THERE ARE 2^c NONHOMEOMORPHIC CONTINUA IN $\beta R^n - R^n$

ALICIA BROWNER WINSLOW

In this paper it is shown that for $n \ge 3$, $\beta R^n - R^n$ contains 2^c nonhomeomorphic continua. In the proof we will also construct c continua in $\beta R^3 - R^3$ with nonisomorphic first Cech cohomology groups and 2^c compacta in $\beta R^8 - R^3$ no two of which have the same shape.

Introduction. Much work has been done in the study of the Stone-Čech compactification of the natural numbers. Some of these results have been applied to the study of $\beta X - X$ for other topological spaces X, as in the proof of Frolik's result that $\beta X - X$ is not homogeneous for a nonpseudocompact space X (see [9]). Shape theory has offered new methods for examining βX and $\beta X - X$ that utilize the intrinsic topological properties of βX , as is illustrated in this paper in the case of βR^n . Using the fact that shape factors through Čech cohomology, we will construct c continua in $\beta R^3 - R^3$, no two of which have the same shape. Then, a particular embedding of subsets of the continua into βR^3 will exhibit 2° compacta in $\beta R^3 - R^3$ with different shapes. An easy modification of the compacta will yield 2° nonhomeomorphic continua in $\beta R^3 - R^3$, the proof of which utilizes the properties of shape dimension as developed by J. Keesling [5]. From this it follows that for $n \ge 3$ there are 2^{c} nonhomeomorphic continua in $\beta R^n - R^n$.

Preliminaries. Let βX denote the Stone-Čech compactification of a space X. For references, see Gillman and Jerison [2], or Walker [9]. $H^*(X)$ will denote the *n*-dimensional Čech cohomology of X with coefficients in Z based on the numerable covers of X. Also, $[X, S^1]$ will denote all homotopy classes of maps from X into S^1 , with the group structure induced by the group structure on S^1 . Since S^1 is a $K(Z, 1), H^1(X)$ is isomorphic to $[X, S^1]$. Finally, let $\prod A_i$ be the group $\prod_{i \in Z} A_i / \sum_{i \in Z} A_i$.

The following theorems will be used in this paper:

THEOREM 1 (Lemma 1.7 of [1]). For X normal and connected, there is an exact sequence $0 \to C(X)/C^*(X) \to [\beta X, S^1] \to [X, S^1] \to 0$ where C(X) is the additive group of real valued continuous functions on X, and $C^*(X)$ is the subgroup of bounded real continuous functions.

THEOREM 2 (Theorem 1.6 of [5]). Let $n \ge 1$ be an integer. Let

X be a locally compact, σ -compact space such that for every compact set $K \subseteq X$ there is a compact set $L \subseteq X - K$ such that dim $L \ge n$. Then the shape dimension of βX , Sd $\beta X \ge n$ and Sd $(\beta X - X) \ge n$.

THEOREM 3 (Corollary 1.9 of [5]). Let X be a Lindelöf space and let K be a compact set contained in βX X. Then dim K =Sd K.

THEOREM 4 (Theorem 1.12 of [4]). Suppose that X is realcompact and that K is a continuum contained in $\beta X - X$. Then if f(K) =Y is any continuous maps which is a shape equivalence, f is a homeomorphism.

Main Theorems.

THEOREM 5. There are c subcontinua of $\beta R^3 - R^3$ which have nonisomorphic first Čech cohomology groups.

Proof. Consider the collection $\{P_a: a \in \mathcal{N}\}$, where each P_a is a sequence of prime numbers such that there are an infinite number of distinct primes in P_a , and each prime occurs an infinite number of times; if $a, b \in \mathcal{N}$ with $a \neq b$, then there is a prime occuring in P_a which is not in P_b , or a prime in P_b which is not in P_a ; and card $\mathcal{M} = c$. Let \sum_a be the solenoid corresponding to the sequence P_a , and let $B_a = H^1(\sum_a)$. We know that B_a is isomorphic to $\{m/p_1p_2\cdots p_k: m \in Z, p_i \in P_a\}$.

