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THERE ARE 2° NONHOMEOMORPHIC CONTINUA
IN R* — R"

ALIcIA BROWNER WINSLOW

In this paper it is shown that for n =3,8R" — R* con-
tains 2° nonhomeomorphic continua. In the proof we will
also construct ¢ continua in BR® — R® with nonisomorphic
first Cech cohomology groups and 2° compacta in SR*—R® no
two of which have the same shape.

Introduction. Much work has been done in the study of the
Stone-Cech compactification of the natural numbers. Some of these
results have been applied to the study of 83X — X for other topological
spaces X, as in the proof of Frolik’s result that X — X is not
homogeneous for a nonpseudocompact space X (see [9]). Shape theory
has offered new methods for examining X and B8X — X that utilize
the intrinsic topological properties of BX, as is illustrated in this
paper in the case of BR". Using the fact that shape factors through
Cech cohomology, we will construet ¢ continua in BR® — R3, no two
of which have the same shape. Then, a particular embedding of
subsets of the continua into BR® will exhibit 2¢ compacta in SR*— R®
with different shapes. An easy modification of the compacta will yield
2° nonhomeomorphic continua in BR® — R?, the proof of which utilizes
the properties of shape dimension as developed by J. Keesling [5].
From this it follows that for n = 8 there are 2° nonhomeomorphic
continua in BR" — R".

Preliminaries. Let BX denote the Stone-Cech compactification
of a space X. For references, see Gillman and Jerison [2], or Walker
[9]. H*(X) will denote the n-dimensional Cech cohomology of X with
coefficients in Z based on the numerable covers of X. Also, [X, S']
will denote all homotopy classes of maps from X into S!, with the
group structure induced by the group structure on S:. Since S! is
a K(Z,1), H(X) is isomorphic to [X, S*]. Finally, let I1 A, be the
group Ilies A/>%e, A

The following theorems will be used in this paper:

THEOREM 1 (Lemma 1.7 of [1]). For X mormal and connected,
there is an exact sequence 0 — C(X)/C*(X)— [BX, S']—[X, S']—0
where C(X) is the additive group of real valued continuous functions
on X, and C*(X) is the subgroup of bounded real continuous functions.

THEOREM 2 (Theorem 1.6 of [5]). Let n =1 be an integer. Let
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X be a locally compact, o-compact space such that for every compact
set K< X there is a compact set L £ X — K such that dim L = n.
Then the shape dimension of BX,SdBX = n and SA(LX — X) = n.

THEOREM 3 (Corollary 1.9 of [5]). Let X be a Lindelof space
and let K be a compact set contained in BX X. Then dim K =
Sd K.

THEOREM 4 (Theorem 1.12 of [4]). Suppose that X is realcompact
and that K is a continuum contained in BX — X. Then if f(K) =
Y is any continuous maps which is a shape equivalence, f 1s a
homeomorphism.

Main Theorems.

THEOREM 5. There are ¢ subcontinua of BR’ — R® which have
nonisomorphic first Cech cohomology groups.

Proof. Consider the collection {P,:a €.57}, where each P, is a
sequence of prime numbers such that there are an infinite number
of distinet primes in P,, and each prime occurs an infinite number
of times; if a, be.>” with a == b, then there is a prime occuring in
P, which is not in P,, or a prime in P, which is not in P,; and
card .o~ =e¢. Let 3, be the solenoid corresponding to the sequence
P,, and let B, = H'(C.). We know that B, is isomorphic to
{m/p.p; - -+ D2 M€ Z, p; € P}

The solenoid ), may be described as follows: let P, =
(D1, Doy Dy -}, Dl is the intersection of a decreasing tower of solid
tori {T,} in R® with the properties that (i) T,+; & T, for every ne
Z*; (ii) lim,_., [length of cross section of 7,] = 0; and (iii) T,:, is
wrapped p, times around the hole of T,. Also, let p,ge T, so that
the distance from p to ¢ is maximal, and specify that T, passes
through » and ¢ for every =.

