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COFLAT RINGS AND MODULES

ROBERT F. DAMIANO

In this paper, coflat modules are defined and it is shown
that these modules are naturally dual to flat modules. A ring
R is an F'C ring in case it is coherent and both of its regular
modules R and R; are coflat. The structure of these rings
is examined with emphasis on the categorical dualities that
arise. Finally, with respect to F'C rings, categorial equiv-
alence is discussed.

0. Background and notation. Throughout this paper R denotes
an associative ring with identity 1. We denote the Jacobson radical
of R by J(R) and the right (left) socle of R by Soec (R (Soc (zR)).
The pxq matrix ring over R is denoted by Mat,,, (R). Every right
(left) R-module is assumed to be unitary. We denote the endomor-
phism ring of a right (left) R-module, M} (M) by End (M) (End (oM)).

The category of right (left) R-modules is denoted by CM, (;CM)
and its class of objects by #; (z.#).

A submodule N < M is said to be essential, denoted N < M, if
NNL=#0 forall 0L < M.

A submodule N £ M is said to be superfluous, denoted by N < M,
if K+ N = M implies K = M for all K< M. We say

fiM—> L

is a superfluous homomorphism if N = Ker f < M. In particular,
J(R) is the largest superfluous submodule of R. A superfluous epi-
morphism

P— M—0

is a projective cover of M if P is projective [2, Chapter 17]. Often we
speak of P above as a projective cover of M. Not all modules have
projective covers. A ring is semiperfect if every finitely generated
right (left) module has a projective cover. A ring is right (left)
perfect if every right (left) module has a projective cover. In par-
ticular, right (left) artinian rings are right (left) perfect. A ring is
von Neumann regular in case a € aRa for each a € R or equivalently
if every finitely generated right (left) ideal is a direet summand.

A set of tuples {(M,, f)}acs, Where f,: M, — N, generates N as a
set, if for each n € N there exists an f, such that neImf,.

A module M is (finitely) generated by Uj in case for some (finite)
index set A there is an R-epimorphism

UY =@, U— M—0.

349



350 ROBERT F. DAMIANO

If all modules in ., are generated by U, then U is called a
generator. In particular, R is a projective generator in CM,.

Dually, a set of tuples {(N., fo)}ecs» Where f,: M — N,, cogenerates
M as a set, if for m, = m,c€ M there exists an f, such that f.(m,) %=
Solmy).

Clearly, if {N,}, M are Z-modules and the {f,} are Z-homomor-
phisms, then {(f,, N,)} cogenerates M as a set if for each 0 = m e M,
there exists an f, such that m ¢ Ker f,.

A module M, is said to be (finitely) cogenerated by U, in case
for some (finite) index set A there is an R-monomorphism

0O—M—U"=nrn,U.

If all modules in _#; are cogenerated by U, then U is called a
cogenerator.

1. Coflat modules. If M, is a right R-module, then each pxg
matrix C ={[[C;;]] over R determines a unique Z-homomorphism
C: M? — M* via the usual matrix multiplication C: m — mC for each
m = (my, ---, m,)€ M?. In particular, each a = (a,, ---, a,) € R? deter-
mines the two Z-homomorphisms a: M — M? and a': M?— M defined
by a:x — za = (za,, +- -, za,) for all x€ M and a’: m — ma’ = DI, m,a,
for all m = (m,, -+-, m,) e M.

In this notation, a standard nonfunctorial characterization of flat-
ness (see, for example, [2, Lemma 19.19]) can be stated as follows

PropoSITION 1.1. A module My is flat if and only if for each
qge N and for each a € R, the kernel Ker a' < M is generated as a
set by {(M>?, C)|CeMat,,, (R) such that Ca* =0, p=1,2, --.},

From this characterization of flatness it is clear how to formulate
a natural dual notion.

DEFINITION 1.2. A module M; is coflat in case for each pe N
and for each o € R® the cokernel M*/Ima is cogenerated as a set by
{(C, M%) | CeMat,,,(R) such that aC =0, p=1,2, ---}.

Clearly, another way of stating the defining condition of a coflat
module M, is that, for each a € R?, if m e M*\Ma, then mC = 0 for
some pxq matrix C such that aC = 0. In particular, one can restrict
attention to the pxl column matrices. So also

PROPOSITION 1.3. A module M; is coflat if and only if for each
n e N, each a € R, and each me M™, if m ¢ Ma, then there is a cc R
with ac® = 0 and met # 0.
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That this definition of coflat is natural is supported by the follow-
ing dual characterizations of modules that are flat or coflat over their
endomorphism rings. The first of these, for flat modules, was given
by [18, Lemma 1.3].

