THERE ARE 2^{c} NONHOMEOMORPHIC CONTINUA IN $\beta R^{n}-R^{n}$

Alicia Browner Winslow

Abstract

In this paper it is shown that for $n \geqq 3, \beta R^{n}-R^{n}$ contains 2^{c} nonhomeomorphic continua. In the proof we will also construct c continua in $\beta R^{3}-R^{3}$ with nonisomorphic first Cech cohomology groups and 2^{c} compacta in $\beta R^{3}-R^{3}$ no two of which have the same shape.

Introduction. Much work has been done in the study of the Stone-Čech compactification of the natural numbers. Some of these results have been applied to the study of $\beta X-X$ for other topological spaces X, as in the proof of Frolik's result that $\beta X-X$ is not homogeneous for a nonpseudocompact space X (see [9]). Shape theory has offered new methods for examining βX and $\beta X-X$ that utilize the intrinsic topological properties of βX, as is illustrated in this paper in the case of βR^{n}. Using the fact that shape factors through Čech cohomology, we will construct c continua in $\beta R^{3}-R^{3}$, no two of which have the same shape. Then, a particular embedding of subsets of the continua into βR^{3} will exhibit 2^{c} compacta in $\beta R^{3}-R^{3}$ with different shapes. An easy modification of the compacta will yield 2^{c} nonhomeomorphic continua in $\beta R^{3}-R^{3}$, the proof of which utilizes the properties of shape dimension as developed by J. Keesling [5]. From this it follows that for $n \geqq 3$ there are 2^{c} nonhomeomorphic continua in $\beta R^{n}-R^{n}$.

Preliminaries. Let βX denote the Stone-Čech compactification of a space X. For references, see Gillman and Jerison [2], or Walker [9]. $H^{n}(X)$ will denote the n-dimensional Čech cohomology of X with coefficients in Z based on the numerable covers of X. Also, $\left[X, S^{1}\right]$ will denote all homotopy classes of maps from X into S^{1}, with the group structure induced by the group structure on S^{1}. Since S^{1} is a $K(Z, 1), H^{1}(X)$ is isomorphic to $\left[X, S^{1}\right]$. Finally, let $\tilde{\Pi} A_{i}$ be the $\operatorname{group} \Pi_{i \in Z} A_{i} / \sum_{i \in Z} A_{i}$.

The following theorems will be used in this paper:
Theorem 1 (Lemma 1.7 of [1]). For X normal and connected, there is an exact sequence $0 \rightarrow C(X) / C^{*}(X) \rightarrow\left[\beta X, S^{1}\right] \rightarrow\left[X, S^{1}\right] \rightarrow 0$ where $C(X)$ is the additive group of real valued continuous functions on X, and $C^{*}(X)$ is the subgroup of bounded real continuous functions.

Theorem 2 (Theorem 1.6 of [5]). Let $n \geqq 1$ be an integer. Let
X be a locally compact, σ-compact space such that for every compact set $K \subseteq X$ there is a compact set $L \subseteq X-K$ such that $\operatorname{dim} L \geqq n$. Then the shape dimension of $\beta X, \operatorname{Sd} \beta X \geqq n$ and $\operatorname{Sd}(\beta X-X) \geqq n$.

Theorem 3 (Corollary 1.9 of [5]). Let X be a Lindelöf space and let K be a compact set contained in $\beta X \quad X$. Then $\operatorname{dim} K=$ Sd K.

Theorem 4 (Theorem 1.12 of [4]). Suppose that X is realcompact and that K is a continuum contained in $\beta X-X$. Then if $f(K)=$ Y is any continuous maps which is a shape equivalence, f is a homeomorphism.

Main Theorems.
TheOrem 5. There are c subcontinua of $\beta R^{3}-R^{3}$ which have nonisomorphic first Čech cohomology groups.

