LONG WALKS IN THE PLANE WITH FEW COLLINEAR POINTS

Joseph L. Gerver

Let S be a set of vectors in \mathbb{R}^n . An S-walk is any (finite or infinite) sequence $\{z_i\}$ of vectors in \mathbb{R}^n such that $z_{i+1}-z_i\in S$ for all i. We will show that if the elements of S do not all lie on the same line through the origin, then for each integer $K\geq 2$, there exists an S-walk $W_{\mathbb{R}}=\{z_i\}_{i=1}^{N(K)}$ such that no K+1 elements of $W_{\mathbb{R}}$ are collinear and N(K) grows faster than any polynomial function of K.

Specifically, we will prove that

$$\log_2 N(K) > \frac{1}{9} (\log_2 K - 1)^2 - \frac{1}{6} (\log_2 K - 1)$$
.

We will then show that if the elements of S lie on at least L distinct lines through the origin, then there exists an S-walk of length N(K, L) with no K+1 elements collinear, such that $N(K, L) \ge (1/4)L^*N(K-1)$, where $L-2 \le L^* \le L+1$ and $L^* = 0 \mod 4$. In [3] it was shown that if $S \subset Z^2$, and for all $s \in S$ we have $||s|| \le M$, then there does not exist an S-walk $W = \{z_i\}_{i=1}^{N(K,M)}$ such that no K+1 elements of W are collinear and

$$\log_2 N(K, M) > 2^{13} M^4 K^4 + \log_2 K$$
.

Before proving these theorems we introduce some notation. If $A = (a_1, \dots, a_n)$ and $B = (b_1, \dots, b_m)$ are ordered sets of vectors, we let $RA = (a_n, \dots, a_1)$ and we let $(A, B) = (a_1, \dots, a_n, b_1, \dots, b_m)$. We let 2A = (A, A) and, for every positive integer k, we let (k+1)A = (kA, A). If J is a vector operator, we let $JA = (Ja_1, \dots, Ja_n)$.

THEOREM 1. Let S contain two vectors independent over R, and let K be an integer greater than or exual to 2. There exists an S-walk $W_K = \{z_p\}_{p=1}^{N(K)}$ such that no K+1 elements of W_K are collinear and such that

$$\log_2 N(K) > \frac{1}{9} (\log_2 K - 1)^2 - \frac{1}{6} (\log_2 K - 1)$$
.

Proof. If we let $(\log_2 K - 1)^2/9 - (\log_2 K - 1)/6 = \log_2 K$, then $\log_2 K = (25 + 3\sqrt{65})/4 > 12$ or $(25 - 3\sqrt{65})/4 < 1$. Therefore if $1 \le \log_2 K \le 12$, and $2 \le K \le 4096$, then

$$rac{1}{9}(\log_2 \mathrm{K} - 1)^{\scriptscriptstyle 2} - rac{1}{6}(\log_2 K - 1) < \log_2 K$$
 .

Since W_K cannot have more than N(K) collinear points, we need only consider K > 4096.

We may let $S = \{i, j\}$ without loss of generality, where i and j are orthonormal unit vectors.

For every positive integer m and nonnegative integer n, let $A_0^m = i$, and let

$$A_{n+1}^m = (mA_n^m, 2^nRJA_n^m)$$

where Ji=j and Jj=i. Let $V=\{v_p\}_{p=1}^N=\mu A_\nu^\mu$, where μ is the greatest integer less than or equal to $((7/9)K)^{1/3}$, and ν is the least integer greater than or equal to $\log_2\mu-3/2$. Note that since K>4096, we have $\mu\geq 14$, and $\nu\geq 3$. Let $z_p=\sum_{q=1}^p v_q$ for each p, and let $W=\{z_p\}_{p=1}^N$. We maintain that W has no more than K collinear points and that $\log_2 N>(\log_2 K-1)^2/9-(\log_2 K-1)/6$.

