PACIFIC JOURNAL OF MATHEMATICS
Vol. 83, No. 2, 1979

ON A THEOREM OF HAYMAN CONCERNING THE
DERIVATIVE OF A FUNCTION OF
BOUNDED CHARACTERISTIC

PATRICK AHERN

W. Hayman [On Nevanlinna’s second theorem and exten-
sions, Rend. Circ. Mat. Palermo, Ser. II, II (1953).] has
given sufficient conditions on a function, f, of bounded
characteristic in the unit disc, in order that f’ also have
bounded characteristic. In this paper it is shown that one
of these conditions is also necessary for the conclusion of
the theorem to hold.

Let U be the open unit disc in the complex plane and let T be
its boundary. It is well known that there are functions f, that are
bounded and holomorphic in U, such that f'¢ N(U). Here N(U) is
the Nevanlinna class. In fact, O. Frostman, [1, Théoreme IX], has
shown that there are Blaschke products with some degree of “smooth-
ness” whose derivatives fail to lie in N(U). More precisely, he
shows that there is a Blaschke product B, whose zeros {a,} satisfy
the condition,

S — [au])* < e, for all a>—;—,

but B’¢ N(U). In Frostman’s example, every point of T is a limit
point of the sequence {a,}.

W. Hayman, [2, Theorem IV], has proved a result in the positive
direction. A function f, that is holomorphic in a bounded domain D,
is said to be of order K if, for every complex number a, the number
of solutions of the equation, f(z) = a, that are at a distance of at
least ¢ from the boundary of D is at most Ce %, for some constant
C. C may depend on a but not on ¢. We say f has finite order if
it has order K for some K. Now let D be a bounded open set such
that US D, and let DN T = Y. I,, where I, = {”: a, < 0 < B.}.

THEOREM A (Hayman). Suppose that

(i) @ 2.B.—a,)=2r
(b) Zn (/870 - a'n) IOg 1/(131; - am,) < oo,
(il) there are constants €, C > 0 such that if a, < 60 < B,, then

diSt(ew’ aD) g 8(E0 - a’nl Iﬂ - Bnt)t .
(iii) f 48 holomorphic and of finite order in D and f e N(U).
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Then f*% e N(U) for k=1,2,8, ---.

The conditions (i)(a) and (i)(b) just mean that the set £ = T\U, I,
is what is usually called a Carleson set.

In [4], P. Kennedy investigates the necessity of condition (i)(b).
He shows that if (i)(a) holds but

T [ & 1
* l J— . 1 —_— = o,

*) i (3, (8; — ) log o=~
then there is a bounded open set D 2U such that DN T = U, L, I, =
{e": a, < 6 < B,}, and a function f that is bounded and holomorphic
in D such that f'¢ N(U). He observes that condition (*) does not
follow from the condition

1
Bn_aﬂl —_— = o,

” "

and writes that “there is still a gap between the positive information
given by Hayman’s theorem and the negative information” given by
his example.

In this note we close the gap by showing that condition (@)(b)
is the right one. Our example is a Blaschke product that retains
the same degree of smoothness as the one of Frostman’s example.

THEOREM. 7To each sequence of arcs {L,}, I, = {e’: a, < 6 < B.},
that satisfies (i)(a) but not (i)(b), there corresponds a Blaschke product,
B, whose zero sequence, {a,}, clusters only on T\U, I,, such that
B¢ NIU) and >, (1 — |a,)* < o for all a > 1/2. Moreover, there is
a bounded open set D, such that D2U, DNT = U, I,, D satisfies
condition (i)(c) with C =2, and B extends to be bounded and of order

1 wn D.

Proof. Lete, =B, — a,. We are assuming that >}, ¢, log (1/¢,) =
. We may choose numbers 4,, 0 <4, < 1, such that lim,.. 46, =0,
and >, 0,8,log 1/e, = <. Now define d, = & °» and ¢, = (1 — d,)e™*»
and 7, = (1 — d,)e*». Let B be the Blascke product whose zeros are
{e.} U {v.}. The zeros of B cluster only on the set £ = T\U, I, so
B is holomorphic on I, for every n. We calculate that

1_10%12 + 1___'7%]2 }
(z - cn)(l - E‘nz) 4 (Z - '7,,)(1 - '7,,2)
so that when e’ c I, we get