The solenoid \sum_{a} may be described as follows: let $P_{a} = \{p_{1}, p_{2}, p_{3}, \dots\}$. \sum_{a} is the intersection of a decreasing tower of solid tori $\{T_{n}\}$ in \mathbb{R}^{3} with the properties that (i) $T_{n+1} \subseteq T_{n}$ for every $n \in Z^{+}$; (ii) $\lim_{n \to \infty}$ [length of cross section of T_{n}] = 0; and (iii) T_{n+1} is wrapped p_{n} times around the hole of T_{n} . Also, let $p, q \in T_{1}$ so that the distance from p to q is maximal, and specify that T_{n} passes through p and q for every n.

Position \sum_{a} in R^{3} so that p = (0, 0, 0) and q = (0, 0, 1). Define $f: R^{3} \to R^{3}$ by f(x, y, z) = (x, y, z + 1), and let $A = \bigcup_{n \ge 0} f^{n}(\sum_{a})$. Hence, A is the union of a countable number of copies of \sum_{a} placed end to end. Now $H^{1}(A) = \prod_{n \ge 0} H^{1}(f^{n}(\sum_{a})) = \prod H^{1}(\sum_{a})$ (the countable infinite product of copies of $H^{1}(\sum_{a})$), and so we have $H^{1}(A) = \prod B_{a}$.

Let $A_n = \bigcup_{i \ge n} f^i(\sum_a)$, i.e., A_n is the closure of A with the first n copies of \sum_a deleted. Since A and A_n are closed subsets of R^3 , βA and βA_n are contained in βR^3 . Also, A_n is connected implies that βA_n is connected. Hence, $\beta A - A = \bigcap_{n \ge 0} \beta A_n$ is a continuum in $\beta R^3 - R^3$. Let $A^* = \beta A - A$. We now wish to compute $H^1(A^*)$.

By Theorem 1, there is an exact sequence $0 \to C(X)/C^*(X) \to$

 $[\beta X, S^1] \rightarrow [X, S^1] \rightarrow 0$, where C(X) is the additive group of real continuous functions on X, and $C^*(X)$ is the subgroup of bounded functions. Since $A^* = \bigcap_{n \ge 0} \beta A_n$, by the continuity of Čech cohomology, $H^1(A^*) = \lim_{n \to \infty} H^1(\beta A_n)$, where the bonding maps are induced by inclusion, $i_n^*: H^1(\beta A_n) \rightarrow H^1(\beta A_{n+1})$. For each n, we have the following commutative diagram:

This diagram gives rise to the following exact sequence: $0 \rightarrow \lim_{n \to \infty} C(A_n)/C^*(A_n) \rightarrow \lim_{n \to \infty} [\beta A_n, S^1] \rightarrow \lim_{n \to \infty} [A_n, S^1] \rightarrow 0$. Since $[X, S^1] \cong \overrightarrow{H^1}(X)$, we have $\lim_{n \to \infty} [\beta A_n, S^1] \cong \lim_{n \to \infty} H^1(\beta A_n) \cong H^1(A^*)$, and $\lim_{n \to \infty} [A_n, S^1] \cong \lim_{n \to \infty} H^1(A_n)$, where the bonding maps are i_n^* . Hence, we have the following exact sequence:

$$0 \longrightarrow \lim_{\longrightarrow} C(A_n)/C^*(A_n) \longrightarrow H^1(A^*) \longrightarrow \lim_{\longrightarrow} H^1(A_n) \longrightarrow 0 .$$

We will now evaluate these direct limits.

Since A_n differs from A_{n+1} by a set of compact closure, $i_n^*: C(A_n)/C^*(A_n) \to C(A_{n+1})/C^*(A_{n+1})$ is an isomorphism. Hence, $\lim_{x \to \infty} C(A_n)/C^*(A_n)$ is isomorphic to $C(A_1)/C^*(A_1)$. Since $C(A_1)/C^*(A_1)$ $\stackrel{\longrightarrow}{x}$ a torsion free divisible group, $C(A_1)/C^*(A_1)$ is isomorphic to a direct sum of copies of Q, the rational numbers. Therefore, $\lim_{x \to \infty} C(A_n)/C^*(A_n) \cong \bigoplus_{x \to \infty} Q$.