Position 3}, in R® so that »p = (0,0,0) and ¢ = (0, 0,1). Define
R R by flz,y,2)=(2, 9,2+ 1), and let A= U,z f"(C..). Hence,
A is the union of a countable number of copies of 3, placed end
to end. Now H'(A) = [l.20 H'(f"(C) = 11 H'(C..) (the countable
infinite product of copies of H'3,,)), and so we have H'(A4) =[] B,.

Let A, = Uiz. fi(C0), 1.€., A, is the closure of A with the first
n copies of X, deleted. Since A and A, are closed subsets of R?, BA
and BA, are contained in BR®. Also, A, is connected implies that
BA, is connected. Hence, BA — A = .., B4, is a continuum in
BR* — R*. Let A* = BA — A. We now wish to compute H'(4*).

By Theorem 1, there is an exact sequence 0— C(X)/C*(X) —
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[BX, 81— [X, S}]—0, where C(X) is the additive group of real
continuous funections on X, and C*(X) is the subgroup of bounded
funetions. Since A* = [),2, BA., by the continuity of Cech cohomo-
logy, H'(A*) = hm H'(BA,), where the bonding maps are induced by

inclusion, 7;: H 1(,E)’A,,L) -~ HY(BA,,). For each n, we have the following
commutative diagram:

0— G(A%)/C*(AvJ — [BA’IL’ S]] - [A'M Sl] —0

liﬁ li’,‘f J’ﬁf

00— C(An—l-l)/C;k(Avm‘ 1) — [BA‘IL'{'U Sl] - [An+1y Sl] —0.

This diagram gives rise to the following exact sequence: O0- >
lim C(A,.)/C*(A,,,)Hlim |BA,, S'— lim [4,, S]—0. Since [X, S']=
H(X), we have lim B4, S'] = lim H'(84,) = H'(4%), and
hm [4,, S§'] = hm H'(A, ), where the bondlng maps are ;. Hence,
We have the followmg exact sequence:

0 — lim C(4,)/C*(A,) — HY(A*) — lim H'(4,) — 0 .

We will now evaluate these direct limits.

Since A4, differs from A,., by a set of compact closure,
ix: C(4,)]C*(A,) — C(4,:,)/C*(A,.,) is an isomorphism. Hence,
lim C(4,)/C*(A,) is isomorphic to C(A4,)/C*(4,. Since C(A4,)/C*(4,)
—>
is a torsion free divisible group, C(A4,)/C*(A,) is isomorphic to a
direct sum of copies of @, the rational numbers. Therefore,
lim C(4,)/C*(4,) = . Q.
—>

Now consider lim H!(4,). As before, H'(A4,) is isomorphic to
[l B., the countable infinite product of copies of B,. The bonding
map 7). H(A4,) — H'(A,.,) is defined by

(@, By Ty - ) = (g Xy +++) (€, € B, .

Now lim H'(4,) is isomorphic to (5 H'(A,))/S = (S, (Il B.,))/S, where
S is {I;e subgroup generated by < (¥,) — Y., ¥. € H'(4,). (See [7],
page 29.) Define a map ¢: I B, — . (11 B.))/S by g(a) = (a, 0,0, ---)+
S. One can verify that ¢ is an onto homomorphism with kernel
>, B,. Hence, g induces an isomorphism (3Y(I1 B.,))/S = (I B.)/(3. B.) =
[l B., and so lim H*A,) = i B..

By these t;v)o evaluations, we get the following exact sequence:
0> @.Q— H(A*)— [[ B.—0. Since @. Q is divisible, the sequence
splits (see [7]), and H{(4™)= ﬁ B, @ (@.Q). Thus we have constructed
a continuum A* in BR’ — R* with H'(A*) = Il B. R (. Q).

Now for a,be A, a = b, H(A*) is not isomorphic to H(B*). This
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follows from the fact every element of H'(A*) is divisible by a prime
p if and only if pe P,. Hence, we have constructed ¢ continua in
BR? — R* with nonisomorphic first Cech cohomology groups. Since
two spaces with nonisomorphic Cech cohomology groups have different
shapes, we have the following corollary.

COROLLARY 1. There are ¢ continua in BR* — R?, no two of which
have the same shape.

THEOREM 6. There are 2° compacta in BR* — R mno two of
which have the same shape.

