,
and E the n-ΐold polynomial covering space over X, associated with
P(α, s).

The continuous functions at\ X—> C, i — 1, , n, define a (con-
tinuous) map

a = (a19 , α j : X > 5* - C\Δ

into the complement of the discriminant set J S C * in complex w-
space C*. a: X—> Bn is called the coefficient map for the polynomial
covering map π: E —> X associated with P(x, z). We know from ([6],
§3) that π: E -» X is equivalent to the pull-back of a canonical 71-
fold polynomial covering map πn: En —> £>w along α. Therefore n-ΐ old
polynomial covering spaces over X, which have homotopic coefficient
maps, are equivalent as coverings.

In order to put polynomial covering spaces into connection with
conjugacy classes of homomorphisms from the fundamental group
of X into the braid groups we need some preparation.

Let Σ% denote the symmetric group on n letters. The action
of Σn on the space of complex ^-tuples Cn by permutation of co-
ordinates induced a free Inaction on

FJfl) = {(*!, -• ,z»)eC*\ziΦ z3; all i Φ 3}

with the configuration space Cn(C) for an (unordered) set of n points
in the plane C as orbit space. The canonical projection map

pn: Fn{C) > Cn{C)

defines therefore a principal ^-bundle, in particular an nl-fold
covering map. It is well known, see e.g., ([6], §4), that there is a
homeomorphism

Φ:Cn(C) >B",

which to the element cls(a19 , an) eCn(C) associates the w-tuple
(aί9 , an) 6 Bn defined by

zn + Σ W'* = (« ~ «i) (« ~ «•) .

By a theorem of Fadell and Neuwirth [2] we know that Cn(C),
and hence also Bn, is an Eilenberg-MacLane space of type (B(n), 1),
where B(n) denotes the Artin braid group on n strings. Take c0 =
(1, , n) 6 Fn(C), c0 = pn(cQ) G Cn(C) and bQ = Φ(c0) e Bn as base points

in Fn(C), CJJC) and Bn, respectively. Then the group of braids on
n strings can be defined as the fundamental group B(n) — π^C^C), c0).
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The group H(n) = π^F^C), c0) is called the group of colored braids
on n strings. For later reference we note that the homotopy se-
quence for the covering map pn: Fn(C) —> Cn(C) reduces to the follow-
ing short exact sequence, which we will call the braid group se-
quence,

pn is induced by the projection map p% and τn is a boundary
operator, called the permutation homomorphism.

Let now π: E —> X be an n-ίold polynomial covering map with
coefficient map a: X ^ Bn. Using the homeomorphism Φ:Cn(C)-*Bn

we can then define a unique map a: X—> Cn(C) such that the following
diagram is commutative,

Cn(C)

«\ 1

For obvious reasons a: X —• CΛ(C) is called the rooί map for the
polynomial covering map π: E —> X. By definition of Φ, the coefficient
map α and the root map a are related by the formula

z% + Σ a^x)**-' = ^ Π (« - «.)

for all xe X.
The root map a: X —• Cn(C) induces a homomorphism

α*: TΓ^X, a?0) > Ki(Cn(C), a(x0))

between fundamental groups. Since xQ e X is a nondegenerate base
point and CΛ(C) is connected, this homomorphism determines a uni-
que conjugacy class of homomorphisms of π^X) into B(n). Any one
of the homomorphisms in this conjugacy class will also be denoted
by

a+.π^X) >B(n) .

Since Cn(C) is an Eilenberg-MacLane space of type (B(ri), 1) and
X has the homotopy type of a CW-complex it is well known, see
e.g., Spanier ([7], Theorem 11, p. 428), that there is a bijective cor-
respondence between the free homotopy classes of maps of X into
Cn(C) and the conjugacy classes of homomorphisms of πλ(X) into
B(n) defined by mapping the free homotopy class of a: X —• Gn(C)
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into the conjugacy class of a*: π^X) —> B(n). The homeomorphism
Φ: Cn(C) —> Bn induces a bijective correspondence Φ* from the free
homotopy classes of maps of X into Cn(C) to those of X into JB .
Finally, we get a surjective map by mapping the free homotopy
class of a: X—• Bn into the equivalence class of the n-ίolά polynomial
covering map πa: Ea —> X with coefficient map a.