B(z) = B@){S

wyww&wﬂ;ﬁ“mﬁ+zl‘wwy

& —of  Fle? —nl
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If B’ were in N(U) it would follow that

py SI log*+ (2 M)dﬂ <o

. F e’ — el
Now,
¢ — o, = (L= les])t + 4o, | sin* (L% )
s=di+ (0 —a.)
and hence

L ef o d
]ei(}__cnIZ - df, + (0 - a'n)2

If ¢’ eI,, then

10g+<z 1- |Ck|22> > log (Z 1-— |Ck|2>

e — o e — el

1—|C,,,[ >10g dn

Y

log

So we see that

(v 1 — el S d,
+ > log ——22 ___dg
%&nlog (> 1@1‘0_%12)—% S E T O —a)
d
> e, 1 "
R

Since 46, < 1, we see that d, = ¢¢’» < ¢, (assuming ¢, < 1), so

d d 1 1 1
1 = >log—== =1lo = log = + 4, lo .
g di + & = 8 2e% & 2eln & 2 & En

Hence,

» ke’ — ¢l €n

So B'¢ N(U). Also we see that

SA —la, ) =23 ds =Dl < oo

if @ > 1/2 because (2 — d,)a = 1 for all sufficiently large .

le —c, P~ di+ (0 —a,)

ZS log* {21"_%12}(10 > o1 log—%- + S oe logt = oo,
Iy n
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It remains to construct the domain D. We have the inequality,
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Bren)tz1— @ -mizLolal s 1olnl |

% Il — 7'eioc_k‘2 % |1 _ 7.ei07k[2
z1-4a-mytolel s Lol
}7‘6“’ - = ret? — __1
Cy Tk

(We may assume |¢,| = 1/2, |v,.| = 1/2.)
Now suppose «, £0 = (a, + £,)/2 and |[z| £ 1, then

Brenrz1 - 20Tl (S0 —jap+ Sa - n).

So, | Bre?) = 1/4 if

11— i 1 =C
|re? —en? — 163 (1 — ) + X (1 — [7])

A

Note that C is independent of 6 and ». Similarly we see that if
(a, + B.)2=0 =8B, and
1— 9 3 1 _
[re? — e 16 3 (1 —af) + XA —[7f)

A

b

then |B(re”)|* = 1/4. We may calculate that, for C > 0,

i0. 1 -9 — fnpile | napil __ ppid _
{'re P —— <C}—{7e Dlre e’ > 1 — p},
where p = C/(1 + C).

So, if

Ao =f{re:r =1, a, <0 < B,, |re’ — pei*»| >1 —p,
and |re’’ — petn| > 1 — o} and 4 =, 4,, then |B(z)|
=1/2,ze€4.

Now for [z| > 1, B(z) = 1/B(1/z), so |B(z)| <2 if 1/ze 4. Assuming,
as we may, that C <1, we see that I', ={2:1/ze4,} ={z:|z| = 1,
|z +den| < 1+6 and |z + de'»| < 1 + 46}, where o = C/(1 — C).
Finally, if welet > =U U U, ', then ¢ is an open set and |B(z)| < 2
for ze 2.

Now we define a function

@ — )0 — B,)? if a, <0< B, for some n

nO) =
(0 0 otherwise .

We check that +'(6) exists for all # and that there is a constant K
such that
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|9/ (0,) — '(6:)] = K[6, — 0, .

(See [4, Lemma 1] for a similar calculation.) For ¢ > 0 we define
D, = {re’: » < e¥?}. Then D, satisfies condition (ii). of Theorem A
with C =2. (Again, see [4, Lemma 2], for a similar calculation.)
Also, it is not hard to that D, £ ¢ for all sufficiently small ¢ > 0.
So we fix some ¢ > 0 such that D. £ ¢ and let D = D.. Since DZ
¢, B is bounded in D. It remains to show that B has order 1 in D.
Let @: D—U be a conformal map. Since ' satisfies a Lipschitz
condition it follows from a theorem of Kellogg [3], that ¢’ extends
to be continuous and nonvanishing on D. From this we can conclude
that there is a 6 > 0 such that 1 — |®(2)| = ¢ dist (2, D) for all z € D.
Fix aeC and let f = B — a and let {a,} be the zero sequence of f.
Then {p(a,)} is the zero sequence of the bounded function fop™ so
31— |ea,)]) < o> and hence >, dist(a,, 0D) < . From this we
may conclude that B has order 1 in D.

As a final remark we point out that we may choose the ares I,
in such a way that F = T\U, I, is a countable set with only one
limit point, and such that (i)(b) fails. If we apply the theorem to
this situation we get a Blaschke product B whose zeros converge to
a single point such that B’ ¢ N(U), while the zeros sequence, {a,},
satisfies >, (1 — |a,|)* < e for all a > 1/2.
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