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ON THE NONOSCILLATION OF PERTURBED FUNCTIONAL
DIFFERENTIAL EQUATIONS

JOHN R. GRAEF, YUICHI KITAMURA, TAKASI KUSANO,

HIROSHI ONOSE, AND P A U L W. SPIKES

We study the behavior of the solutions of the second
order nonlinear functional differential equation

(1) (a(t)xΎ=Λt,x(t),x(g(t)))

where α, g: [t0, oo)->R and /: [t0, oo)χR2-+R are continuous,
a(t) > 0, and g{t) —> oo as t —> oo. We are primarily interested
in obtaining conditions which ensure that certain types of
solutions of (1) are nonoscillatory. Conditions which guar-
antee that oscillatory solutions of (1) converge to zero as
t -» oo are also given. We apply these results to the equation

(2) (a(t)x'Y + q(t)r(x(g(t))) = e(t, x)

where q: [t0, oo) —> Rf γ\ R —> Rf e: [t0, oo) x R —> R are continuous
and a and g are as above. We compare our results to
those obtained by others. Specific examples are included.

In the case of nonlinear ordinary equations, the search for
sufficient conditions for all solutions to be nonoscillatory has been
successful; see, for example, the papers of Graef and Spikes [4-7],
Singh [11], Staikos and Philos [14], and the references contained
therein. The only such results known for functional equations to
date are due to Graef [3], Kusano and Onose [9], and Singh [13].
Moreover, none of the results in [3], [9], or [13] apply to equation
(2) if e(t, x) Ξ 0 or if r is superlinear, e.g., r(x) = xr, 7 > 1. We refer
the reader to the recent paper of Kartsatos [8] for a survey of
known results on the oscillatory and asymptotic behavior of solutions
of (1) and (2).

In view of a recent paper by Brands [1], it does not appear to
be possible to obtain integral conditions on q(t) which will guarantee
that all solutions of (2) with e(ί, x) = 0 are nonoscillatory and which
are similar to those usually encountered in the study of ordinary
equations. (We will return to this point again in §2.) So too our
main results in this direction when applied to equation (2) require
that e(t, x) Ξ£ 0 (cf. conditions (27) and (28)). Although all the results
presented here hold if r(x) is sublinear, we are especially interested
in the superlinear case.

2* Main results* The results in this paper pertain only to the
continuable solutions of (1). A solution x(t) of (1) will be called
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oscillatory if its set of zeros is unbounded, and it will be called
nonoscillatory otherwise. Some of the results which follow concern
solutions of (1) which satisfy growth estimates of the form

( 3) I x(t) I = 0{m(t)) as t —> oo ,

where m: [t0, oo)-^ R is continuous and positive. Other authors, for
example Staikos and Sficas [15], have studied the asymptotic behavior
of nonoscillatory solutions which satisfy estimates of this type with
ra(ί) = t\

We will assume in the remainder of this paper that the function
/ satisfies an estimate of the form

(4) \f(t,x,y)\£F(jb,\x\,\v\)

where F: [tQ, oo) x ]J2

+-> R+ is continuous and such that

F(t, u, v) ^ Fit, u', v') for 0 ^ u ^ u\ 0 ^ v ^ v' .

THEOREM 1. Suppose that

S oo ί oo

[l/a(s)] \ F(u, cm(u), cm(g(u)))duds

< oo

for all c > 0. // x(t) is an oscillatory solution of (1) satisfying (3),
then x(t) —> 0 as t —> oo.

Proof. Let x(t) be an oscillatory solution of (1) satisfying (3);
then ix(t)I ^ cm(t), \x(g(t))| ^ cm(g(t)) for all t^t^U and some c > 0.
Suppose that lim s u p ^ | x(t) \ > 2M for some M > 0. Then there
exist sequences {an} and {bn} of zeros of x(t) such that an < bn, an, bn ->
oo as n —• oo J a (ί) I > 0 on (αΛ, &J, and Mn = max{| a?(t) |: α» <£ ΐ <; 6%} >
ilί for w = 1, 2, . Now choose tn in (α», bn) so that | »(*») | = Mn

for ^ = 1, 2, . Integrating equation (1) from t in [an, tn] to £„,
we have

a{t)x\t) = -]t f(s, x(8), x(g(s)))ds .