Now consider $\lim_{\to} H^1(A_n)$. As before, $H^1(A_n)$ is isomorphic to $\prod_{n=1}^{\infty} B_n$, the countable infinite product of copies of B_n . The bonding map $i_n^*: H^1(A_n) \to H^1(A_{n+1})$ is defined by

$$i_n^*((x_1, x_2, x_3, \cdots)) = (x_2, x_3, \cdots) \quad (x_i \in B_a) \; .$$

Now $\lim_{\to} H^1(A_n)$ is isomorphic to $(\sum_{n} H^1(A_n))/S = (\sum_{n} (\prod_{n} B_a))/S$, where S is the subgroup generated by $i_n^*(y_n) - y_n$, $y_n \in H^1(A_n)$. (See [7], page 29.) Define a map $g: \prod_{a} B_a \to (\sum_{n} (\prod_{n} B_a))/S$ by $g(a) = (a, 0, 0, \cdots) + S$. One can verify that g is an onto homomorphism with kernel $\sum_{n} B_a$. Hence, g induces an isomorphism $(\sum_{n} (\prod_{n} B_a))/S \cong (\prod_{n} B_a)/(\sum_{n} B_a) = \prod_{n} B_a$, and so $\lim_{n} H^1(A_n) \cong \prod_{n} B_a$.

By these two evaluations, we get the following exact sequence: $0 \rightarrow \bigoplus_{c} Q \rightarrow H^{1}(A^{*}) \rightarrow \prod B_{a} \rightarrow 0$. Since $\bigoplus_{c} Q$ is divisible, the sequence splits (see [7]), and $H^{1}(A^{*}) \cong \prod B_{a} \bigoplus (\bigoplus_{c} Q)$. Thus we have constructed a continuum A^{*} in $\beta R^{3} - R^{3}$ with $H^{1}(A^{*}) \cong \prod B_{a} \otimes (\bigoplus_{c} Q)$.

Now for $a, b \in A, a \neq b, H^{1}(A^{*})$ is not isomorphic to $H^{1}(B^{*})$. This

follows from the fact every element of $H^1(A^*)$ is divisible by a prime p if and only if $p \in P_a$. Hence, we have constructed c continua in $\beta R^3 - R^3$ with nonisomorphic first Čech cohomology groups. Since two spaces with nonisomorphic Čech cohomology groups have different shapes, we have the following corollary.

COROLLARY 1. There are c continua in $\beta R^3 - R^3$, no two of which have the same shape.

THEOREM 6. There are 2° compacts in $\beta R^3 - R^3$, no two of which have the same shape.

Proof. Theorem 6 is a continuation of Theorem 5. Suppose \mathcal{N}, A , and A^* are as in the proof of Theorem 5. For each $a \in \mathcal{M}$, we have constructed a continuum A^* in $\beta R^3 - R^3$ such that for $a \neq b$, $\operatorname{Sh}(A^*) \neq \operatorname{Sh}(B^*)$. Now for each subset of \mathcal{M} of cardinality c, we will construct a compactum in $\beta R^3 - R^3$ such that if $S_1, S_2 \subseteq \mathcal{N}, S_1 \neq S_2$, and card $S_1 = \operatorname{card} S_2 = c$, then the corresponding compacta will have different shapes. Since there are 2^c subsets of \mathcal{N} of cardinality c, this will exhibit 2^c nonshape equivalent compacta in $\beta R^3 - R^3$.