THEOREM 1.4. Let (M be a left S-module and let R = End (,M).
Then

(1) Mg es flat if and only if <M generates all kernels of homo-
morphisms :

SMn—_>SM (n:]-;z"“)’

(2) My is coflat if and only if M cogenerates all cokernels of
homomorphisms

sM— s M*  (n=1,2---).

Proof. For (1), see [18]. We will do (2). Clearly, Homg(M?, M?)
can be identified with Mat,,, (R). So Mj is coflat if and only if for
each pe N and each a e R?, the image Ma < M?* is cogenerated by
those ce R? with act = 0, if and only if for each e N and each
a: M — M?, the cokernel M*/Ma is cogenerated by those c¢t: M? — M
with ac’ = 0.

DEFINITION 1.5. A module M, satisfies the W-Baer criterion in
case for every finitely generated right ideal I of R and every R-
homomorphism

fil—M

there exists an m e M with f(a) = mx(x e I).

The Y}-Baer criterion provides a characterization of coflat modules
dual to the characterization of flat modules as factors of projective
modules by pure submodules (see [2, Lemma 19.18]).

PROPOSITION 1.6. A module My is coflat if and only if it satisfies
the W-Baer criterion.

Proof. (=) Suppose My is coflat. Let I =a,R + --+ + a,R be
a finitely generated right ideal of R and let f: 7 — M be an R-homo-
morphism. Set a = (a,, ---, a,) € R* and f(a) = (f(a), *--, fla,)) € M".

It will suffice to prove that f(a) = ma for some me M. But if
f(a) ¢ Ma, then by 1.8 there is a ce R* with ac' = 0 and f(ac?) =
fla)et # 0, a contradiction.

(=) Assume that M, satisfies the ¥-Baer criterion but that it
is not coflat. Then by 1.3 there exists a € R* and m € M" such that
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m ¢ Ma and for all ce R

act = 0= mct = 0.

Then, if I=aR+ -+ + a,R, there is an R-homomorphism
fiI— R with f(a,) =m, (1=1,---,n). Therefore, by the }-Baer
criterion, there exists an m’ € M such that f(a,) = m'-a;, (1 =1, +++, n)
so that m = m'a € Ma, a contradiction.

Since the Y¥-Baer criterion is simply the restriction of the general
Baer criterion (i.e., The Injective Test Lemma (see [2, Lemma 18.3]))
to finitely generated right ideals, Colby [4] has called modules that
satisfy this criterion ¥-injective. Since every injective module
satisfies the full Baer criterion, we have

COROLLARY 1.7. Ewery injective module is coflat.

Concerning the behavior of products, coproducts and direct unions
of coflat modules we have

ProprosITION 1.8. Let (M,),. 4 be an indexed set of right R-modules.
Then,

(1) TJI.M, is coflat if and only if each M, is coflat.

(2) B.M, is coflat if and only if each M, is coflat.
Furthermore, let {M,} be a directed set of R-submodules of M such
that >, M, = M, then if each M, is coflat, M 1is coflat.

Proof. 1. (=) LetIbea finitely generated right ideal. Suppose
fur IT— M, is an R-homomorphism and 4, M, — [[, M, is the inclusion
homomorphism. Then 4.f,: I — [[,M. Since [, M, is coflat, there
exists (My)uea € 114 M, such that i.f,:a — (M)eqra(ac ). Let [l.:
1. M,— M, be the projection homomorphism. Then [[,%.f, = fur @ —
Ha ((ma)aEA) Q.

(=) Let f: I->]1, M, be an R-homomorphism. Consider [],f: [—
M,. Since each M, is coflat, there exists m, for each @ ¢ A such that
I.f: e — m,-a. Thus f:a— (My)eeq* Q.

2. (=) This proof parallels 1 completely and thus will be omitted.

Finally, let (M,),., be an indexed set of coflat submodules of M
over A, a directed set such that M = >,., M,. Let i, M,— >, M,
be the inclusion homomorphisms. Let F: I — >, M, be an R-homomor-
phism with I, a finitely generated right ideal. Since the 7, are
monomorphisms and I is finitely generated, there exists a o such that
f factors through M, i.e., there exists an R-homomorphism f: I — M,
such that 4,f = f. Since M, is coflat, we are done.

COROLLARY 1.9. Ewery direct union and direct sum of injective



COFLAT RINGS AND MODULES 353

modules is coflat.

