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NORM ATTAINING OPERATORS ON LEBESGUE SPACES

ANZELM IWANIK

Let X and Y be Lebesgue spaces (AL-spaces). Then the
norm attaining operators mapping X to Y are dense in the
space of all linear bounded operators from X to Y.

For any two real Banach spaces X and Y by B(X, Y) we denote
the Banach space of all bounded linear operators from X to Y. In
[7] Uhl proved that for any strictly convex Banach space Y the
norm attaining operators are (norm) dense in B(Lι[Q, 1], Y) if and
only if Y has the Radon-Nikodym property. The question of
whether the norm attaining operators are dense in i3(Z/[0, 1], Z/[0,
1]) has remained unsolved (cf. [7], p. 299). Here we answer this
question in the affirmative. In fact we prove a slightly more
general result.

First we introduce some notations. Let I stand for the unit
interval. For any function μ defined on the product algebra in
/ x / by μ*(ί = 1, 2) we denote the corresponding marginal functions
defined on the Borel subsets of I:

μ\A) = μ(A X I) ,

μ\B) = μ(I X B) .

The vector lattice of all finite signed Borel measures on I x I will
be denoted by M. Given any two finite positive Borel measures
mlf m2 on I we write M{mu m2) for the set of all measures μ in M
such that \μ\ι is absolutely continuous with respect to mt(i = 1, 2)
and

The measures m1 and m2 will be fixed throughout the rest of the
paper.

Let us recall that B{L\mύ, L\m2)) is a Banach lattice under its
canonical order (see [5], IV Theorem 1.5 (ii)).

The forthcoming theorem establishes an isomorphism between
M{mu m2) and B{L\m^9 L\m2)), and extends a corresponding result
of J. R. Brown on doubly stochastic operators ([1], p. 18). As
was kindly indicated by the referee, our Theorem 1 is also related
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to N. J. Kalton's representation of the endomorphisms from Lp to
Lp for 0 < p ^ 1 ([3], Theorem 3.1).

By < , •> we denote the canonical bilinear form on Z/°°(m2)* x
L°°(m2).

THEOREM 1. The space M(mlf m2) is a vector lattice ideal in
M and to each μ e M(mlf m2) there corresponds a unique operator
Tμ e BiL'im,), L\m2)) such that

(Tμf, h) = \f(xMy)dμ(x, y)

for all feL\mύ and feeL°°(m2). Moreover, the mapping μ-^Tμ is
a vector lattice isomorphism of M(mίf m2) onto B{U(m^), L\m2)) and

\\Tμ\\ =
dmι

for every μ e M(m19 m2).

Proof. First we note that M(mlf m2) is a vector subspace of
M. Since v e M(mlf m2) whenever 0 <; v e M and v ^ μ e M(mu m2),
we observe that M(mu m2) is a lattice ideal (and clearly a sublattice)
in M. If μ e M(mίf m2) then it is easy to see that the bilinear form

[/, h] = \f{x)h{y)dμ{x, y)

is well-defined and continuous on L\m^) x L°°(m2). Therefore there
exists a unique operator TμeB{U{m^, L°°(m2)*) such that

(see e.g., [5], IV §2). Clearly the mapping μ-+Tμ is one-to-one
and μ ^ 0 if and only if Tμ is a positive operator in the Banach
lattice sense. Moreover, for an arbitrary v ^ O in M(mί9 m2) and

for any heL°°(m2) we have <TU, h) = \hdv2, so

dm2

whence TJeL\m2) for any fe U°{m^. Consequently,
L\m2)) by continuity. Since every μ e M(mlf m2) is a difference of
two positive measures in M(m19 m2) and μ —> Tμ is a linear map,
we have TμeB(Σϊ(m^, L\m2)) for all μeM(mlf m2).

We now show that μ —> Tμ is an "onto" mapping. Since
O, L\m2)) is a Banach lattice, it suffices to prove that every
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positive operator T^B{U{m^)9 L\m2)) is of the form Tμ. Given any
such T we define a set function

μ(A x J5) = (TXA9 XB)

on all Borel rectangles in I x I. Evidently μ extends uniquely to
a finitely additive positive measure (denoted also by μ) on the

product algebra. The marginal measures μ\A) — \ T^ldm1 and

S JA

Tldm2 are finite, positive, and countably additive, so they
B

are compact by the classical result of Ulam. Since μ is a nondirect
product of μ1 and μ2

9 it is countably additive by Theorem 1 (i) in
[4] The unique extension of μ to a finite positive (countably
additive) Borel measure on I x I is again denoted by μ. By a
standard approximation argument,

\f(xMy)dμ(x, y) = (Tf, h)

for all feL'im,) and heL~(m2). Therefore T = Tμ. Finally, we
note that for every μ e M(m19 m2)

Tfl\\ = || Tm II = sup || Tmf\l = sup {Tmf, 1>

= sup \f(x)d\μ\\x) = sup \f(χ)^M-(χ)dmί(x)
J J dmι

d\μ\ι

dmι

where the suprema are taken over all nonnegative functions fe
Uimd with

COROLLARY 1. Let ve M(ml9 m2). If there exists a function
g e L°°(m2) with \ g \ = 1 such that the Radon-Nikodym derivative of
the marginal measure (g(y)dv(x9 y))1 with respect to mλ equals

dm1

on a set B of positive mγ measure, then the operator Tv attains its
norm on the unit ball in U{m^.