Let $S \subseteq \mathscr{A}$ such that card S = c. There is a one-to-one correspondence between elements of S and real numbers r such that $0 \leq r < 2\pi$. So each element a of S corresponds to a unique $r_a \in [0, 2\pi)$. Let $h_{r_a}: R^3 \to R^3$ be a rotation of the y - z plane r_a radians. Define $A_r = h_{r_a}(A)$, where A is as defined above. As before, $H^1(A_r^*) = \prod B_a \bigoplus (\bigoplus_r Q)$, where $A_r^* = \beta A_r - A_r$. Let $C_s = \overline{\bigcup_{a \in S} A_r^*}$. Then C_s is a compact subset of $\beta R^3 - R^3$.

Claim. A_r^* is an isolated component of C_s .

Proof of Claim. Let N_i , i = 1, 2, be a neighborhood of the ray $h_{r_a}(\{(0, 0, z): z \in R^+\})$ of radius 2, 3, respectively. By construction, $A_r \subseteq N_1$. Define a function $f: \overline{N_1} \cup (R^3 - N_2) \rightarrow [0, 1]$ by $f(\overline{N_1}) = 0$ and $f(R^3 - N_2) = 1$. Since R^3 is normal, there is a continuous extension of f, say \overline{f} , to all of R^3 . Then \overline{f} has a continuous extension, $\beta \overline{f}$, to all of βR^3 . Since $\beta \overline{f}(A_r) = f(A_r) = 0$, we have $\beta \overline{f}(\overline{A_r}) = 0$, and so $\beta \overline{f}(A_r^*) = 0$. For $b \in S$, $b \neq a$, $\beta \overline{f}(B_r^*) = 1$, since for some neighborhood about the origin, points in B_r not in this neighborhood are in $R^3 - N_2$. Thus, $\beta \overline{f}(\overline{\bigcup_{b \in S - \{a\}} B_r^*)} = 1$. By normality, there exist open sets U and V in βR^3 with $U \cap V = \emptyset$, $A_r^* \subseteq U$, and $(\overline{\bigcup_{b \in S - \{a\}} B_r^*) \subseteq V$. Hence, A_r^* is an isolated component of $C_S = (\overline{\bigcup_{b \in S - \{a\}} B_r^*) \cup A_r^*$.

Note that these are the only isolated components, for if $X \subseteq C_s - \bigcup_{a \in S} A_r^*$, then any open set containing X also contains points

of $\bigcup_{a \in S} A_r^*$, since every point of X is a limit point of $\bigcup_{a \in S} A_r^*$.

Now, for $S_1, S_2 \subseteq \underline{A}$ with $S_1 \neq S_2$ and card $S_1 = \text{card } S_2 = c$, the shape of C_{S_1} is different from the shape of C_{S_2} . This follows from the fact that if $\operatorname{Sh}(C_{S_1}) = \operatorname{Sh}(C_{S_2})$, then each isolated component of C_{S_1} is shape equivalent to an isolated component of C_{S_2} . Either $S_1 - S_2 \neq \emptyset$, or $S_2 - S_1 \neq \emptyset$, so without loss of generality assume that $S_1 - S_2 \neq \emptyset$, and let $a \in S_1 - S_2$. Then A_r^* is an isolated component of C_{S_2} , which is not shape equivalent to any isolated component of C_{S_2} , which implies that $\operatorname{Sh}(C_{S_1}) \neq \operatorname{Sh}(C_{S_2})$.

Hence, there are 2° compacts in $\beta R^3 - R^3$ no two of which have the same shape. Since there are at most 2° compacts in βR^3 , there are exactly 2° compacts in $\beta R^3 - R^3$ no two of which have the same shape.

COROLLARY 2. For $n \ge 3$, there are 2° compacts in $\beta R^n - R^n$, no two of which have the same shape.

THEOREM 7. There are 2° nonhomeomorphic continua in $\beta R^3 - R^3$.

Proof. As in the proof of Theorem 6, let $S \subseteq \mathscr{N}$ such that card S = c; $A_r = h_{r_o}(A)$; and $C_s = \bigcup_{a \in S} A_r^*$.