In a right noetherian ring every right ideal is finitely generated.
Thus the Y-Baer criterion becomes the general Baer criterion in this
class of rings. In particular, every right coflat module is right injec-
tive. Conversely, if one knows every right coflat module is right
injective, then by 1.9 and a theorem of Bass [2, Thm. 25.3] R is
right noetherian. Summarizing we have

COROLLARY 1.10. A ring is right noetherian if and only if every
right coflat module is right imjective.

Semisimple rings can be characterized as rings over which every
module is projective or, equivalently, as rings over which every module
is injective. An analogous characterization holds for rings in which
every module is flat or for rings over which every module is coflat.

ProOPOSITION 1.11. For a ring R, the following are equivalent:
(a) R is von Neumann regular.

(b) Ewvery left (right) R-module is flat.

(¢) Ewery left (right) R-module is coflat.

Proof. See [5] and [6].

ExAMPLE 1.12. Let V, be an infinite dimensional F-vector space
and let I = {feEnd(V,) |dimImf < «}. If R is the subring of
End (V) generated by I, then it is easy to see that R is von Neumann
regular, and RR/I is a simple noninjective R-module. Thus, pR/I is
coflat but not injective.

A class of modules included in the class of coflat modules and
called F'P (for finitely presented) imjective or absolutely pure has
received some attention. [9, 11, 15]. Recall that a finitely generated
module M, is finitely presented in case every exact sequence

0 K F M 0

with F' finitely generated and free, the kernel K is also finitely gen-
erated.

DErFINITION 1.13. A module M, is FP injective or absolutely
pure [15] in case for every exact sequence
0 K, Ly Nz 0
such that N, is finitely presented, the sequence

0 — Homy (N, M) — Homy, (L, M) — Hom,, (K, Mz) — 0
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is exact.

Clearly, every injective module is FP injective. Conversely,
however, the above example shows that F'P injective modules need
not be injective. However, we have

PRrROPOSITION 1.14. Ewvery right FP injective module is right
coflat.

Proof. Let Ip be a finitely generated right ideal and let M, be
right FP injective. We have the sequence

0—sI—>R——RII—0.

Then
0 — Hom; (R/I, M) — Homg (R, M) — Hom, (I, M) — 0

is an exact sequence.

It is not known whether, conversely, every right coflat module
is right FP injective. However, for at least one important class of
rings, it is. Recall that a ring R is right coherent in case every
finitely generated right ideal is finitely presented. In particular,
right noetherian rings are right coherent.

THEOREM 1.15. If R is a right coherent ring, then a right R-
module is coflat if and only if it is FP injective.

Proof. Stenstrom [16].

A useful characterization of F'P injective modules is the follow-
ing, given by Megibben [11].

ProposITION 1.16. (Megibben [11, Thm. 1]). A module M, is FP
injective if and only if for each »,q<€ N, each meM? and each
CeMat,,, (R), if for all a € R?

Cat =0=—ma’ =0

then there 1s an me M?® such that m = mC.

It is easy to check that the characterizing condition in Megibben’s
result is, when p = 1, simply a rephrasing of the characterizing con-
dition of coflat modules in 1.8.

Every injective submodule of a projective module is necessarily
projective. We do not know whether the coflat-flat analogue holds
in general. However,

COROLLARY 1.17. Ewery FP injective submodule of a flat module
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18 flat.

Proof. Let M be an F'P injective submodule of a flat module F.
Let ac R, me M* with ma® = 0. Then by 1.1 there exists a pe N
and Ce Mat,,, (R) with

m=aCeF*C .
So for each be R?
Cbt =0 =—mb = 2Cbt =0.

Thus by 1.16, since M is F'P injective, me M*C, so by 1.1 M is
flat.

Recall that a ring R is right semihereditary if every finitely
generated ideal is projective. It is clear that every regular ring is
right semihereditary. We conclude this section with the following
characterization of regular rings:

THEOREM 1.18. A ring R is von Neumann regular if and only
if R 1s right semihereditary and Rz is coflat.

Proof. Suppose R is right semihereditary and R; is coflat. Let
I be a finitely generated right ideal. Then I, is projective and thus
coflat by 1.8. Let id: I, — I be the identity homomorphism. This
extends to an R-homomorphism e: R — I. Thus I is a right direct
summand.

2. FC rings—equivalence and duality., We begin by recalling
that for a ring R the following four properties are equivalent:

1° LR is artinian and injective.