Proof. Consider the collection $\left\{P_{a}: a \in \mathscr{C}\right\}$, where each P_{a} is a sequence of prime numbers such that there are an infinite number of distinct primes in P_{a}, and each prime occurs an infinite number of times; if $a, b \in \mathscr{A}$ with $a \neq b$, then there is a prime occuring in P_{a} which is not in P_{b}, or a prime in P_{b} which is not in P_{a}; and card $\mathscr{A}=c$. Let \sum_{a} be the solenoid corresponding to the sequence P_{a}, and let $B_{a}=H^{1}\left(\sum_{a}\right)$. We know that B_{a} is isomorphic to $\left\{m / p_{1} p_{2} \cdots p_{k}: m \in Z, p_{i} \in P_{a}\right\}$.

The solenoid \sum_{a} may be described as follows: let $P_{a}=$ $\left\{p_{1}, p_{2}, p_{3}, \cdots\right\} . \quad \sum_{a}$ is the intersection of a decreasing tower of solid tori $\left\{T_{n}\right\}$ in R^{3} with the properties that (i) $T_{n+1} \subseteq T_{n}$ for every $n \in$ Z^{+}; (ii) $\lim _{n \rightarrow \infty}$ [length of cross section of T_{n}] $=0$; and (iii) T_{n+1} is wrapped p_{n} times around the hole of T_{n}. Also, let $p, q \in T_{1}$ so that the distance from p to q is maximal, and specify that T_{n} passes through p and q for every n.

Position \sum_{a} in R^{3} so that $p=(0,0,0)$ and $q=(0,0,1)$. Define $f: R^{3} \rightarrow R^{3}$ by $f(x, y, z)=(x, y, z+1)$, and let $A=\bigcup_{n \geq 0} f^{n}\left(\sum_{a}\right)$. Hence, A is the union of a countable number of copies of \sum_{a} placed end to end. Now $H^{1}(A)=\prod_{n \geqq 0} H^{1}\left(f^{n}\left(\sum_{a}\right)\right)=\Pi H^{1}\left(\sum_{a}\right)$ (the countable infinite product of copies of $H^{1}\left(\sum_{a}\right)$), and so we have $H^{1}(A)=\Pi B_{a}$.

Let $A_{n}=\bigcup_{i \geqq n} f^{i}\left(\sum_{a}\right)$, i.e., A_{n} is the closure of A with the first n copies of \sum_{a} deleted. Since A and A_{n} are closed subsets of $R^{3}, \beta A$ and βA_{n} are contained in βR^{3}. Also, A_{n} is connected implies that βA_{n} is connected. Hence, $\beta A-A=\bigcap_{n \geq 0} \beta A_{n}$ is a continuum in $\beta R^{3}-R^{3}$. Let $A^{*}=\beta A-A$. We now wish to compute $H^{1}\left(A^{*}\right)$.

By Theorem 1, there is an exact sequence $0 \rightarrow C(X) / C^{*}(X) \rightarrow$
$\left[\beta X, S^{1}\right] \rightarrow\left[X, S^{1}\right] \rightarrow 0$, where $C(X)$ is the additive group of real continuous functions on X, and $C^{*}(X)$ is the subgroup of bounded functions. Since $A^{*}=\bigcap_{n \geqq 0} \beta A_{n}$, by the continuity of Čech cohomo$\log y, H^{1}\left(A^{*}\right)=\lim H^{1}\left(\beta A_{n}\right)$, where the bonding maps are induced by inclusion, $i_{n}^{*}: H^{1}\left(\overrightarrow{\beta A_{n}}\right) \rightarrow H^{1}\left(\beta A_{n+1}\right)$. For each n, we have the following commutative diagram:

This diagram gives rise to the following exact sequence: 0, , $\lim C\left(A_{n}\right) / C^{*}\left(A_{n}\right) \rightarrow \lim \left[\beta A_{n}, S^{1}\right] \rightarrow \lim \left[A_{n}, S^{1}\right] \rightarrow 0$. Since $\left[X, S^{1}\right] \cong$ $\overrightarrow{H^{1}}(X)$, we have $\rightarrow \lim \left[\beta A_{n}, S^{1}\right] \cong \lim H^{1}\left(\beta A_{n}\right) \cong H^{1}\left(A^{*}\right)$, and $\lim \left[A_{n}, S^{1}\right] \cong \lim H^{1}\left(A_{n}\right)$, where the bonding maps are i_{n}^{*}. Hence, $\overrightarrow{\text { we }}$ have the following exact sequence:

$$
0 \longrightarrow \lim _{\longrightarrow} C\left(A_{n}\right) / C^{*}\left(A_{n}\right) \longrightarrow H^{1}\left(A^{*}\right) \longrightarrow \lim _{\longrightarrow} H^{1}\left(A_{n}\right) \longrightarrow 0 \text {. }
$$

We will now evaluate these direct limits.
Since A_{n} differs from A_{n+1} by a set of compact closure, $i_{n}^{*}: C\left(A_{n}\right) / C^{*}\left(A_{n}\right) \rightarrow C\left(A_{n+1}\right) / C^{*}\left(A_{n+1}\right)$ is an isomorphism. Hence, $\lim _{\rightarrow} C\left(A_{n}\right) / C^{*}\left(A_{n}\right)$ is isomorphic to $C\left(A_{1}\right) / C^{*}\left(A_{1}\right)$. Since $C\left(A_{1}\right) / C^{*}\left(A_{1}\right)$ is a torsion free divisible group, $C\left(A_{1}\right) / C^{*}\left(A_{1}\right)$ is isomorphic to a direct sum of copies of Q, the rational numbers. Therefore, $\underset{\rightarrow}{\lim } C\left(A_{n}\right) / C^{*}\left(A_{n}\right) \cong \bigoplus_{c} Q$.

Now consider $\lim H^{1}\left(A_{n}\right)$. As before, $H^{1}\left(A_{n}\right)$ is isomorphic to I[B_{a}, the countable \rightarrow infinite product of copies of B_{a}. The bonding map $i_{n}^{*}: H^{1}\left(A_{n}\right) \rightarrow H^{1}\left(A_{n+1}\right)$ is defined by

$$
i_{n}^{*}\left(\left(x_{1}, x_{2}, x_{3}, \cdots\right)\right)=\left(x_{2}, x_{3}, \cdots\right) \quad\left(x_{i} \in B_{a}\right) .
$$

Now $\lim H^{1}\left(A_{n}\right)$ is isomorphic to $\left(\sum H^{1}\left(A_{n}\right)\right) / S=\left(\sum\left(\Pi B_{a}\right)\right) / S$, where S is the subgroup generated by $i_{n}^{*}\left(y_{n}\right)-y_{n}, y_{n} \in H^{1}\left(A_{n}\right)$. (See [7], page 29.) Define a map $g: \Pi B_{a} \rightarrow\left(\sum\left(\Pi B_{a}\right)\right) / S$ by $g(a)=(a, 0,0, \cdots)+$ S. One can verify that g is an onto homomorphism with kernel $\sum B_{a}$. Hence, g induces an isomorphism $\left(\sum\left(\Pi B_{a}\right)\right) / S \cong\left(\Pi B_{a}\right) /\left(\sum B_{a}\right)=$ $\widetilde{\Pi} B_{a}$, and so $\lim _{\rightarrow} H^{1}\left(A_{n}\right) \cong \widetilde{\Pi} B_{a}$.

By these two evaluations, we get the following exact sequence: $0 \rightarrow \oplus_{c} Q \rightarrow H^{1}\left(A^{*}\right) \rightarrow \widetilde{\Pi} B_{a} \rightarrow 0$. Since $\oplus_{c} Q$ is divisible, the sequence splits (see [7]), and $H^{1}\left(A^{*}\right) \cong \widetilde{\Pi} B_{a} \oplus\left(\bigoplus_{c} Q\right)$. Thus we have constructed a continuum A^{*} in $\beta R^{3}-R^{3}$ with $H^{1}\left(A^{*}\right) \cong \widetilde{\Pi} B_{a} \otimes\left(\bigoplus_{c} Q\right)$.