Consider a plane P tangent to each solenoid of $\bigcup_{a \in S} A_r$, and let $P^* = \beta P - P \subseteq \beta R^3 - R^3$. Let $X = C_S \cup P^*$. One can easily verify that X is a continuum. Now suppose $C_T = \bigcup_{b \in T} B_r^*$ is the result of a collection of solenoids corresponding to the subset T of \mathcal{A} , where card T = c and $T \neq S$. Then $Y = C_T \cup P^*$ is a continuum of $\beta R^3 - R^3$.

We will show that X and Y are not homeomorphic. The method will be as follows. If h is a homeomorphism from X onto Y, then $h(C_s) = C_T$ which implies that C_s and C_T are homeomorphic, contradicting the fact that C_s and C_T have different shapes by Theorem 6, and therefore are not homeomorphic.

Claim 1. Let $x \in \beta R^2 - R^2$, and V an open set of $\beta R^2 - R^2$ containing x. Then there exists a closed set F containing x, such that $F \subseteq V$ and F has dimension 2.

Proof of Claim 1. Since V is an open set in $\beta R^2 - R^2$, $V = U \cap (\beta R^2 - R^2)$, where U is open in βR^2 . There is a set W, open in βR^2 , such that $x \in W$ and $\overline{W} \subseteq U$. Let $D = \operatorname{cl}_{R^2}(W \cap R^2)$. Now

$$\operatorname{Cl}_{{}^{eta R^2}}(\operatorname{Cl}_{R^2}\!(W\cap R^2))=ar W \,{\subseteq\,}\, U$$
 ,

so that the set $\beta D - D = \operatorname{Cl}_{\beta R^2}(\operatorname{Cl}_{R^2}(W \cap R^2)) - \operatorname{Cl}_{R^2}(W \cap R^2)$ is a closed subset of V in $\beta R^2 - R^2$.

For any compact subset C of D, D-C is open in $D=\operatorname{Cl}_{R^2}(W\cap R^2)$.

Since $W \cap R^2$ is open in R^2 , D - C contains a subset Z that is open in R^2 . Let N be a basic open set in R^2 such that $\overline{N} \subseteq Z$. Since dim $\overline{N} = 2$, by Theorem 2 Sd($\beta D - D$) ≥ 2 . By Theorem 3,

$$\dim(\beta D - D) \ge 2 \; .$$

(See also [8].) Since dim $(\beta D - D) \leq 2$, it follows that dim $(\beta D - D) = 2$. Hence, $F = \beta D - D$ is a closed subset of V containing x of dimension 2.

Claim 2. If
$$x \in A^*_{\ell}$$
 such that $x \notin P^*$, then $h(x) \in C_r$.

Proof of Claim 2. The claim follows from the fact that any neighborhood of a point in $Y - C_T \subseteq P^*$ has dimension 2, by Claim 1, while x has neighborhoods of dimension ≤ 1 .

Claim 3. If $x \in A_r^* \cap P^*$, then $h(x) \in C_T$.

Proof of Claim 3. We will show that x is a limit point of $A_r^* \cap (X - P^*)$. Then by Claim 2, since $h(A_r^* \cap (X - P^*)) \subseteq C_T$, it follows that $h(x) \in C_T$.

Let U be an open set in $\beta R^3 - R^3$ containing x. There is a set W, open in $\beta R^3 - R^3$ such that $x \in W \subseteq \overline{W} \subseteq U$. Now, $W = (\beta R^3 - R^3) \cap V$, where V is open in βR^3 . Since V is an open set containing $x \in A_r^* = \beta A_r - A_r$, $V \cap A \neq \emptyset$. This implies that V intersects an infinite number of solenoids of A_r .