Proof. Theorem 6 is a continuation of Theorem 5. Suppose
7, A, and A* are as in the proof of Theorem 5. For each a €.
we have constructed a continuum A* in GR® — R® such that for
a #+ b, Sh(A*) == Sh(B*). Now for each subset of .o of cardinality
¢, we will construct a compactum in BR® — R® such that if S, S,S
57 S, # S;, and card S, = card S, = ¢, then the corresponding compacta
will have different shapes. Since there are 2° subsets of . of
cardinality ¢, this will exhibit 2¢° nonshape equivalent compacta in
BR? — R®.

Let S < .o such that card S = ¢. There is a one-to-one corre-
spondence between elements of S and real numbers 7 such that 0 <
r < 27. So each element a of S corresponds to a unique 7, € [0, 27).
Let h,: R*— R® be a rotation of the y — z plane », radians. Define
A, =h, (A), where A is as defined above. As before, H'(A)) =
Il B.® (@®.Q), where A} = A, — A,. Let Cs= U,.s A7. Then Cj
is a compact subset of BR® — R®.

Claim. AF is an isolated component of Cg.

Proof of Claim. Let N, 1 =1, 2, be a neighborhood of the ray
h,,({(0, 0, 2): z € R*}) of radius 2,3, respectively. By construction,
A, S N,. Define a function f:N,U (R*— N,)—[0,1] by f(N,) =0
and f(R®*— N,) = 1. Since R® is normal, there is a continuous exten-
sion of f, say f, to all of R®. Then f has a continuous extension, Bf,
to all of BR:. Since Bf(A,) = f(4,) = 0, we have Bf(A4,) = 0, and so
Bf(A¥) =0. ForbesS, b= a, BF(BF) =1, since for some neighborhood
about the origin, points in B, not in this neighborhood are in R*® —
N,. Thus, 8f(Uses—a Bf) = 1. By normality, there exist open sets
Uand Vin R with UN V=0, A} CU, and (U,cs-y BF)S V. Hence,
AF is an isolated component of C; = (Uscs_ia) BF) U AF.

Note that these are the only isolated components, for if X <
C, — U..s AF, then any open set containing X also contains points
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of U..s A}, since every point of X is a limit point of U..s AF.

Now, for S, S; S 4 with S, # S, and card S, = card S, = ¢, the
shape of Cj, is different from the shape of Cs,. This follows from
the fact that if Sh(Cs) = Sh(C;,), then each isolated component of
Cs, is shape equivalent to an isolated component of Cs,. Either S, —
S, # @, or S, — 8, # @, so without loss of generality assume that
S, —S:# @, and let €S, — S,. Then A is an isolated component
of Cs which is not shape equivalent to any isolated component of
Cs,, which implies that Sh(Cjs,) # Sh(Cs,).

Hence, there are 2° compacta in BR® — R® no two of which have
the same shape. Since there are at most 2° compacta in GR®, there
are exactly 2° compacta in BR® — R® no two of which have the
same shape.

COROLLARY 2. For n = 3, there are 2° compacta in GBR" — R,
no two of which have the same shape.

THEOREM 7. There are 2° nonhomeomorphic continua in SR*— R°.

Proof. As in the proof of Theorem 6, let S < .97 such that
card S = ¢; A, = h, (A); and Cs = U..s 47.

Consider a plane P tangent to each solenoid of U,.s4,, and let
P*=pBP— PZ BR* — R®. Let X = C;UP*. One can easily verify
that X is a continuum. Now suppose C, = U,.r B} is the result of
a collection of solenoids corresponding to the subset T of & where
card T=¢ and T#= S. Then Y = C, U P* is a continuum of GR®— R®.

We will show that X and Y are not homeomorphic. The method
will be as follows. If h is a homeomorphism from X onto Y, then
h(Cs) = C, which implies that Cs and C, are homeomorphie, contra-
dicting the fact that Cy and C, have different shapes by Theorem 6,

and therefore are not homeomorphic.

Clatm 1. Let xeBR?* — R?, and V an open set of GR? — R? con-
taining . Then there exists a closed set F' containing x, such that
F <V and F has dimension 2.