Let $b_0 = 1$ and let $b_{n+1} = (\mu + 2^n)b_n$. Then b_n is the cardinality of A_n^{μ} , and $N = \mu b_{\nu}$. Clearly $b_n \geq \mu^n$, so $N \geq \mu^{\nu+1}$ and $\log_2 N \geq (\nu + 1)\log_2 \mu \geq (\log_2 \mu - 1/2)\log_2 \mu$. Since μ is the greatest integer less than or equal to $((7/9)K)^{1/3}$, and $((7/9)K)^{1/3} > 14$, we have $\mu > (14/15)((7/9)K)^{1/3} > ((1/2)K)^{1/3}$. It follows that $\log_2 N > 1/9[\log_2((1/2)K)]^2 - \log_2((1/2)K)/6 = (\log_2 K - 1)^2/9 - (\log_2 K - 1)/6$.

We now prove that W has no more than K collinear points.

Let $C_n^{\alpha} = \{z_p : \alpha b_n \leq p \leq (\alpha+1)b_n\}$. For each n, all C_n^{α} are congruent; specifically one can get from any one to any other by a translation plus, possibly, a reflection about the major diagonal (i.e., a reflection about the line passing through the vector i + j, which interchanges i and j), followed by a rotation about the origin of 180° . This reflection plus rotation is equivalent to a reflection about the line perpendicular to the major diagonal (i.e., the line passing through the vector i - j). We will refer to this latter line as the minor diagonal. Let

$$U_n^{\beta} = \{C_n^{\alpha} \colon \beta(\mu + 2^n) \le \alpha < (\beta + 1)(\mu + 2^n)$$

if $n \ne \nu$ and $U_{\nu}^{0} = \{C_{\nu}^{\alpha} \colon 0 \le \alpha \le \mu\}$.

Note that $C_{n+1}^{\beta} = \{z_p : \beta(\mu + 2^n)b_n \leq p \leq (\beta + 1)(\mu + 2^n)b_n\}$, so U_n^{β} is a partition of C_{n+1}^{β} and U_{ν}^{β} is a partition of W. We now consider a line with slope m and determine for each n, the maximum number of elements of U_n^{β} which the line can intersect (the maximum number cannot depend on β , since all C_{n+1}^{β} are congruent). Let r_n be this maximum number. Then the line cannot intersect more than $r = \prod_{n=0}^{\nu} r_n$ points of W.

Let s_n be the slope of z_{b_n} ; i.e., $s_n = y_n/x_n$ where $z_{b_n} = x_n i + y_n j$. The slope of $z_{(\alpha+1)b_n} - z_{\alpha b_n}$ is then either s_n or s_n^{-1} , depending on whether C_n^{α} is a simple translation of C_n^{0} , or a translation of the reflection of C_n^{0} about the minor diagonal. We wish to find a lower bound on s_n/s_{n-1} .

Now $x_0=1$, $y_0=0$, $x_{n+1}=\mu x_n+2^ny_n$, and $y_{n+1}=\mu y_n+2^nx_n$. It follows that x_n , y_n , and s_n are strictly positive for all $n\geq 1$. We now prove by induction that $s_n<2^n/\mu$. Clearly $s_0=0<2^0/\mu$ and $s_1=1/\mu<2^1/\mu$. Suppose $s_n<2^n/\mu$. Let $t_n=2^n/s_n\mu$. Then $t_n>1$. Now

$$egin{aligned} s_{n+1} &= (\mu y_n + 2^n x_n)/(\mu x_n + 2^n y_n) \ &= (\mu s_n + 2^n)/(\mu + 2^n s_n) \ &= (\mu s_n + \mu s_n t_n)/(\mu + \mu s_n^2 t_n) \ &= (s_n + s_n t_n)/(1 + s_n^2 t_n) \;. \end{aligned}$$

Thus

$$egin{aligned} t_{n+1} &= 2^{n+1}/s_{n+1}\mu = 2s_nt_n/s_{n+1} \ &= 2s_nt_n(1+s_n^2t_n)/(s_n+s_nt_n) \ &= 2t_n(1+s_n^2t_n)/(t_n+1) \; . \end{aligned}$$

We now view t_{n+1} as a function of the real variables t_n and s_n , and compute its partial derivatives:

$$\partial t_{n+1}/\partial t_n = 2(s_n^2 t_n^2 + 2s_n^2 t_n + 1)/(t_n + 1) > 0$$

and

$$\partial t_{n+1}/\partial s_n = 4t_n^2 s_n/(t_n+1) > 0$$
.