2° LR is noetherian and injective.

3° Ry is artinian and injective.

4° R; is noetherian and injective.

Moreover, we recall that a ring R is quasi-Frobenius (abbreviated,
QF) in case it satisfies these equivalence conditions. In this section
we focus on a class of rings, called F'C rings, that generalize the
class of QF rings. These rings are a slight variation of a class of
rings first introduced by Colby [4], called IF rings.

DEFINITION 2.1. A ring R is left FC (right FC) in case R is
left (right) coherent and R (Rj) is coflat. A ring R is an FC ring
in case it is both left and right FC.

Since every QF ring is both left and right noetherian and both
left and right self injective, we have
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ProOPOSITION 2.2. If R is a QF ring, then R is an FC ring.

We readily observe that F'C rings need not be QF. For indeed,
if K is a field, then for any set A4, the product K4 is a commutative
regular ring that is noetherian if and only if A4 is finite. Moreover,
we shall see (Example 2.8) that left F'C rings need not be FC.

In spite of this last fact, the class of F'C rings, with their built
in left-right symmetry, displays many properties analogous to those
of the smaller class of QF rings. Before stating some of them we
recall a few things.

If R is a ring and if XZ R, then we denote the left and right
annihilators of X, respectively, by

Anmn, (X)) ={aeR|ax = 0Vxe X}
Anmn, (X)={acR|2a =0Vxec X}.

DEFINITION 2.3. Let & and &2 be sets of left and right ideals
of R, respectively. Then R has the double annihilator property for
% and “# in case

Ie & — Ann, (I)e# and Ann, Ann,(I)=1
and
IeZ=— Amn,(I)e ¥ and Ann,Ann,(I)=1.

In this connection we recall that a left noetherian ring R is QF
if and only if R has the double annihilator property for the classes
of all left and all right ideals.

If R is a ring, then there are two contravariant functors (see
[2, Chapter 20])

HomR (_, RR): RCM__—) CMR
and
HOmR (___, RR): CMR I RCM )

called the R-dual functors. For each R-module M we denote its R-
dual, that is, its image under the appropriate R-dual functor, by
M*, so

M* = Homy (M, R) .
Also for each R homomorphism
fiM—> N
we denote its R-dual by f*, so
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FrN* —s M* .

Now in each case, left or right, there is a natural transforma-
tion from the identity functor to the double dual. For example, for
each left R-module M,

Oy M —— M**

is defined via

ox(@)(f) = f(x) .

A module M is R-reflexive in case ¢, is an isomorphism.

If .7 and <& are full subcategories of ,CM and CM, respec-
tively, then .%7 and <% are R-dual in case restricted to .7 and <7,
the R-dual is a functor

Y —— P and 1 F — ¥,

and each M in & and each N in <& is R-reflexive.

In this connection, we recall that a ring R is QF' if and only if
the categories zFM and FM, of finitely generated left and right
modules are R-dual. Consequently, a noetherian ring is QF if and
only if it cogenerates every finitely generated module.

These various characterizations of QF rings serve as models for
analogous characterizations of F'C rings. We give these in

THEOREM 2.4. For a ring R, the following statements are equiv-
alent:

(a) R s FC.

(b) Ewery left (right) coflat module 1is left (right) flat.

(e) R is coherent and cogenerates every finitely presented left
(right) R-module.

(d) R is coherent and every left (right) flat module is left (right)
coflat.

(e) The categories of finitely presented left and right R-modules
are R-dual.

(f) R s coherent and has the double ammihilator property for
finitely gemerated left and right ideals.

(g) R is left coherent and the classes of left flat and left coflat
modules are the same.

Proof. (a)= (b) Colby [4, Theorem 2], 1.15 and 1.17.

(b) = (¢) Colby [4, Theorem 1}, 1.7, 1.15 and 1.17.

(d) = (a) Clear.

(a) = (d) Every flat module is a direct limit of finitely generated
projective R-modules [6, Proposition 11.32] which are coflat by 1.8.
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Now use Stenstrom [15, Proposition 4.2].
(a) = (e) Stenstrom [15, Theorem 4.9].
(b) = (f) Colby [4, Corollary 1].
(b) = (d) = (g) Clear.
(g) = (b) Colby [4, Theorem 1].
Recall that two rings R and S are (Morita) equivalent, abbreviated

R~ S

in case there is an equivalence between the categories CM, and CM;.