Now for $a, b \in A, a \neq b, H^{1}\left(A^{*}\right)$ is not isomorphic to $H^{1}\left(B^{*}\right)$. This
follows from the fact every element of $H^{1}\left(A^{*}\right)$ is divisible by a prime p if and only if $p \in P_{a}$. Hence, we have constructed c continua in $\beta R^{3}-R^{3}$ with nonisomorphic first Čech cohomology groups. Since two spaces with nonisomorphic Čech cohomology groups have different shapes, we have the following corollary.

Corollary 1. There are c continua in $\beta R^{3}-R^{3}$, no two of which have the same shape.

TheOREM 6. There are 2^{c} compacta in $\beta R^{3}-R^{3}$, no two of which have the same shape.

Proof. Theorem 6 is a continuation of Theorem 5. Suppose \mathscr{A}, A, and A^{*} are as in the proof of Theorem 5. For each $a \in \mathscr{A}$, we have constructed a continuum A^{*} in $\beta R^{3}-R^{3}$ such that for $a \neq b, \operatorname{Sh}\left(A^{*}\right) \neq \operatorname{Sh}\left(B^{*}\right)$. Now for each subset of \mathscr{A} of cardinality c, we will construct a compactum in $\beta R^{3}-R^{3}$ such that if $S_{1}, S_{2} \subseteq$ $\mathscr{A}, S_{1} \neq S_{2}$, and card $S_{1}=$ card $S_{2}=c$, then the corresponding compacta will have different shapes. Since there are 2^{c} subsets of \mathscr{A} of cardinality c, this will exhibit 2^{c} nonshape equivalent compacta in $\beta R^{3}-R^{3}$.

Let $S \subseteq \mathscr{A}$ such that card $S=c$. There is a one-to-one correspondence between elements of S and real numbers r such that $0 \leqq$ $r<2 \pi$. So each element a of S corresponds to a unique $r_{a} \in[0,2 \pi)$. Let $h_{r_{a}}: R^{3} \rightarrow R^{3}$ be a rotation of the $y-z$ plane r_{a} radians. Define $A_{r}=h_{r_{a}}(A)$, where A is as defined above. As before, $H^{1}\left(A_{r}^{*}\right)=$ $\tilde{\Pi} B_{a} \oplus\left(\oplus_{c} Q\right)$, where $A_{r}^{*}=\beta A_{r}-A_{r}$. Let $C_{S}=\overline{\mathbf{U}_{a \in S} A_{r}^{*}}$. Then C_{S} is a compact subset of $\beta R^{3}-R^{3}$.

Claim. A_{r}^{*} is an isolated component of C_{S}.
Proof of Claim. Let $N_{i}, i=1,2$, be a neighborhood of the ray $h_{r_{a}}\left(\left\{(0,0, z): z \in R^{+}\right\}\right)$of radius 2,3 , respectively. By construction, $A_{r} \subseteq N_{1}$. Define a function $f: \bar{N}_{1} \cup\left(R^{3}-N_{2}\right) \rightarrow[0,1]$ by $f\left(\bar{N}_{1}\right)=0$ and $f\left(R^{3}-N_{2}\right)=1$. Since R^{3} is normal, there is a continuous extension of f, say \bar{f}, to all of R^{3}. Then \bar{f} has a continuous extension, $\beta \bar{f}$, to all of βR^{3}. Since $\beta \bar{f}\left(A_{r}\right)=f\left(A_{r}\right)=0$, we have $\beta \bar{f}\left(\bar{A}_{r}\right)=0$, and so $\beta \bar{f}\left(A_{r}^{*}\right)=0$. For $b \in S, b \neq a, \beta \bar{f}\left(B_{r}^{*}\right)=1$, since for some neighborhood about the origin, points in B_{r} not in this neighborhood are in $R^{3}-$ N_{2}. Thus, $\beta \bar{f}\left(\overline{\mathrm{U}_{b \in S-\{a \mid} B_{r}^{*}}\right)=1$. By normality, there exist open sets U and V in βR^{3} with $U \cap V=\varnothing, A_{r}^{*} \subseteq U$, and $\left(\overline{\mathbf{U}_{b \in S-\{a\}} B_{r}^{*}}\right) \subseteq V$. Hence, A_{r}^{*} is an isolated component of $C_{S}=\left(\overline{\mathbf{U}_{b \in S-\{a\}} B_{r}^{*}}\right) \cup A_{r}^{*}$.