Since t_{n+1} has the value 1 when $s_n = 0$ and $t_n = 1$, it follows that $t_{n+1} > 1$ when $s_n \ge 0$ and $t_n > 1$, as is the case here. Therefore $s_{n+1} < 2^{n+1}/\mu$.

Next, recall that $\nu-1<\log_2\mu-3/2$, so if $n\leq\nu-1$, then $2^n\leq 2^{\nu-1}<2^{-3/2}\mu$. Since $2^n>s_n\mu$, it follows firstly that $s_n<2^{-3/2}$, and secondly that

$$egin{aligned} s_{n+1}/s_n &= (\mu s_n + 2^n)/(\mu s_n + 2^n s_n^2) \ &> 2\mu s_n/(\mu s_n + 2^{-3/2}\mu s_n^2) \ &= 2/(1 + 2^{-3/2} s_n) > 2\left/\!\left(1 + rac{1}{8}
ight) = rac{16}{9} \;. \end{aligned}$$

It follows that, given m, there is at most one n such that $(3/4)s_n \le m \le (4/3)s_n$. Suppose there exists λ such that $(3/4)s_\lambda \le m \le (4/3)s_\lambda$. Then $m < (3/4)s_{\lambda+1}$ and $m > (4/3)s_{\lambda-1}$. Moreover, for all $n > \lambda + 1$, we have $m < (27/64)s_n < (1/2)s_n$, and for all $n < \lambda - 1$, we

have $m > (64/27)s_n > 2s_n$. All of the above also holds if we replace s_n by s_n^{-1} , except that some of the inequalities are reversed and constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, $n = \lambda$, $n = \lambda + 1$, $n=\lambda-1, n>\lambda+1$, and $n<\lambda-1$, the maximum number r_n of elements of U_n^{β} which a line of slope m can intersect. We can assume without loss of generality that C_{n+1}^{β} is a simple translation of C_{n+1}^0 ; if C_{n+1}^{β} is a translation of the reflection of C_{n+1}^0 about the minor diagonal, then we can apply the same argument, replacing s_n by s_n^{-1} . Then C_n^{α} is a simple translation of C_n^0 for $\beta(\mu+2^n) \leq \infty$ $\alpha < \beta(\mu + 2^n) + \mu$, and a translation of the reflection of C_n^0 for $\beta(\mu+2^n)+\mu \leq \alpha < (\beta+1)(\mu+2^n)$. For each α , the first point of $C_n^{\alpha+1}$ coincides with the last point of C_n^{α} . It is easy to prove by induction on n that C_n^0 (and therefore C_n^{α} for all α) lies entirely within a right triangle, with sides x_n and y_n adjacent to the right angle, and with the first and last points of C_n^0 at opposite ends of the hypotenuse. Therefore the sets C_n^{α} : $\beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) +$ μ lie within congruent right triangles, whose hypotenuses are adjacent segments of a line with slope s_n (see Fig. 1). It follows

FIGURE 1

that a line with slope $m > s_n q/(q-1)$ or $m < s_n (q-1)/q$ can intersect at most q of the sets C_n^{α} : $\beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) + \mu$ at distinct points (i.e., assign the last point of each set C_n^{α} to the set $C_n^{\alpha+1}$, and do not count the line as intersecting C_n^{α} if it only intersects this last point). Suppose $m \leq 1$. Then $m < (1/2)s_s^{-1}$, and a line of slope m can intersect no more than two of the sets C_n^{α} : $\beta(\mu + 2^n) +$ $\mu \leq \alpha < (\beta + 1)(\mu + 2^n)$. If $n = \lambda$, then a line of slope m can intersect all μ of the sets C_n^{α} : $\beta(\mu+2^n) \leq \alpha < \beta(\mu+2^n) + \mu$ for a total of $\mu + 2$. If $n = \lambda + 1$ or $\lambda - 1$, the line can intersect at most 4 of the sets C_n^{α} : $\beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) + \mu$, for a total of 6, while if $n > \lambda + 1$ or $n < \lambda - 1$, the line can intersect at most two of the sets C_n^{α} : $\beta(\mu + 2^n) \leq \alpha < \beta(\mu + 2^n) + \mu$ for a total of 4. If m > 1, then we obtain essentially the same results by redefining λ so that $(3/4)s_{\lambda}^{-1} \leq m \leq (4/3)s_{\lambda}^{-1}$, the only difference being that μ is replaced by 2^n , which in any case is less than μ . Therefore we have $r_n \le \mu + 2$ if $n = \lambda$, $r_n \le 6$ if $n = \lambda - 1$ or $\lambda + 1$, and $r_n \leq 4$ for all other n. Finally, we have