The above remarks are summarized in the following diagram

Conjugacy class of H / (χ) τ?(7t\yonj.

bijective correspondence

Free homotopy class Γ v r (ΓxΛ

of a:X >C%(C) L A ' °* ( C ) J

Φ# bijective correspondence

Free homotopy class r v Ώnl . T>r , Vλ Equivalence class
of a: X > B" [X> B J ^rTecΐiv^W F C n W of πa: Ea > X .

In this diagram Horn (π^X), B(ri))coni- denotes the set of conjugacy
classes of homomorphisms of πx(X) into B(ri), PCn(X) denotes the
set of equivalence classes of n-ίolά polynomial covering spaces over
X, and [X, Y] denotes the set of free homotopy classes of maps of
X into Y for an arbitrary space Y.

Using the diagram we can freely switch between presenting an
equivalence class of n-ίold polynomial covering spaces over X by a
free homotopy class of maps of X into Bn, or a free homotopy class
of maps of X into Cn(C), or a conjugacy class of homomorphisms
of π^X) into B{n).

As we shall see in §4, the surjective map [X, Bn] —• PCn(X) is
not in general injective.

3* Characteristic homomorphisms for polynomial covering
maps* Consider an arbitrary n-ί old covering map π: E —> X. For
any ordering of the n points in the fibre over xoeX, π~\xo)9 path
lifting induces in an obvious way a homomorphism X(π): π^X) —> Σn.
If we change base point in X or change the order of the points in
the fibre over the base point, this changes X(π) by an inner auto-
morphism in Σn. Hence X(π) is well defined by π up to conjugacy.
The conjugacy class of X(π) is exactly the characteristic class of the
n-ίo\ά covering map π as defined in Steenrod ([8], 13.5, p. 61). Any
choice of a homomorphism X{π) as above will be called a character-
istic homomorphism for π. It is well known that two n-ί old cover-
ing maps Ki'.Ei-^X, i = 1, 2, are equivalent if and only if X(πx)9

X(π2):π1(X)-+Σn are conjugate. See e.g., Steenrod ([8], 13.7, p. 62).
For polynomial covering maps we can give an alternative, and
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in this connection more useful, description of the characteristic
homomorphisms.

Let π: E -^ X be an n-ίold polynomial covering map with root
map α:X —> Cn(C). As explained in §2, α induces a conjugacy class
of homomorphisms α*\ π^X) —> B{n). Composing a homomorphism
α* in this conjugacy class with the permutation homomorphism
τn: B(n) —> Σn from the braid group sequence, we get a homomorphism
τn°α%\ πx(X) —> Σn. With notation as above we have

LEMMA 3.1. The homomorphism τnoα*\ πt(X) —> Σn is α charac-
teristic homomorphism for the n-fold polynomial covering map
π: E -> X, i.e., X(π) = r / ^ .

Proof. Since it is only the conjugacy class of a* that matters,
we can assume w.l.o.g. that a is base point preserving, i.e.,
a: (X, x0) - (CUC), Co).

Let then /: [0, 1] —> X with /(0) = /(I) = x0 be a representative
for the element [/Je^CX), and let (a<> f)': [0,1]-> Fn(C) be the
unique lifting of a of: [0, 1] -> C%(C) over pn: Fn(C)-> Cn(C) with
initial value (ao/)'(0) = c0 e FJC). Then (αo/)'(l) defines a permuta-
tion σ / 6 2^ of the ̂  coordinates in cQ = (1, , n). By the construc-
tion of τn as a boundary operator in the homotopy sequence for pn,
it is clear that τnoa*([f]) = σ/.

If we identify the circle S1 with the space obtained by identify-
ing end points in [0, 1], then /: [0, 1] —• X induces a map /: S1 —> X,
since /(0) = /(I) = α?0. Let /*(ττ): /*(JE) -> S1 denote the n-ΐolά poly-
nomial covering map defined as the pull-back of π along /. From
the definition of the characteristic homomorphism X(π) by path lift-
ing, it follows easily that X(ττ)([/]) is the clutching permutation,
see ([6], §8), for /*(π). On the other hand it is clear that the
clutching permutation for /*(ττ) is σfeΣn. Hence Z([/]) = σf = τno
<**([/])• Since [fleπ^X) was arbitrary this proves Lemma 3.1.

