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THERE ARE 2C NONHOMEOMORPHIC CONTINUA
IN βRn - Rn

ALICIA BROWNER WINSLOW

In this paper it is shown that for n ^ 3, βRn — Rn con-
tains 2C nonhomeomorphic continua. In the proof we will
also construct c continua in βRz — Rz with nonisomorphic
first Cech cohomology groups and 2C compacta in βRs—Rs no
two of which have the same shape.

Introduction* Much work has been done in the study of the
v

Stone-Cech compactification of the natural numbers. Some of these
results have been applied to the study of βX — X for other topological
spaces X, as in the proof of Frolik's result that βX — X is not
homogeneous for a nonpseudocompact space X (see [9]). Shape theory
has offered new methods for examining βX and βX — X that utilize
the intrinsic topological properties of βX, as is illustrated in this
paper in the case of βRn. Using the fact that shape factors through
Cech cohomology, we will construct c continua in βR3 — j£3, no two
of which have the same shape. Then, a particular embedding of
subsets of the continua into βR? will exhibit 2C compacta in βRz—R*
with different shapes. An easy modification of the compacta will yield
2C nonhomeomorphic continua in βRz — Rz, the proof of which utilizes
the properties of shape dimension as developed by J. Keesling [5].
From this it follows that for n ^ 3 there are 2C nonhomeomorphic
continua in βRn — Rn.

v

Preliminaries* Let βX denote the Stone-Cech compactification
of a space X. For references, see Gillman and Jerison [2], or Walker
[9]. Hn(X) will denote the ^-dimensional Cech cohomology of X with
coefficients in Z based on the numerable covers of X. Also, [X, S1]
will denote all homotopy classes of maps ίrom X into S\ with the
group structure induced by the group structure on S\ Since Sι is
a K(Z, 1), H\X) is isomorphic to [X, S1]. Finally, let ft A, be the

The following theorems will be used in this paper:

THEOREM 1 (Lemma 1.7 of [1]). For X normal and connected,
there is an exact sequence 0 -+ C(X)/C*(X) -> [βX, S1] -> [X, S1] -> 0
where C(X) is the additive group of real valued continuous functions
on X, and C*(X) is the subgroup of bounded real continuous functions.

THEOREM 2 {Theorem 1.6 of [5]). Let n ^ 1 be an integer. Let
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X be a locally compact, σ-compact space such that for every compact
set K £ X there is a compact set L Q X — K such that dim L^n.
Then the shape dimension of βX, Sd βX ^ n and $ά(βX — X) ^ n.

THEOREM 3 (Corollary 1.9 of [5]). Let X be a Lindelbf space
and let K be a compact set contained in βX X. Then dim K =
SdϋΓ.

THEOREM 4 (Theorem 1.12 o/[4]). Suppose that X is realcompact
and that K is a continuum contained in βX — X, Then if f(K) =
Y is any continuous maps which is a shape equivalence, f is a
homeomorphism.

Main Theorems,

THEOREM 5. There are c subcontinua of /Si?3 — Rs which have
nonisomorphic first Cech cohomology groups.

Proof. Consider the collection {Pa; a e .£/}, where each Pa is a
sequence of prime numbers such that there are an infinite number
of distinct primes in Pα, and each prime occurs an infinite number
of times; if a, be jy with a Φ b, then there is a prime occuring in
Pa which is not in Pb, or a prime in Pb which is not in Pα; and
card j y = c. Let Σ« be the solenoid corresponding to the sequence
Pβ, and let Ba = HHΣα)- We know that Ba is isomorphic to
{m/PiPz Pk'.me Z, pt e Pα}.

The solenoid Σα m a y be described as follows: let Pa =
{Pi> P2, Pay ' •}. Σα is the intersection of a decreasing tower of solid
tori {Tn} in i23 with the properties that (i) Tn+1 Q Tn for every ne
Z+; (ii) lim^^ [length of cross section of Tn] = 0; and (iii) Tn+1 is
wrapped pw times around the hole of Tn. Also, let p^eT^, so that
the distance from p to q is maximal, and specify that Tn passes
through p and q for every w.

Position Σ α in # 3 so that p = (0, 0, 0) and g - (0, 0,1). Define
/: R* -> i23 by /(a?, y, z) = (α?, y, « + 1), and let A = U *o /w(Σα). Hence,
A is the union of a countable number of copies of Σ* placed end
to end. Now Hι(A) - ΓUo Hι(fn(Σα)) = Π -EP(Σ.) (the countable
infinite product of copies of H^ΣJO)), and so we have ir(A) = Π Bα.

Let A» = Uia /^Σα), ΐ ev -A» is the closure of A with the first
n copies of Σα deleted. Since A and An are closed subsets of J?3, βA
and /3AW are contained in βR\ Also, A% is connected implies that
βAn is connected. Hence, βA — A = Π^̂ o /8-A is a continuum in

- i?3. Let A* = βA- A. We now wish to compute jff^A*).
By Theorem 1, there is an exact sequence 0 —> C(X)/C*(X) —>
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[βX, S1] -> [X, S1] -> 0, where C(X) is t h e addit ive group of real
continuous functions on X, and C*(X) is t h e subgroup of bounded
functions. Since A* = f | ^ o βAnf by t h e cont inui ty of Cech cohomo-
logy, HX(A*) — UmH1(βAn), where t h e bonding maps a re induced by

—>
inclusion, i*: H\βAn) —> H\βAn+ί). F o r each n, we have t h e following
commutat ive d iagram:

0- > C(An)/C*(An) > [βAn, S1} > [An, Sι] >0C(A, ,)/c

c(An+1yσ

* ( A n )

*(Aβ H 1;
1"

S J1 -
ji*

0

This diagram gives rise to the following exact sequence: 0 • >

lim C(An)/C*(An) — lim [βAn, S1] -> lim [An, Sι] -> 0. Since [X, S1] s

Hι(X), we have^lim \βAn, S1]^ lim Hι(βAn) s if1 (A*), and

lim [Any S1] = lim H\An)f where the bonding maps are i*. Hence,

we have the following exact sequence:

0 > lim C(An)/C*(An) > H\A*) > lim H\An) > 0 .