$$egin{align} r &= \prod_{n=0}^{
u} r_n \leqq (\mu+2) \!\cdot\! 6^2 \!\cdot\! 4^{
u-2} < 36(\mu+2) \!\cdot\! 4^{\log_2 \!\mu-5/2} \ &= rac{36}{32} \!\mu^{\!\scriptscriptstyle 2} \!(\mu+2) \leqq rac{9}{7} \!\mu^{\!\scriptscriptstyle 3} \leqq K \;. \end{split}$$

If λ does not exist, then there are at most two values of n for which $(27/64)s_n \leq m \leq (64/27)s_n$, and these two values can take the place of $\lambda - 1$ and $\lambda + 1$ in our argument.

REMARK. We can use this method to get slightly better results as follows: The method works by partitioning W into a heiarchy of sets, each set of order n+1 being partitioned into $\mu+2^n$ sets of order n, and showing that for almost all n, a given line can intersect at most four sets of order n within a given set of order n+1. Suppose that instead of using the partition based on the sets C_n^a , we modify this partition slightly by splitting each C_n^a into two sets of order n, namely $\{z_p: \alpha b_n \leq p \leq \alpha b_n + \mu b_{n-1}\}$ and $\{z_p: \alpha b_n + \mu b_{n-1} \leq p \leq (\alpha+1)b_n\}$. Then each set of order n+1 would have either 2μ or 2^{n+1} sets of order n, and it should not be hard to show that for almost all n, a given line can intersect at most three sets of order n within a given set of order n+1. We would then have $r = c\mu \cdot 3^{\nu} = c\mu^{1+\log_2 3}$, where c is a constant which does not depend on K, and finally

$$\log_2 N = (1 + \log_2 3)^{-2} (\log_2 K)^2 + O(\log_2 K)$$
.

However, it seems impossible to push this method any further.

THEOREM 2. Suppose that S contains L elements which are pairwise independent over R. Then there exists an S-walk $\Omega = \{u_i\}_{i=1}^N$ containing no set of K+1 collinear points, such that

$$\log_2 N > rac{1}{9}[\log_2 (K-1)-1]^2 - rac{1}{6}[\log_2 (K-1)-1] + \log_2 L^* - 2$$
 , where $L-2 \leqq L^* \leqq L+1$ and $L^* \equiv 0 \bmod 4$.

Proof. The L elements of S with distinct arguments must include L/2 elements (if L is even) or (L+1)/2 elements (if L is odd) in the same half-plane. Label these elements s_1, s_2, s_3, \cdots in order of their arguments. For $1 \leq n \leq (1/4)L^*$, let $W_n = \varphi_n W$ where W is defined as in the proof of Theorem 1, and φ_n is the linear vector operator which maps i to s_{2n-1} and j to s_{2n} . Let N_0 be the cardinality of W and let $w_n = xs_{2n-1} + ys_{2n}$ be the final element of W_n . For $1 \leq i \leq N_0$, let z_i be defined as in the proof of Theorem 1, and let $u_i = \varphi_1 z_1$. Let $u_{N_0 n+i} = \sum_{j=1}^n w_j + \varphi_{n+1} z_i$ for

 $1 \le n \le (1/4)L^* - 1$. Finally, let $N = (1/4)L^*N_0$ and let $\Omega = \{u_i\}_{i=1}^N$. Note that Ω is constructed by placing the W_n end to end in sequence.