A second integration yields

x(tn) = -\tn[l/a(s)] [tnf(u, x(u), x{g{u)))duds .

Thus

Mn = \χ(tn)\ ^ Γ*[l/α(«)] (*>(%, cmW, cm(g(u)))duds .

Condition (5) implies that the ri ghthand side of the above inequality
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converges to zero as n —> oo. This contradicts | x(tn) \ = Mn > M for
n = 1, 2, and completes the proof of the theorem.

The following corollary is an immediate consequence.

COROLLARY 2. // condition (5) holds with m{t) = K for every
constant K > 0, then all bounded oscillatory solutions of (1) converge
to zero as ί —> oo.

In our next theorem the following sublinearity type condition
will be used. There exists a continuous function H: [t0, oo) —»i?such
that

( 6 ) lim sup F(t, v, v)/v ^ H(t) .

THEOREM 3. In addition to (6) assume that condition (5) holds
with m(t) = K for any constant K > 0,

( 7 ) g(t) ^ t

and

( 8 ) Γ[1AΦ)] \°°H(u)duds < oo .

Then every oscillatory solution of (1) converges to zero as t —> oo.

Proof. We will first show that all oscillatory solutions are
bounded. Suppose that «(t) is an oscillatory solution of (1) and
lim supί >oo I x(t) I = oo. Then there exists a sequence of intervals
{(α , K)} such that l i m ^ o u = l i m ^ δ , = oo, x(an) = xφn) = 0, \x(t)\ >
0 on (αH, δ j , and Mw = max{|α?(t)|: ί ^ δ j = max{|α?(ί)|: an ^ ί <; δ j
and Mw increases to infinity as n -+ oo with Λfj. ^ ίΓ. As in the proof
of Theorem 1 we obtain

Mn = \x(tn)\ £ \n[l/a(s)] \%F(u, Mn, Mn)duds

where tn e (αΛ, δ j . Hence

which contradicts (8) as n --> oo.
Since aj(<) is bounded the conclusion of the theorem then follows

from Corollary 2.

THEOREM 4. Suppose that there exist continuous functions
G: [t0, oo) x R2

+ —> E+ and h: [t0, °°) ~> J
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{ 9) G(t, uy v) ^ G(t, u\ v') for 0 ̂ u^u', 0 ̂  v £ v',

(10) \f(fi,xfy)-h(fi)\£G(fi,\x\,\v\) for x,yeR,

(11) ("[1M*)] ^\h(u)\duds < oo ,

and

(12) I [l/α(s)] 1 (?(^, cm(u), cm(g(u)))duds < oo
J Js

for all c > 0. J/ ίfeβrβ exists c0 > 0 sm?/& ίftαί either

(13) lim Γ[l/α(s)] Γ{fc(w) + G(w, c0,

or

(14) lim Γ[l/α(s)] Γ{fe(%) ~ ^ ( ^ co, cQ)}duds =

/or αZΪ Zαr^β T, tfcew α^?/ solwtίon x{t) of (1) satisfying (3) is
oseΐίίαίor?/.

Proof. Let sc(t) be an oscillatory solution of (1) satisfying (3).
In view of (11) and (12) all the hypotheses of Theorem 1 are satisfied
with F(t, u,v) = \ h(t) I + G{t, u, v) and so x(t) -> 0 as t -> oo. Thus
there exists T ̂  tQ such that x\T) = 0, \x{t)\ ^ c0, and \x(g(t))\ ^ c0

for ί ^ Γ. Hence

(15) h(t) - G(t, c0, c0) ^ /(ί, a?(ί), x(g(t))) ^ h(t) + G(t, c0, c0)

for t ^> T. Integrating twice we have

G(u, c0, co)

G(u, c0, co)}duds .

If either (13) or (14) holds, then x(t) cannot have arbitrarily large
zeros.