4* A criterion for a polynomial covering map to be trivial*
It is intuitively clear that an %-fold polynomial covering map
π: E —> X is equivalent to the trivial n-ί old covering map if and
only if we globally can order the set of roots in the underlying
simple Weierstrass polynomial in a continuous fashion. This is made
precise in the following

THEOREM 4.1. Let π:E-^X be an n-fold polynomial covering
map with root map a: X-*C%(C). Then π: E —• X is a trivial
covering map if and only if the root map a admits a (continuous)
lifting α': X-* Fn(C) over pn: Fn(C) -> Cn(C),
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F%{C)
/

a'/ \Vn

/ 1

Proof. Assume first, that π: E -* X is a trivial n-ίold polynomial
covering map and let h: X x {1, > -, n}-> E be a homeomorphism
commuting with projections onto X, which defines an equivalence
of π with the trivial n-ΐolά covering map. Since E is a polynomial
covering space, there is an inclusion map ECL^ X x C commuting
with projections onto X. Let hc: X x {1, , n} —> C denote the
coordinate map for h into C, when we consider fc as a map into
Xx C via this inclusion. Obviously, the root map a:X-+Cn(C) is
the map, which to x e l associates the configuration a(x) e Cn(C)
defined by the set of coordinates in C for the n points in π~ι(x) c
XxC. The map a':X—>Fn(C), which to x e X associates the ordered
%-tuple a\x) — (hc(x, 1), , hc(x, n)) eFn(C) is then clearly a lifting
of a as required, i.e., a = pno<χ'.

Assume next, that the root map a: X —> Cn(C) can be lifted to
a map a! = (alf , an): X-> Fn(C) over pn. The map h: X x
{1, , n} —> X x Cj defined by h(x, i) = (xf a^x)) for xeX and
i = 1, , n, is then an embedding commuting with projections onto
X, which maps X x {1, , n] homeomorphically onto E. This
proves that π: E —• X is trivial, and hence Theorem 4.1 is proved.

REMARK 4.2. In [4], Gorin and Lin study complete solvability
of polynomial equations of the type, which we in this paper call
simple Weierstrass polynomials. Complete solvability of a simple
Weierstrass polynomial with root map a: X -> Cn(C) is equivalent to
the existence of a lifting a': X—> Fn(C) as in Theorem 4.1. See the
section preceeding ([4], Lemma 1.1). The results in [4] can there-
fore immediately be translated into results on triviality of poly-
nomial covering maps.

The author is much indepted to Karsten Grove for coversations
on the following

EXAMPLE 4.3. Consider S1 as the space of complex numbers of
modulus 1.

For the simple Weierstrass polynomial P(x, z) — z2 — x2 over S\
the coefficient map a = (a19 a2): S1-^ B2 ~ C2\Δ is given by a(x) —
(0, — x2) and the root map a: S1 -+ C2(C) is given by a(x) = els (x, —x),
for x e S1.
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The root map α: S1-+C2(C) clearly admits a lifting a!\ Sί

over p2: F2(C) —> C2(C), namely α'(a) = (#, —a;) for xeS1. Hence the
2-fold polynomial covering map π: E -* S1 associated with P(x, z) is
trivial by Theorem 4.1. This is also easy to prove directly.

We shall now prove that the coefficient map a: S1 -+ B2, or
equivalently, the root map a: Sι —> C2(C), is not freely homotopic to
a constant map. This will show that the surjective map [X, Bn] —>
PCn(X) constructed in §2 is not in general injective, in particular
not for X = S1 and n = 2.

First observe that -F2(C) = {(zlf zi)eC*\zι Φ z2}. Hence there is
a homeomorphism F2(C) —> C x (C\{0}), which maps fo, z2) eF2(C) into
(Ci, ζ2) = (A + 2̂> ̂ i — ίs2) 6 C x (C\{0}). Under this homeomorphism,
the lifting of the root map a': S1-* F2(C), x\-+ (x9 — x), obviously
corresponds to the map a'\ S1 —> C x (C\{0}), x ι-> (0, 2a;).