By Theorem 1,

$$\log_2 N > rac{1}{9} (\log_2 K - 1)^2 - rac{1}{6} (\log_2 K - 1) + \log_2 L^* - 2 \;.$$

We will now prove that no K+2 points of Ω are collinear. Substituting K-1 for the bound variable K then gives us Theorem 2 for the case $K \ge 3$. For the case K=2, we simply let $u_i = \sum_{j=1}^{i} s_j$. The resulting set $\{u_i\}$, which contains at least $(1/2)L^*$ elements, is the set of vertices of a convex polygon; hence no three elements are collinear.

Let $T_n = \{u_i\}_{i=N_0(n-1)+1}^{N_0n}$ and let $t_n = \sum_{j=1}^n w_j$, so that t_n is the final element of T_n . Let $t_0 = 0$ and let $r_n = t_{n-1} + xs_{2n-1}$ for $n \ge 1$. Note that $t_n = r_n + ys_{2n}$. Note also that from results proved previously, the set T_n must lie entirely on or in the interior of the triangle Δ_n with vertices t_{n-1} , r_n , and t_n . Consequently any line which intersects T_n must intersect Δ_n . Now consider the polygon P with vertices t_0 , r_1 , t_1 , r_2 , t_2 , \cdots , $r_{L^*/4}$, $t_{L^*/4}$ in that order. (directed) edges of this polygon are the vectors xs_1, ys_2, xs_3, \cdots , $ys_{L^{*/2}}$, and $-x\sum_{n=1}^{L^{*/4}}s_{2n-1}-y\sum_{n=1}^{L^{*/4}}s_{2n}$. Since the vectors s_1, s_2, s_3, \cdots are listed in order of increasing argument, and the range of all their arguments is less than 180°, it follows that the interior angles of P are all less than 180°, so P is convex. Now any line intersecting Δ_n , and in particular any line intersecting T_n , must intersect at least two sides of Δ_n (including each vertex in its two adjacent sides), and therefore must intersect P. Since P is convex, a line can only intersect P at one or two points, or along an edge. Therefore no line can intersect more than two of the T_n . Unless the slope of a line is between that of s_{2n-1} and s_{2n} inclusive, it can only intersect one point of T_n . By Theorem 1, no line can intersect more than K points of T_n . Therefore, no line can contain more than K+1 points of Ω .

REMARK. In order to compare these results with the upper bound in [3], we can consider the case where $S = \{s \in Z^2 : ||s|| \le M\}$. Since the number of lattice points in a disc of radius R is $\pi R^2 + O(R)$ [2], we know that the number of lattice points with both coordinates divisible by q, in a disc of radius M, is $\pi M^2/q^2 + O(M/q)$. Therefore the number L of lattice points with relatively prime coordinates is

$$\pi M^2 \sum_{n=0}^{\infty} (-1)^n \sum_{q \in Q_n} q^{-2} + O(M \sum_{q \in Q} q^{-1})$$
,

where Q is the set of square free positive integers less than or equal to M, and Q_n is the set of integers in Q with n distinct prime factors. It follows [1] that

$$L = 6M^2/\pi + O(M\log M).$$

Finally, if we let N(K,M) be the length of the longest S-walk with no more than K collinear points, and we choose any constants $c_1 < (9 \log 2)^{-1}$ and $c_2 > 2^{13} \log 2$, then we have

$$M^2 \exp \left[c_{\scriptscriptstyle 1} (\log K)^2 \right] < N(K, M) < \exp \left[c_{\scriptscriptstyle 2} M^4 K^4 \right]$$

for all M and all but a finite number of K.

REFERENCES

- 1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, (1976), 63.
- 2. H. Rademacher, Lectures on Elementary Number Theory, Blaisdell, New York, (1964), 100.
- 3. L. T. Ramsey and J. L. Gerver, On certain sequences of lattice points, Pacific J. Math., 83 (1979), 357-363.

Received June 16, 1978.

University of Hawaii Honolulu, HI 96822

Current address: University of Georgia Athens, GA 30602