Note that these are the only isolated components, for if $X \subseteq$ $C_{s}-\bigcup_{a \in S} A_{r}^{*}$, then any open set containing X also contains points
of $\bigcup_{a \in S} A_{r}^{*}$, since every point of X is a limit point of $\bigcup_{a \in S} A_{r}^{*}$.
Now, for $S_{1}, S_{2} \subseteq \underline{A}$ with $S_{1} \neq S_{2}$ and $\operatorname{card} S_{1}=\operatorname{card} S_{2}=c$, the shape of $C_{S_{1}}$ is different from the shape of $C_{S_{2}}$. This follows from the fact that if $\operatorname{Sh}\left(C_{s_{1}}\right)=\operatorname{Sh}\left(C_{s_{2}}\right)$, then each isolated component of $C_{S_{1}}$ is shape equivalent to an isolated component of $C_{S_{2}}$. Either $S_{1}-$ $S_{2} \neq \varnothing$, or $S_{2}-S_{1} \neq \varnothing$, so without loss of generality assume that $S_{1}-S_{2} \neq \varnothing$, and let $a \in S_{1}-S_{2}$. Then A_{r}^{*} is an isolated component of $C_{s_{1}}$ which is not shape equivalent to any isolated component of $C_{s_{2}}$, which implies that $\operatorname{Sh}\left(C_{s_{1}}\right) \neq \operatorname{Sh}\left(C_{s_{2}}\right)$.

Hence, there are 2^{c} compacta in $\beta R^{3}-R^{3}$ no two of which have the same shape. Since there are at most 2° compacta in βR^{3}, there are exactly 2^{c} compacta in $\beta R^{3}-R^{3}$ no two of which have the same shape.

Corollary 2. For $n \geqq 3$, there are 2^{c} compacta in $\beta R^{n}-R^{n}$, no two of which have the same shape.

Theorem 7. There are 2^{c} nonhomeomorphic continua in $\beta R^{3}-R^{3}$.
Proof. As in the proof of Theorem 6, let $S \subseteq \mathscr{A}$ such that card $S=c ; A_{r}=h_{r_{a}}(A)$; and $C_{s}=\overline{\mathrm{U}_{a \in S} A_{r}^{*}}$.

Consider a plane P tangent to each solenoid of $\bigcup_{a \in S} A_{r}$, and let $P^{*}=\beta P-P \subseteq \beta R^{s}-R^{3}$. Let $X=C_{s} \cup P^{*}$. One can easily verify that X is a continuum. Now suppose $C_{T}=\overline{\mathrm{U}_{\text {ber }} B_{r}^{*}}$ is the result of a collection of solenoids corresponding to the subset T of \mathscr{A}, where $\operatorname{card} T=c$ and $T \neq S$. Then $Y=C_{T} \cup P^{*}$ is a continuum of $\beta R^{3}-R^{3}$.

We will show that X and Y are not homeomorphic. The method will be as follows. If h is a homeomorphism from X onto Y, then $h\left(C_{S}\right)=C_{r}$ which implies that C_{s} and C_{T} are homeomorphic, contradicting the fact that C_{s} and C_{T} have different shapes by Theorem 6, and therefore are not homeomorphic.

Claim 1. Let $x \in \beta R^{2}-R^{2}$, and V an open set of $\beta R^{2}-R^{2}$ containing x. Then there exists a closed set F containing x, such that $F \cong V$ and F has dimension 2.