LemmA 2.5. Let R and S be Morita equivalent rings, via inverse
equivalences

F:CM,—> CM; and G:CMg—> CM;.
Then Me _#; is coflat if and only if F(M)e _# is coflat.

Proof. An exact sequence

0 K P N 0

is a finite presentation of N in CMy if and only if
0— GK)— G(P)—>GIN)—> 0
is a finite presentation of G(IN) in CM;,. Thus the exactness of

0 — Homj (G(N), M) — Hom, (G(P), M)
—— Hom, (G(K), M) — 0

implies the exactness of

0 — Homy (N, F(M)) — Hom; (P, F(M))
—— Homyg (K, F(M)) —> 0

so if M is coflat, then F(M) is coflat. The converse follows since
GF(M) is naturally isomorphic to M.

THEOREM 2.6. Let R and S be Morita equivalent rings. Then
R is FC if and only if S is FC.

Proof. The ring R is right coherent if and only if every product
of flat right R-modules is flat (see [3]). Thus, since flat is a categorical
property, so is coherence. So applying 2.5 and 2.4(g) we have that
FC is categorical.

Although we have seen that FC rings need not be QF, the
following examples are more interesting.
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ExampPLE 2.7. (Colby [4, Example 1]). Let R be the ring with
underlying group

R=7ZDQ/Z
and with multiplication
(nu ‘L)‘(nz, QZ) = (7’&1%2, g, + nz‘]x) .

Then it is easy to see that R is a commutative coherent ring with
Jacobson radical

J(R) ={(n, )| n = 0}.

Moreover, it is clear that every finitely generated ideal of R is
principal. Thus, R is FC but R/J(R) is not FC.

ExamMpPLE 2.8. (Colby [4]). Let R be an algebra over a field F
with basis

{1; €0y €1y €3y * %%y XTyy Xy Lgy =}
where for all 1, j
ee; = 0, ;€;
L5 = 04,510,
ex; = 04,;%;
xrx; =0,

It is easy to see both that R is left coherent and that every R-
homomorphism

f: RI_’)RR

extends to one over K. Thus, R is left coflat. However, R is not
right coflat since the homomorphism

R — ¢,R
via
T — e

cannot be extended over R.

Thus R is a left F'C ring but not a right F'C ring.

Since von Neumann regular rings are coherent and since every
module is coflat, we have

PROPOSITION 2.9. If R is a von Neumann regular ring, then R
is an FC ring.
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Stenstrom [15] has proved that both left perfect, left FC rings
and left perfect, left coherent, right F'C rings are QF. There are
no known counterexamples to the claim that a left perfect, right F'C
ring is QF. Specifically, we have

THEOREM 2.10. (Stenstrom [15, Theorem 4.4]). Let R be left
perfect, then the following statements are equivalent:

(a) R s left FC.

(b) R s left coherent and right FC.

(¢) R s QF.

However, for semiperfect rings, F'C need not imply QF.

ExampLE 2.11. ([7]). Let p be a prime number. Then let R be
the ring with the underlying group

R = Z,~® End (;Z,~)
and with multiplication
(n,, q,)* (Mg, @5) = (W0, MG, + anl) .

Osofsky has shown that R is a nonartinian, injective cogenerator
with linearly ordered ideals. As in 2.7, one can show R is coherent.
Thus, R is a semiperfect F'C ring.

It is well known that if R is a ring and G a finite group, then
the group ring R[G] is QF if and only if R is QF (see [7]). Colby
has proved in [4] the analogous result for F'C rings and locally finite
groups (i.e., groups in which every finite subset generates a finite
subgroup).

THEOREM 2.12. (Colby [4, Theorem 3]). Let R be a ring and G
a group. Then the group R[G] is an FC ring if and only if R 1s
an FC ring and G is a locally finite group.

ExAmPLE 2.13. Let S be the group of all permutations of N =
{1, 2, ---} that fix all but finitely many elements. Then S is locally
finite, so F[S] is FC for all fields F.

It is well known that if R is left or right self injective, then
R/J(R) is von Neumann regular [7, Theorem 19.27]. On the other
hand an FC ring need not be regular modulo its radical. Indeed, we
have already seen that for the F'C ring R of Example 2.7, we have

R/JR)= Z .
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A somewhat more interesting example of this phenomenon is the
following

ExAMPLE 2.14. Let F be a finite field and let S be the locally
finite group of Example 2.13. Now S has a subgroup of order p =
char F.. Thus (see [10]) the F'C ring R = F[S] is not von Neumann
regular. Finally, since Formanek has shown [8, Theorem 1] that the
nil and Jacobson radicals are the same, J(R) = 0 (see [13]). Thus R
is a nonregular F'C ring with zero radical.