Proof. We put dx(x, y) = g{y)dv{x, y). Then

) ,0> = \xB(x)dX(x, y)
J

[ dX1 -,
1 dmγ —
JB dmγ

d\v
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implying || T^/m^B))]], = \\TU\\ by Theorem 1.

The algebra of sets generated by all dyadic-rational rectangles
in / x I will be denoted by J ^ . The σ-algebra generated by j y
coincides with the Borel algebra in / x /.

THEOREM 2. The norm attaining operators are dense in

Proof. Let T e B(L\m,), L\m2)). By Theorem 1 we have T=Tμ

for some measure μ in M(m19 m2). Without any loss of generality
we may assume

dm1

-j

Given 0 < ε < 1, the set

eI:P(x)>l
dm1

is of positive mι measure, say, m^D) = δ > 0. Now let P, (Ix/) —
P be the Hahn decomposition for μ with μ+ concentrated on P (see
[2], §29 Theorem A). Since P is a Borel set, there exists P e j /
such that \μ\(PΔP) < δε/4 ([2], § 13 Theorem D). We define a new
measure μ by

dμ — Xpdμ+ — X(Iy,n-pdμ~

Evidently P, (I x I) — P is the Hahn decomposition for μ and
d\μ - μ\ = XP^d\μ\. Since |^-/Z|(IxI)<δε/4, the Radon-Nikodym
derivative of \μ — μ\ι with respect to mλ must be less than ε/4 on
some set CczD of positive m1 measure. As PeJϊf, there exists a
natural number n such that P is a union of finitely many squares
corresponding to the dyadic partition of I into 2n subintervals of
equal length. Let Io be any such open subinterval intersecting C
on a set B — C Π Io of positive mx measure. We let

(x, y) + Xj-B(χ)dμ(x, y)

Note first that

d\v — μ\ = XB(ρ){ ) (%)\d(fi — μ)(x, y)

( s ) d (

dm1 /
——a i μ i \x9 yj .
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Therefore

4 2< 2 +
dm, 4 2

whence \\TP — Tμ\\ = \\ Tu_μ\\ ^ ε. Moreover,

= 1 on β and ^ 1 elsewhere.

The set (/0 x I) Π P is a finite union of squares of the form
Io x Ik(k = 1, « ,m), where each Ifc is an element of the dyadic
partition of / into 2n subintervals of equal length. Therefore
(B x I) n P is the finite union of the Borel rectangles B x Ik. We
define a function g e L°°(m2) as follows

/ χ { l i t ye \Jlkf

( — 1 otherwise.

Clearly the Radon-Nikodym derivative of the marginal measure
(g(y)dv(x, y))1 coincides with

d\v\ι _χ

dm,

on B. Therefore, by Corollary 1, Tv attains its norm and the proof
is completed.

By the known representation theorems for Lebesgue spaces (see
e.g., [5], II 8.5 Corollary and [2], §41 Theorem C, or [6], 26.4.9
Exercise (C)), every separable Lebesgue space (i.e., separable AL-
space in terms of [5]) is Banach lattice isomorphic with L\m) for
some finite positive Borel measure m on /. Therefore we obtain
the following corollary to our result:

COROLLARY 2. Let X and Y be separable Lebesgue spaces.
Then the norm attaining operators are dense in B(X, Y).

After the paper was accepted for publication, the last corollary
has been generalized to arbitrary (nonseparable) Lebesgue spaces as
a result of the author's conversations with Professors J. Bourgain
and H. P. Lotz. The proof is outlined below:

Theorem 1 remains true if we replace (I, m<) by (Ji9 mt) with
Ji compact Hausdorff and mt a finite regular (compact) positive
measure on the Borel α -algebra . ^ , and with M being the space of
all finite signed measures on the product σ-alglebra ^ x ,^>.

Indeed, the marginal measures I T*ldmlf \ Tldm2 are compact since

the measures m* are regular, and so Theorem 1 (i) of [4] is still
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applicable. The rest of the proof remains unchanged.
Theorem 2 is valid for the general spaces L\JU mt) with

essentially the same proof as before, Szf being replaced now by
the algebra of all finite unions of Borel rectangles in Jx x J2.

Now if Xίf X2 are arbitrary Lebesgue spaces then every Te
B(Xlf X2) can be approximated by norm attaining operators. Indeed,
let (xn) be a sequence in Xx such that \\xn\\ 5^1 and lim||Tα?J| =
| |Γ | | . The Banach lattice ideal Y1 spanned by (xn) is a Lebesgue
subspace with a weak order unit. Also the image TYλ is contained
in a Lebesgue subspace Y2aX2 with a weak order unit. By the
Kakutani representation theorem there exist compact spaces Ĵ  with
finite regular positive measures mf such that Yt = L\Jit m,). By
the above, the restriction 2\ of T to Yx can be approximated within
a given ε > 0 by a norm attaining operator To e B{ Ylf Y2) satisfying
|| τo\\ = || T||. If P denotes the canonical band projection of Xλ onto
Yi then it is easy to see that TQP + T(I - P) has norm | |Γ0 | | , is
norm attaining, and approximates T within ε.
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