Proof of Claim 1. Since V is an open set in $\beta R^{2}-R^{2}, V=U \cap$ $\left(\beta R^{2}-R^{2}\right)$, where U is open in βR^{2}. There is a set W, open in βR^{2}, such that $x \in W$ and $\bar{W} \subseteq U$. Let $D=\operatorname{cl}_{R^{2}}\left(W \cap R^{2}\right)$. Now

$$
\mathrm{Cl}_{\mathrm{R}^{2} 2}\left(\mathrm{Cl}_{R^{2}}\left(W \cap R^{2}\right)\right)=\bar{W} \cong U,
$$

so that the set $\beta D-D=\mathrm{Cl}_{\beta R^{2}}\left(\mathrm{Cl}_{R^{2}}\left(W \cap R^{2}\right)\right)-\mathrm{Cl}_{R^{2}}\left(W \cap R^{2}\right)$ is a closed subset of V in $\beta R^{2}-R^{2}$.

For any compact subset C of $D, D-C$ is open in $D=\mathrm{Cl}_{R^{2}}\left(W \cap R^{2}\right)$.

Since $W \cap R^{2}$ is open in $R^{2}, D-C$ contains a subset Z that is open in R^{2}. Let N be a basic open set in R^{2} such that $\bar{N} \subseteq Z$. Since $\operatorname{dim} \bar{N}=2$, by Theorem $2 \operatorname{Sd}(\beta D-D) \geqq 2$. By Theorem 3,

$$
\operatorname{dim}(\beta D-D) \geqq 2 .
$$

(See also [8].) Since $\operatorname{dim}(\beta D-D) \leqq 2$, it follows that $\operatorname{dim}(\xi D-D)=$ 2. Hence, $F=\beta D-D$ is a closed subset of V containing x of dimension 2.

Claim 2. If $x \in A_{;}^{*}$ such that $x \notin P^{*}$, then $h(x) \in C_{T}$.
Proof of Claim 2. The claim follows from the fact that any neighborhood of a point in $Y-C_{T} \subseteq P^{*}$ has dimension 2, by Claim 1 , while x has neighborhoods of dimension $\leqq 1$.

Claim 3. If $x \in A_{r}^{*} \cap P^{*}$, then $h(x) \in C_{T}$.
Proof of Clain 3. We will show that x is a limit point of $A_{r}^{*} \cap\left(X-P^{*}\right)$. Then by Claim 2, since $h\left(A_{r}^{*} \cap\left(X-P^{*}\right)\right) \subseteq C_{T}$, it follows that $h(x) \in C_{T}$.

Let U be an open set in $\beta R^{3}-R^{3}$ containing x. There is a set W, open in $\beta R^{3}-R^{3}$ such that $x \in W \subseteq \bar{W} \subseteq U$. Now, $W=\left(\beta R^{3}-R^{3}\right) \cap$ V, where V is open in βR^{3}. Since V is an open set containing $x \in A_{r}^{*}=\beta A_{r}-A_{r}, V \cap A \neq \varnothing$. This implies that V intersects an infinite number of solenoids of A_{r}.

Let $x_{n} \in A_{r} \cap V \cap\left(R^{3}-P\right)$ such that $\mid x_{n} \rightarrow \cdots$ as $n \rightarrow \infty$. This is possible since $V \cap R^{3}$ is open, and $A_{r} \cap P$ is a countable set. Let $y \in \beta\left(\left\{x_{n}: n \geqq 1\right\}\right)-\left\{x_{n}: n \geqq 1\right\} \sqsubseteq \beta R^{3}-R^{3}$. Since $x_{n} \in A_{r}$ for every $n, y \in \beta A_{r}-A_{r}$. Now, define f on $P \cup\left\{x_{n}: n \geqq 1\right\}$ by $f(P)=0$ and $f\left(x_{n}\right)=1$ for every n. Since $P \cup\left\{x_{n}: n \geqq 1\right\}$ is closed in R^{3}, there is a continuous extension of f to all of R^{3}, say \bar{f}. Then \bar{f} can be extended continuously to βR^{3}, say by $\beta \bar{f}$. Now $\beta \bar{f}\left(x_{n}\right)=1$ for every n implies that $\beta \bar{f}(y)=1$. Since $\beta \bar{f}(P)=0, \beta \bar{f}(\bar{P})=0$. Hence, $y \notin \beta P$. Also, $x_{n} \in V$ for every n, which implies that $y \in \bar{V}-V$, and hence $y \in \bar{W} \cong U$. Therefore, $U \cap\left(A_{r}^{*}-P^{*}\right) \neq \varnothing$, which implies that x is a limit point of $A_{r}^{*} \cap\left(X-P^{*}\right)$. Hence, $h(x) \in C_{r}$.