Let $x_n \in A_r \cap V \cap (R^3 - P)$ such that $|x_n| \to \infty$ as $n \to \infty$. This is possible since $V \cap R^3$ is open, and $A_r \cap P$ is a countable set. Let $y \in \beta(\{x_n : n \ge 1\}) - \{x_n : n \ge 1\} \subseteq \beta R^3 - R^3$. Since $x_n \in A_r$ for every $n, y \in \beta A_r - A_r$. Now, define f on $P \cup \{x_n : n \ge 1\}$ by f(P) = 0 and $f(x_n) = 1$ for every n. Since $P \cup \{x_n : n \ge 1\}$ is closed in R^3 , there is a continuous extension of f to all of R^3 , say \overline{f} . Then \overline{f} can be extended continuously to βR^3 , say by $\beta \overline{f}$. Now $\beta \overline{f}(x_n) = 1$ for every n implies that $\beta \overline{f}(y) = 1$. Since $\beta \overline{f}(P) = 0$, $\beta \overline{f}(\overline{P}) = 0$. Hence, $y \notin \beta P$. Also, $x_n \in V$ for every n, which implies that $y \in \overline{V} - V$, and hence $y \in \overline{W} \subseteq U$. Therefore, $U \cap (A_r^* - P^*) \neq \emptyset$, which implies that x is a limit point of $A_r^* \cap (X - P^*)$. Hence, $h(x) \in C_T$.

By Claim 2 and Claim 3, $h(A_r^*) \subseteq C_T$ for every A_r^* . Then $h(\cup A_r^*) \subseteq C_T$, which implies $h(\overline{\cup A_r^*}) \subseteq \overline{C}_T = C_T$, and $h(C_s) \subseteq C_T$. Similarly, $h^{-1}(C_T) \subseteq C_s$, which implies $C_T \subseteq h(C_s)$. Therefore, $h(C_s) = C_T$ and C_s and C_T are homeomorphic. This contradicts Theorem 6, since $\operatorname{Sh}(C_s) \neq \operatorname{Sh}(C_T)$. Hence, X and Y are not homeomorphic.

By Theorem 6, there are 2° choices for X, and since no two of them are homeomorphic, there are 2° nonhomeomorphic continua in $\beta R^3 - R^3$.

COROLLARY 3. For $n \ge 3$, $\beta R^n - R^n$ contains 2° nonhomeomorphic continua.

COROLLARY 4. Let X and Y be as in the proof of Theorem 7. Then there does not exist a continuous map $f: X \rightarrow Y$ that is a shape equivalence. In particular, X and Y are not homotopic.

Proof. By Theorem 4, if f is a continuous map, $f: X \to Y$, which is a shape equivalence, then f is a homeomorphism, contradicting Theorem 7.

Note that Corollary 4 does not imply that X and Y are not shape equivalent, since there are shape morphisms that are not induced by continuous functions.

The problem appears much more nontrivial in the cases n = 1, 2. Since solenoids cannot be embedded in R^2 , the same argument fails in the case n = 2. In fact, the method of Theorem 5 fails in general for R^2 , since the cohomology of a continuum in the plane is either 0 or a direct sum of copies of Z, the integers. The solution in the case of n = 1 appears even more difficult, and is yet unsolved.

References

1. A. Calder and J. Siegel, Homotopy and uniform homotopy, Trans. Amer. Math. Soc., 235 (1978), 245-270.

2. L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1967.

3. J. Keesling, The group of homeomorphisms of a solenoid, Trans. Amer. Math. Soc., 172 (1972), 119-131.

4. ____, Decompositions of the Stone-Čech compactification which are shape equivalences, Pacific J. Math., 75 (1978), 455-466.

5. ____, The Stone-Čech compactification and shape dimension, Topology Proceedings, 2, No. 2 (1977), 483-508.

6. J. Keesling and R. B. Sher, Shape properties of the Stone-Čech compactification, General Topology and Appl., 9 (1978), 1-8.

7. J. Rotman, Notes on Homological Algebra, Van Nostrand Reinhold Company, New York, 1970.

8. Ju. M. Smirnow, Ueber die Dimension der Adjunkten bei Kompaktifizierungen, Monatsb. Deutsch. Akad. Wiss., Berlin, 7 (1965), 230–232.

9. R.C. Walker, The Stone-Cech Kompactification, Springer-Verlag, New York, 1974.

Received August 9, 1978 and in revised form December 18, 1978.

UNIVERSITY OF FLORIDA GAINESVILLE, FL 32611