We have already seen in 2.10 that a left artinian, left or right
FC ring is QF. Since Hopkins theorem [2, Theorem 15.20] tells us
that every left artinian ring is left noetherian, we extend this result
by

THEOREM 2.15. Let R be o left noetherian ring. Then the follow-
ing statements are equivalent:

(a) R is left FC.

(b) R and R/J(R) are right FC rings.

() R is right FC with essential left socle.

(d) R is QF.

Proof. (a)=(d) 1.10.

(d) = (b) Clear.

(b) = (¢) By Theorem 2.4(c) R/J(R) contains an isomorphic copy
of each simple left R/J(R) module. Thus, each simple left R/J(R)
module is projective and R/J(R) is semisimple. Extending a result
of Faith [7, Lemma 24.19] on QF rings, it is clear that there exists
an ne€N such that J(R)" =0. R is thus left artinian [2, Theorem
15.20].

() = (d) By Theorem 2.4(c) every finitely generated left R-module
is cogenerated by B. Moreover, Colby has shown that these modules
are actually finitely cogenerated by R [4, Theorem 1]. So every left
R-module has nonempty socle and R is right perfect. Now 2.10
finishes the proof.

We know of no example of a left noetherian, right F'C ring that
is not QF.
Recall that the left singular ideal of R is

Z(R) = {x e R | Ann, (x) <1 xR}
and the right singular ideal
Z,(R) = {xe R| Ann, (v) = Rz} .

In general, these are not equal and are unrelated to J(R).
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PrOPOSITION 2.16. If R is an FC ring, then Z.R) = Z,(R) =
J(R).

Proof. Let xe Z,(R), then
Ann, (x) = Ann, (Rx)

is essential. Since R is cyclie, it will suffice to show if Rx + K = R
with K finitely generated, then K = R. So suppose K is finitely
generated and

Rr+ K=R.
Then
Ann, (Rx) N Ann, (K) =0.

Thus Ann, (K) = 0. By Theorem 2.4(f), this implies K = R. Hence
Z(R) = J(R).

Next suppose x € J(R). We claim Ann, (Rx) <I R;. By Theorem
2.4(f), it will suffice to show Ann, (Bx) N Ann, (K) # 0 for all nonzero
finitely generated K # R. So suppose

Ann, (Rx) N Ann, (K) =0

for some nonzero finitely generated p K< R. Then Rx + K = R implies
K = R and hence Ann, (K) = 0. Symmetry finishes the result.

It is of interest to note that in on FC ring R, J(R) need not
equal N(R), the nilpotent radical, though this is true in QF and
regular rings (see [13]).

In general, F'C rings need not be von Neumann regular (see for
Example 2.7). However,

PROPOSITION 2.17. If R s an F'C ring with no nonzero nilpotent
elements, then R is von Neumann regular.

Proof. Let xc R. Then weclaim Rx N Ann,(xR)=0. For suppose
rex = 0. Then zrxxrx = 0, so since R has no nonzero nilpotent ele-
ments, xrx=0. Likewise, rxr2x=0 implies r2=0. So RxN Ann,(zR)=0.
Therefore, by Theorem 2.4(f)

Ann, (Rz) + 2R =R..

Let1 = n + xs where n € Ann, (Rx) and 0 2#se R. Then x = nx + xsx.
But nxnx = 0, so nx = 0 and x = wsx.

COROLLARY 2.18. If R is a commutative F'C ring with J(R) = 0,
then R is von Neumann regular.
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It is of interest that this property of commutative F'C rings does
not carry over to F'C rings with a polynomial identity as shown by
the following.

ExAMPLE 2.19. Let F be a field of characteristic 2 and let D,_,
p an odd prime, be the locally finite group given by generators and
relations

oy Yraxyxs =9y, ¥ =1 Vo€ Z,) .

By 2.12 F[D,~] is an FC ring. Since D,- has an abelian subgroup
of finite index, F'[D,~] satisfies a polynomial identity (see [13, Theorem
3.9]). Moreover F[D,=] can be easily shown to have J(F[D,=]) =0
since D,- has no finite normal subgroups with order divisible by 2
([13]). However, F[D,«] is not regular by a theorem of Connell ([13,
Theorem 1.5]).

In a future paper, we will examine conditions that assure that
an F'C ring with a polynomial identity and J(R) = 0 is von Neumann
regular.