By Claim 2 and Claim 3, $h\left(A_{r}^{*}\right) \subseteq C_{T}$ for every A_{r}^{*}. Then $h\left(\cup A_{r}^{*}\right) \subseteq$ C_{T}, which implies $h\left(\overline{\cup A_{r}^{*}}\right) \sqsubseteq \bar{C}_{T}=C_{T}$, and $h\left(C_{S}\right) \sqsubseteq C_{T}$. Similarly, $h^{-1}\left(C_{T}\right) \subseteq C_{S}$, which implies $C_{T} \subseteq h\left(C_{S}\right)$. Therefore, $h\left(C_{S}\right)=C_{T}$ and C_{S} and C_{T} are homeomorphic. This contradicts Theorem 6, since $\operatorname{Sh}\left(C_{S}\right) \neq \operatorname{Sh}\left(C_{T}\right)$. Hence, X and Y are not homeomorphic.

By Theorem 6, there are 2° choices for X, and since no two of them are homeomorphic, there are 2^{c} nonhomeomorphic continua in $\beta R^{3}-R^{3}$.

Corollary 3. For $n \geqq 3, \beta R^{n}-R^{n}$ contains 2^{c} nonhomeomorphic continua.

Corollary 4. Let X and Y be as in the proof of Theorem 7. Then there does not exist a continuous map $f: X \rightarrow Y$ that is a shape equivalence. In particular, X and Y are not homotopic.

Proof. By Theorem 4, if f is a continuous map, $f: X \rightarrow Y$, which is a shape equivalence, then f is a homeomorphism, contradicting Theorem 7.

Note that Corollary 4 does not imply that X and Y are not shape equivalent, since there are shape morphisms that are not induced by continuous functions.

The problem appears much more nontrivial in the cases $n=1,2$. Since solenoids cannot be embedded in R^{2}, the same argument fails in the case $n=2$. In fact, the method of Theorem 5 fails in general for R^{2}, since the cohomology of a continuum in the plane is either 0 or a direct sum of copies of Z, the integers. The solution in the case of $n=1$ appears even more difficult, and is yet unsolved.

References

1. A. Calder and J. Siegel, Homotopy and uniform homotopy, Trans. Amer. Math. Soc., 235 (1978), 245-270.
2. L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1967.
3. J. Keesling, The group of homeomorphisms of a solenoid, Trans. Amer. Math. Soc., 172 (1972), 119-131.
4. Decompositions of the Stone-Čech compactification which are shape equivalences, Pacific J. Math., 75 (1978), 455-466.
5. —. The Stone-Cech compactification and shape dimension, Topology Proceedings, 2, No. 2 (1977), 483-508.
6. J. Keesling and R. B. Sher, Shape properties of the Stone-Čech compactification, General Topology and Appl., 9 (1978), 1-8.
7. J. Rotman, Notes on Homological Algebra, Van Nostrand Reinhold Company, New York, 1970.
8. Ju. M. Smirnow, Ueber die Dimension der Adjunkten bei Kompaktifizierungen, Monatsb. Deutsch. Akad. Wiss., Berlin, 7 (1965), 230-232.
9. R. C. Walker, The Stone-Čech Kompactification, Springer-Verlag, New York, 1974.

Received August 9, 1978 and in revised form December 18, 1978.
University of Florida
Gainesville, FL 32611