There is an obvious homotopy equivalence C x (C\{0}) ^ S1,
defined in the second argument by radial projection. Since S1 is a
simple space, we can work with based homotopy classes in stead of
free homotopy classes of maps.

Using the above remarks it follows that there is a sequence of
isomorphisms

*i(C x (C\{0})) ~ π^) ~ Z

to the integers Z, and that a': S1 —> F2(C) through these isomorphisms
corresponds to 16 Z. Hence a': S1 —> î CC) is not freely homotopic
to a constant map. Since p2: F2(C) -* C2(C) is a covering map, this
implies that the root map a: S1 —> C2{C) is not freely homotopic to
a constant map. This finishes Example 4.3.

5* An algebraic classification of the polynomial covering
maps* In the main results in this final section we provide necessary
and sufficient conditions, for a homomorphism of πt(X) into Σn to
represent the equivalence class of an %-fold polynomial covering
space over X, and for two homomorphisms of π^X) into Bin) to
define equivalent polynomial covering spaces over X.

Most of our investigations are related to the spaces and maps,
which will be defined subsequently, in the following commutative
diagram,

Horn (TΓ^X), H{n))

Horn fa(X), B(n)) > PCn{X)

Horn (JΓX(X), ΣJ > CJX) .
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Cn(X) and PCn(X) denote respectively the set of equivalence
classes of n-ίo\d covering spaces over X and n-ίold polynomial
covering spaces over X. There is an inclusion map PCn(X) cz-> Cn(X).

For any pair of groups G and H, we denote by Horn (G, H) the
set of homomorphisms of G into H. The maps pn°— and τno— in
the diagram are induced by composition of homomorphisms from
the homomorphisms in the braid group sequence

1 > H{n) — B(n) — Σn > 1 .

Finally, we explain now the horizontal maps in the diagram. The
map

Horn (π,{X), Σ%) > Cn{X)

is the surjective map, which to the homomorphism φ: π^X) —> Σn

associates the equivalence class of the n-ίold covering map π: E -> X
having φ as a characteristic homomorphism. The covering map π
can be constructed as an associate bundle to the universal covering
space over X viewed as a principal ττ1(X)-bundle. Compare also
Steenrod ([8], 13.8, p. 64). From the classification theorem for
covering maps we know, that two homomorphisms φ, ^e
Horn (π^X), Σn) determine the same equivalence class of %-fold
covering spaces over X if and only if they are conjugate. In
particular we note, that the constant homomorphism of πt(X) into
the identity permutation in Σn is the unique representative for the
equivalence class of the trivial w-fold covering space over X.

The map

Horn (TΓ^X), B{n)) > PCn(X)

is the surjective map, which to the homomorphism φ: πt(X) —> B{n)
associates the equivalence class of the w-fold polynomial covering
map TΓ: E —> Xhaving X(π) = τnoφ as a characteristic homomorphism.
That such a map exists follows by the constructions in § 2 combined
with Lemma 3.1.

This finishes the definitions of the spaces and maps in the above
diagram.

First we make use of the diagram to prove

THEOREM 5.1. The equivalence class of an n-fold covering map
π:E->X represented by the homomorphism φ: π^X) —• Σn contains
a polynomial covering map if and only if there exists a homomor-
phism φf\ TtJ^X) —• B(n) such that φ — τn o φ*.

Proof. An w-fold polynomial covering space over X is re-
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presented by a homomorphism ψ: π^X) —> Bin). The homomorphisms
φ, τnoqjre Horn (π1(X)9 Σn) represent equivalent coverings if and only
if they are conjugate. Since τn is an epimorphism, it follows then
easily, that φ and τn°ψ represent equivalent coverings if and only
if there exists a homomorphism φ'\ πλ(X) —»B(n), conjugate to
ψiπ^X)—> B(n), such that φ — τnoφt. Theorem 5.1 follows now
immediately using the main diagram.

COROLLARY 5.2. In order that the space X has the property
that all n-fold covering spaces over X are equivalent to polynomial
covering spaces, it is necessary and sufficient that

τno - : Horn fa(X), B(n)) > Horn (π^X), Σn)

is surjective.