REMARK. An alternate form of Theorem 4 can be obtained by
replacing conditions (13) and (14) by

(16) lim sup [*{h(u) + G(u, c0, co)}<Ẑ  < 0

and
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(17) lim inf [* {h(u) - G(u, cQ, co)}du > 0

respectively. The proof in this case would follow from inequality
(15) by noting that (16) or (17) implies that x\t) would have fixed
sign. Condition (16) or (17) may be satisfied when (13) and (14) are

S oo

[l/a(s)]ds < oo. Similarly (13) or (14) may
ί0 Coo

hold with neither (16) nor (17) being satisfied when \ [l/α(s)]ds = oo.

THEOREM 5. Assume that (7) and (9)-(ll) hold, G is sublinear
in the sense of condition (6), i.e., there exists HG:[t0, oo)-+R such
that lim s u p ^ G(t, v, v)Jv <; HG(t),

(18) pl/αOO] ^HG(u)duds

and condition (12) holds with m(t) == K for any constant K > 0. //
either (13) or (14) holds, then all solutions of (1) are nonoscillatory.

Proof. Let x(t) be an oscillatory solution of (1). If we let
F(t, u, v) — G{t, uf v) + \h(t)\, then clearly (6) holds and moreover (11)
and (18) imply that (8) holds with H(t) = HG{t) + \h(t)\. Hence x{t) ->
0 as t —> co by Theorem 3. Proceeding exactly as in the proof of
Theorem 4 we again obtain a contradiction.

REMARK. Once again an alternate version of Theorem 5 can be
obtained by replacing conditions (13)-(14) by (16)-(17).

3* Applications and discussion* We will now apply the results
in the previous section to equation (4):

+ q(t)r(x(g(t))) = e(t, x) .

Assume that

(19) \e(t,u)\£\e(t,v)\ if \u\ £ \v\ ,

and there are nonnegative constants A, B and p such that

(20) \r(x)\ ^A\x\p + B .

If for some k ^ 0

(21) ΓίVαOO] \°[Q(u)Yv I Q(u) I duds < oo

and
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(22) Γ[l/α(β)] Γ|β(«, cuk)\duds < - for all c 2: 0 ,

then the hypotheses of Theorem 1 are satisfied with m(t) = ίfc. Hence
any oscillatory solution x(t) of (2) satisfying

(23) \x(t)\ = 0(tk) as t > oo ,

will converge to zero as t —> oo. If k = 0 in conditions (21) and (22)
then we obtain the conclusion of Corollary 2 for equation (2). In
this case we obtain Theorem 4 of Kusano and Onose [10] as a special
case. They required that r(x) be nondecreasing, xr(x) > 0 if x Φ 0,
and e(t, x) = e(ί); moreover if & = 0, conditions (13) and (14) of [10]
imply conditions (21) and (22) above.

Now assume that there exist w > 0 and continuous functions
hu h2: [t0, oo) —> J? such that

S oo Λoo

[l/α(s)] I \hx(u)\duds < ©o ,
and

(26) Γ[l/α(s)] [°ukwh2(u)duds < oo .

If (7), (19)-(21) and (24)-(26) hold with p£l,w£l, and k = 0,
then all oscillatory solutions of (2) converge to zero by Theorem 3.
Theorem 5 of [10] is a special case of this result. There the
authors show that when r(x) is sublinear, i.e., lim sup^^^ r(x)/x < oo,
then the hypotheses of their Theorem 4 insure that all oscillatory
solutions are bounded and hence converge to zero. In so doing they
generalized Theorems 1, 2, and 3 of Singh [12] who, among other
assumptions, required a bounded delay. Under a more restrictive
condition on τ(x), namely, 0 < r(x)/x ^ m for all x, Singh [13] gives
sufficient conditions for all oscillatory solutions of a special case of
(2) to bounded above. Under a different set of hypotheses, Kusano
and Onose [9] obtained exactly the opposite result. The point to be
made here is that while we are primarily interested in the case
where r(x) is superlinear, (cf. Theorems 1 and 4 and Corollary 2)
i.e., lim sup^^^ r(x)/x — + oo, our condition (20) includes the sublinear
forms of Kusano and Onose [9, 10] and Singh [12, 13] as special cases
and, moreover, our integral conditions are similar in form and at
times reduce exactly to those used in [9, 10, 12, and 13].