Even though an F'C ring R with J(R) = 0 need not be von Neumann
regular (see 2.14), these rings have some regular-like properties.

ProprOSITION 2.20. If R is an FC ring with J(R) = 0, then

(1) R has a von Neumann regular, right (left) self injective
maximal right (left) ring of quotients.

(2) There is a unique largest two sided ideal I that conlains
no monzero nilpotent elements. Moreover,

Ann; Ann, (I) = Ann, Ann, (I) =1 .

Proof. (1) Follows from 2.16 since Z,.(R) = Z,(R) = 0 (see [10]).
(2) Let I = >esl, where {I,| @ e A} is the family of all two
sided ideals of R that contain no nonzero nilpotent elements. Clearly,

I < Ann, Ann, (I)

is a two sided ideal. To complete this proof it will suffice to show
that Ann, Ann, (I) contains no nonzero nilpotent elements. So suppose
0 # x € Ann; Ann, (I) such that 2* = 0. Now suppose Rx NI, = 0 for
all ac A. Then I,-Rx =0 for all @« c A, and hence IRx = 0. Thus,

RxRx < Ann, Ann, (I)-Ann, (I) =0

and RxRx = 0. But J(R) =0, so Rx =0 and z = 0. Thus a contra-
diction.
Therefore, there is an ac€ A and an 0 %= a¢ € R such that

0#£ARa<RxNnI,.
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So Ra has no nonzero nilpotent elements. We claim Ra N Ann, (aR) = 0.
For suppose saa = 0. Then 0 = assasa € Ra, but Ra <1,, so asa = 0.
Likewise 0 = sasa € Ra, so sa = 0.

Now by Theorem 2.4(f)

Ann, (Ra) + aR =R .

Thus 1 =n + ar for some re R, neAnn, (Ra). So a = na + ara.
But 0 = nana € Ra < I, implies na = 0. Thus, a = ara and Ra = Re
where ¢ is idempotent. So Re < Rx. Therefore e¢ = ¢cs. Note wxe =
xex implies xexe = xecxwecxr = 0 which implies 0 = xe€ Re. Finally,
e = ¢ = ¢cxe = 0, a contradiction.

We conclude with the surprising result that every F'C ring is its
own classical ring of quotients, denoted by Q(R) (see [10]).

THEOREM 2.21. If R is an F'C ring, then every regular element
(i.e., monzero divisor) is invertible. In particular, R = QR), its
classical ring of right (left) quotients.

Proof. Let 0+ x be a regular element. Then Ann, (zR) = 0.
Thus by Theorem 2.4(f)

xR = Ann, Ann, (zR) = Ann, (0) = R .
Hence, « is right invertible. Symmetry now finishes the proof.
3. Endomorphism rings of projective modules over F'C rings.

Let P, be a finitely generated projective R-module and let

S = End (Py) .
Set

P* = Homg (P, R) .

Then P and P* are bimodules

sPr and RPg,
and there are natural functors

FouM—s PR M
Gp: N— P*® N

between the categories ,CM and ;CM. Of course, if P, is a generator,
the Morita theorem [2, Theorem 22.1] implies that F, and G, are
inverse equivalences. When P; is not a generator, F'» and G, are not
equivalences; still, for many projective modules P, a considerable
amount of information is often available about S. (See, for example
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[1], [18]). Here, we focus primarily on the cases where R is an FC
ring. But first,

PrROPOSITION 3.1. If R is right coherent and if P is flat, then
S 18 right coherent.

Proof. Let I; < Sy be finitely generated, let n =1 and let

0 K S I 0

be exact in CM,. It will suffice to show that K is finitely generated.
Since (P is flat,

0— KRYP— P — I QP—0
is exact in CM,. Also, since (P if flat, there is a monomorphism
0—"')I®3PR"_")PR; S®SPR'

But since Iy and P, are finitely generated, I ® ;P is a finitely gen-
erated R-module. Thus, since R is right coherent, I ® ;P; is finitely
presented, and hence K & (P is finitely generated.

Since (P is flat by Theorem 1.4, with an appropriate interchange
of the rings R and S, there exists an m = 1 such that

P —— KQ sPr,—0.

Thus,
PI(EM)®RP;—_>K®SPR®RP§—')0°

But P® P = Sy (see [2, Chapter 20]), hence

Sm — K——0

is exact and K is finitely generated.

THEOREM 3.2. If R is an FC ring and if
<P and P§

are flat, then S is also an FC ring.