Proof of Claim 1. Since V is an open set in BR* — R}, V=UnN
(BR* — R?), where U is open in BR?. There is a set W, open in BR?,
such that ze¢ W and W ZU. Let D =clp(WnN R?. Now

Clipz(Cle( WNR)) =W LU,

so that the set 8D — D = Clgz(Clz( W N R?)) — Clp( W N R?) is a closed
subset of V in BR* — R:.
For any compact subset C of D, D—C is open in D=Clg (W N R?.
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Since W N R? is open in R D — C contains a subset Z that is open
in B*. Let N be a basic open set in R? such that N < Z. Since
dim N == 2, by Theorem 2 Sd(8D — D) = 2. By Theorem 3,

dim(8D — D) =2 .

(See also [8].) Since dim(B8D — D) < 2, it follows that dim(4D — D) =
2. Hence, F'= 8D — D is a closed subset of V containing x of
dimension 2.

Claim 2. If xe AF such that x ¢ P*, then h(x)eC,.

Proof of Claim 2. The claim follows from the faet that any
neighborhood of a point in ¥ — C, & P* has dimension 2, by Claim
1, while x has neighborhoods of dimension < 1.

Clatm 3. If ze A} N P*, then h(z)eC,.

Proof of Claim 3. We will show that ax is a limit point of
AN (X — P*). Then by Claim 2, since WA N (X — P*) < C,, it
follows that h(x)e C,.

Let U be an open set in SR’ — R® containing x. There is a set
W, open in BR* — R’ such that x¢ WS WCZ U. Now, W = (BR*— R*)(
V, where V is open in GR’. Since V is an open set containing
re A =pBA, — A, VN A== . This implies that V intersects an
infinite number of solenoids of A,.

Let z,¢ A, NV N (R — P) such that |z, > » as n-> . This
is possible since V' N R* is open, and A, N P is a countable set. Let
yepz, :n=1}) — {x,:n =1} & BR* — R*. Since z,€ 4, for every
n, yeBA, — A,. Now, define f on PU{x,:n =1} by f(P)=0 and
f(x,) = 1 for every m. Since PU{x,:m =1} is closed in R? there
is a continuous extension of f to all of R, say f. Then f can be
extended continuously to BR’, say by 8f. Now Bf(x,) = 1 for every
n implies that Bf(y) = 1. Since Bf(P) = 0, Bf(P) = 0. Hence, y ¢ SP.
Also, z,€ V for every n, which implies that ye ¥V —V, and hence
ye W ZU. Therefore, U (A — P*) % ¢, which implies that = is
a limit point of A* N (X — P*). Hence, h(x)cC,.

By Claim 2 and Claim 3, h(A}) < C, for every A¥. Then h(UA}) <
C,, which implies W(UAH=C, = Cp, and h(Cy) = C,. Similarly,
r~(C,) = Cs, which implies C, < h(Cy). Therefore, h(Cs) = C, and
C, and C, are homeomorphic. This contradicts Theorem 6, since
Sh(Cs) # Sh(C;). Hence, X and Y are not homeomorphie.

By Theorem 6, there are 2° choices for X, and since no two of
them are homeomorphic, there are 2° nonhomeomorphic continua in
BR' — R®.
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COROLLARY 3. For n=3, BR"—R" contains 2° nonhomeomorphic
continua.

COROLLARY 4. Let X and Y be as in the proof of Theorem 1.
Then there does not exist a continuwous map f: X ->Y that is a shape
equivalence. In particular, X and Y are not homotopic.

Proof. By Theorem 4, if f is a continuous map, f: X —Y, which
is a shape equivalence, then f is a homeomorphism, contradicting
Theorem 7.

Note that Corollary 4 does not imply that X and Y are not shape
equivalent, since there are shape morphisms that are not induced by
continuous functions.

The problem appears much more nontrivial in the cases n = 1, 2.
Since solenoids cannot be embedded in R?, the same argument fails
in the case n = 2. In fact, the method of Theorem 5 fails in general
for R?, since the cohomology of a continuum in the plane is either 0
or a direct sum of copies of Z, the integers. The solution in the
case of m = 1 appears even more difficult, and is yet unsolved.
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