Relative to Theorem 4, if in addition to conditions (19)-(21) and
(24)-(26), we ask that r(0) = 0 and there exists N > 0 such that either
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(27) lim Γ[l/α(β)] ['{h^u) + N[h2(u) + \q(u)\]}duds = ~oo

or,

(28) lim Γ[l/α(s)] Γ{W^) - N[h2(u) + \q(u)\]}duds = +oo[

for all large Γ, then any solution x(t) of (1) satisfying (23) is non-
oscillatory. The alternate forms of (27) and (28) corresponding to
(16) and (17) are respectively

(29) lim sup Γ{h^u) + N[h2(u) + \q(u)\]}du < 0

and

(30) lim inf [{h^u) - N[h2(u) + \q(u)\]]du > 0 .

We will now give some examples to illustrate our results.

EXAMPLE 1. The equation

x" + χ/t2 = [sin (In t)]/t\ t ^ 1

fails to satisfy condition (21) for k = 0 or condition (22). Here x(t) =
cos (In ί) is a bounded oscillatory solution which does not converge
to zero.

EXAMPLE 2. The equation

x" + x\t1/2)/f = hx{t)9 t ^ 1

where hx{t) = [sin(ln t) - 3 cos(ln t)]/f + [sin3(ln ί1/2)]/ί9/2 satisfies condition
(20) with p = 3, condition (21) with & = 0, and (25). Here neither
(27) nor (28) holds and we see that x(t) = Γ 1 sin(ln t) is a bounded
oscillatory solution.

EXAMPLE 3. Consider the equation

(Fx'Y + t~axp(tβ) = λx(ί), ί ^ 1

where ft^t) = [4 + 2 cos(6 In t) + 6 sin(6 In t)]/tf + l/tβ, α > 3 and σ > -1.
Conditions (20), (21) and (25) are satisfied provided that βkp — α < - 1
and /9&p — a — σ < — 2. I f σ ^ l , then (28) is satisfied while if σ > 1,
then (30) is satisfied. Thus, in either case, if x(t) is a solution such
that

as t ><>o
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with k < {a + σ — 2)1 βv, then x(t) is nonoscillatory. Notice that
here the forcing term hx(t) changes signs.

The best nonoscillation theorem known to date for sublinear delay
equations is the theorem of Kusano and Onose in [9]; it includes as
a special case the nonoscillation criteria of Singh [13; Theorem 4.1].
There are several similarities between the conditions imposed in [9]
and those used here. For example, when k = 0 conditions (6)-(7) of
[9] imply condition (21) above. In addition, conditions (2)-(3) and
(4)-(5) of [9] imply conditions (29)-(30) and (27)-(28) above respectively.
On the other hand, even when p <; 1 our condition (20) on r{x) is
less restrictive than those used in [9] or [13]. Nor do we require
g(t)>0 as was needed in [9] and [13]. In both [9] and [13] the authors
required that their forcing term e(t, x) = e(t) be either nonnegative
or nonpositive; this was not done here. Other related results for
sublinear equations have been obtained by Staikos and Philos [14]
who studied nth order equations. They proved that for unforced
advanced equations all bounded solutions are nonoscillatory and for
forced delay equations all unbounded solutions are nonoscillatory.
When n = 2, their integral conditions on a(t), q(t) and e(t) are similar
to those used in [9-13] and this paper.

Brands [1] constructed an example of an equations of the type
(2) with a(t) = 1, g(t) = ί — 1, and e(t, x) == 0 such that q(t) satisfied

(31) [°eatZq(t)dt < oo, a < 2

and yet the equation possessed an oscillatory solution. This is
semewhat of a surprise since many sufficient conditions for oscillation
of ordinary equations have analogous counterparts (or may even be
special cases of those) for functional equations (see Kartsatos [8]).
Condition (31) is a far cry from the well known nonoscillation criteria
of Hille

[°tq(t)dt < co

for linear ordinary equations.
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