EXAMPLE 5.3. Suppose that πt(X) is a free nonabelian group.
Then the condition in Corollary 5.2 is clearly satisfied. This is the
case, since given a homomorphism φ\ τcλ(X) —> Σn, we can just lift
the images in Σn of a set of generators for πλ(X) and then extend
to a homomorphism φf\ πλ(X) —» Bin). We can lift the images of the
generators, since τn: B(n) —> Σn is an epimorphism. For a space X
with a free nonabelian fundamental group, any finite covering space
over X is therefore equivalent to a polynomial covering space.
Specific examples of such spaces X are provided e.g., by punctured
surfaces.

Next we prove the following algebraic analogue to Theorem 4.1.

THEOREM 5.4. A homomorphism φr: πλ(X) —> B{n) represents the
trivial n-fold covering space over X if and only if there exists a
homomorphism φ"\ π^X) —> H(n) such that φr = pn°φ".

Proof, φ': πx(X) -> B{n) represents the trivial w-fold covering
space over X if and only if φ = τn © φr is conjugate to, and therefore
equal to, the constant homomorphism of π^X) into the identity
permutation in Σn. By exactness of the braid group sequence, it
follows easily, that this is the case if and only if there exists a
homomorphism φ"\ πλ(X) — > H(n) such that φf — pnoφ".

EXAMPLE 5.5. Suppose that πx(X) is a torsion group. Since
B{n) by a theorem of Fox and Neuwirth [3] contains no torsion,
the constant homomorphism into the identity element is the only
homomorphism from πx(X) into B(n). Since this homomorphism
lifts to the constant homomorphism of TC^X) into H(n), it follows
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therefore by Theorem 5.4, that every polynomial covering space
over X is trivial. This gives a slightly different proof of Theorem
4.3 in [6].

Finally, we turn now to the problem when two homomorphisms
<p, ψ e Horn (πί(X)9 B(n)) determine the same equivalence class of
w-fold polynomial covering spaces over X.

By the classification theorem for covering spaces, we know that
two homomorphisms φ, ψ e Horn {π1{X)9 B(n)) determine the same
equivalence class of n-iold polynomial covering spaces over X if and
only if τ%oφ, τnoψe Horn (π^X), Σn) are conjugate homomorphisms.
Since τn is an epimorphism, this condition is satisfied if and only
if there exists an element b e Bin) such that τn°>f ~ τnoφh. Here
φh e Horn (TΓ^X), B{n)) denotes the conjugation of φ by &, i.e., for
every 7 e πt(X) we have φb(7) = b φ(y) b~\ If τn © ψ = τn o φ\ then
exactness of the braid group sequence shows that there exists a
unique map (not necessarily a homomorphism) Θ: πx{X) —> H(n) such
that (pn°θ)*ψ — <pb. The multiplication on the left in this equation
is pointwise multiplication of maps of rc^X) into B(n).

Since (pn°θ) ψ has to be a homomorphism of πλ(X) into B(ri),
θ has to satisfy a certain condition. To describe this condition, we
note that the homomorphism ψ: πx(X) —> Bin) induces an action of
πλiX) on H(n) as follows. For 7 e π^X) and e e H(ri) we let c^r) e
H(ri) denote the unique element, which exists by exactness of the
braid group sequence, such that

P«(pW) = ψiΎ) pjfi) ψiΊ)'1 .

The condition, the map θ: πλ(X) —> H(n) has to satisfy in order
that (pn°θ)'ψ is a homomorphism of π^X) into B(n), is then easily
seen to be expressed in the following

DEFINITION 5.6. Let ψ: π^X) —• B(n) be a homomorphism. A
map θ: πx(X) —> H(n) is then called a ψ-crossed homomorphism if

for all Ύly 72 e ^

Using the notation above, the arguments preceeding Definition
5.6 proves the following

THEOREM 5.7. Two homomorphisms φ,ψe Horn (TΓ^X),

determine the same equivalence class of n-fold polynomial covering
spaces over X if and only if there exists an element b 6 B(n) and a
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ψ-crossed homomorphism θ: πt{X) —> H(n) such that (pn ° θ) ψ = φh.

Theorem 5.1 and Theorem 5.7 taken together provide a satis-
factory algebraic description of the equivalence classes of polynomial
covering spaces over X. It would be nice to have a geometric
description, say in terms of a classifying space for the w-fold poly-
nomial covering spaces over X.
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