Proof. By Proposition 3.1, S is right coherent. But P = P**
[2, Prop. 20.17] and S = End (xP*), so S is also left coherent.
We now claim that

Sy = Homy, (sPz, Pz)

is coflat. So let Iy be a finitely generated right ideal of S. Then,
since (P is flat,
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0—— IR sPr— Pr=SQ sPr

is exact. By [5] I® 5Pz is finitely presented. So by Theorem 1.15,
the bottom row of the commuting diagram (see [2, Proposition 20.6])

Homy (S5, Homy, (4Py, Pg)) — Homy (I, Hompg (sPg, Pg)) — 0

? k

Homj (S & 5Pz, Px) ——— Homp (I Q 5Pz, Pr) — 0

is exact. Hence the top row is exact, and so Sy is coflat. By sym-
metry S is coflat.
Recall that for a right R-module M, its trace is the ideal

T(M) = 3{f(M) | f e Hom (M, R)} .

COROLLARY 3.3. If R is an FC ring and if both
T(P)r and RT(P) = T(P*)

are flat, then S is also an FC ring.

Proof. Anderson [1, Theorem 2.2] has proved that if T(P); is
flat, then (P is flat. Now apply Theorem 3.2.

COROLLARY 3.4. If R is an FC ring and if both
(R/T(P)z) and R(R/T(P))
are flat, then S is also an FC ring.
Proof. By a theorem of Zimmermann-Huisgen [18, Theorem 2.4]

P, and zP* are self generators. So by Theorem 1.4, ;P and Pg are
flat. Now apply Theorem 3.2.

COROLLARY 3.5. If R is an FC ring such that R is self injec-
tive and if

P and Pg

are flat, then S is a self injective FC ring.

Proof. Since P is an injective R-module, and since P is flat,
Ss = Homp, (sPy, sP) is injective (see [6, Proposition 11.35]). We have,
by symmetry that (S is injective. Now apply Theorem 3.2.

Of course, if ec R is a nonzero idempotent, then eR is a finitely
generated projective, and

eRe ~ End; (eR) .
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In [14] Rosenberg and Zelinsky give an example of a quasi-
Frobenius, hence FC, ring R and a nonzero idempotent e e R such
that eRe is not QF. Thus, since eRe is artinian, it is not F'C.

In [1] Anderson called P, an injector in case for each injective
module M,

sP @ =M

is injective as an S-module. Moreover, he obtained several charac-
terizations of these injectors. We shall add to this list.

DEFINITION 3.6. The finitely generated projective module P is
an F'P injector in case for every FP injective module M, the S-
module

sP & M
is F'P injective.

THEOREM 3.7. The finitely generated projective module Py is an
injector if and only if it is an FP injector.

Proof. Anderson proved that P is an injector if and only if
Pg is flat. Let M be an F'P injective right R-module and let I be
a finitely generated left ideal of S. Consider the commutative diagram

(28))
Homy (58, sP & M) ——— Homg (sI, sP&Q M) — 0

X I

Homg (zP* @ sS, kM) — Homy (zP* ® sI, zM) — 0 .

Since every injective is F'P injective, the bottom row is exact for
all FP injective zM if and only if Pg is flat. But the top row is
exact if and only if P& M is FP injective.

Miller [12] defined a flatjector to be a finitely generated projec-
tive Py such that

sP& M
is flat over S for each flat M. Dually,

DEFINITION 3.8. The finitely generated projective Py is a coflat-
jector if

sP & 2 M

is coflat over S for each coflat M.
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THEOREM 3.9. If R is an F'C ring, then the following statements
are equivalent:

(a) Pr and pP* are coflatjectors.

(b) P and pP* are flatjectors.
Moreover, if R is an FC ring and if (a) or (b) holds, then S is an
FC ring where

S = End (RR) .

Proof. Since, over an F'C ring coflats and flats are the same, it
will suffice to prove the final assertion.

Assume (a). Since R is coherent, coflatjectors are precisely the
F'Pinjectors, and hence, by (8.7), precisely the injectors. But Anderson
[1, Theorem 2.1] proved that P, and .P* are injectors if and only if
<P and PJ are flat.

Applying (3.2), we are done.

Assume (b). Miller [12, Theorem 2.3] proved that P, and P*
are flatjectors if and only if Pg and ;P are flat. By 8.2, S is an
FC ring.

Note, however, that in general the equivalence of (a) and (b) does
not imply that R is an FC ring. Indeed, if R is a coherent com-
mutative ring, then (a) and (b) are equivalent.
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