We will now evaluate these direct limits.
Since An differs from An+1 by a set of compact closure,

it: C(AnyjC*(An) —> C(An+1)/C*(An+1) is an isomorphism. Hence,
lim C(A j/C*(AJ is isomorphic to CiAJ/C^AJ. Since CiAJ/C^AJ

is a torsion free divisible group, C{A^jC*{A^ is isomorphic to a
direct sum of copies of Q, the rational numbers. Therefore,
limC(An)!C*(An)~®cQ.

Now consider lim Hι(An). As before, H\An) is isomorphic to

ΓI ί?α, the countable infinite product of copies of Ba. The bonding
map it:H\An)->H\Anλι) is defined by

Now l imίί^AJ is isomorphic to (£Hl(A%))/S = ( Σ (Π Ba))/S, where

S is the subgroup generated by i£(yn) - ynyyneHι(An). (See [7],

page 29.) Define a map g: Π -Bα -> ( Σ ( Π Ba))/S by ^(α) = (α, 0, 0, ) +

S. One can verify that # is an onto homomorphism with kernel

Σ Ba. Hence, g induces an isomorphism (Σ(Π Ba))/S = (Π 5β)/(Σ Bo) =

ft Bα, and so lim H\An) ~ ft Ba.

By these two evaluations, we get the following exact sequence:

0 -> φ c Q -> f ί 1 ^*) -> fl J5α -> 0. Since φ c Q is divisible, the sequence

splits (see [7]), and H\A*)^Π 5 α © ( φ c Q). Thus we have constructed

a continuum A* in βR2 - R" with iϊ](A*) ^ ft -Bα ® (Θ* Q)
Now for a, be A, a φb, H\A*) is not isomorphic to H\B*). This
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follows from the fact every element of H\A*) is divisible by a prime
p if and only if pePa. Hence, we have constructed c continua in
βR3 — R3 with nonisomorphic first Cech cohomology groups. Since
two spaces with nonisomorphic Cech cohomology groups have different
shapes, we have the following corollary.

COROLLARY 1. There are c continua in βR3 — R3, no two of which
have the same shape.

THEOREM 6. There are 2C compacta in βR3 — R3, no two of
which have the same shape.

Proof. Theorem 6 is a continuation of Theorem 5. Suppose
Ssf, A, and A* are as in the proof of Theorem 5. For each a e *S*f9

we have constructed a continuum A* in βR3 — R3 such that for
a Φ b, Sh(A*) Φ Sh(jB*). Now for each subset of j y of cardinality
c, we will construct a compactum in βR3 — R3 such that if Sl9 S2 Q
J^< Sj_ Φ S29 and card Sλ — card S2 = c, then the corresponding compacta
will have different shapes. Since there are 2C subsets of j y of
cardinality c, this will exhibit 2C nonshape equivalent compacta in
p K — K .

Let S Q J ^ such that card S = c. There is a one-to-one corre-
spondence between elements of S and real numbers r such that 0 ^
r < 2π. So each element a of S corresponds to a unique ra e [0, 2π).
Let hr\ R3 —> R3 be a rotation of the y — z plane ra radians. Define
Ar = hra(A), where A is as defined above. As before, H\Aΐ) =
Π Ba © ( φ c Q), where A? = βAr - Ar. Let Cs - [JaesAf. Then Cs

is a compact subset of βR3 — R3.

Claim. At is an isolated component of Cs.

Proof of Claim. Let Ni9 i = 1,2, be a neighborhood of the ray
Λvα({(0, 0, z): z eR+}) of radius 2,3, respectively. By construction,
Ar Q N,. Define a function / : N, U (R3 - N2) -> [0, 1] by f(Nλ) = 0
and f(Rs — JV2) = 1. Since R3 is normal, there is a continuous exten-
sion of /, say /, to all of R3. Then / has a continuous extension, βf,
to_all of βR3. Since βf(Ar) = f(Ar) = 0, we have βf(Ar) = 0, and so
βf(A*) = 0. For beS,b Φ a, βf(B*) = 1, since for some neighborhood
about the origin, points in 2?r not in this neighborhood are in R3 —
N2. Thus, /3/(Uδes-{α} Bϊ) — 1. By normality, there exist open sets
U and V in /9i23 with U Π V= 0, A? £ C7, and (U6es-{α} B?)C V. Hence,
A? is an isolated component of Cs = (Uδes-iα} Bΐ) U A?.

Note that these are the only isolated components, for if X £
Cs — UαesA*, then any open set containing X also contains points
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°f UaesA?, since every point of X is a limit point of [JaesA?.
Now, for Su S2 £ A with Sx =£ S2 and card Sx = card S2 = c, the

shape of C5ι is different from the shape of C8i. This follows from
the fact that if Sh(Cy = &h(CSj)f then each isolated component of
CSι is shape equivalent to an isolated component of CS2. Either Si —
S2 Φ 0 , or S2 — Sx Φ 0 , so without loss of generality assume that
Sx — S2 Φ 0 , and let a eSj. — S2. Then A? is an isolated component
of CSι which is not shape equivalent to any isolated component of
C,v which implies that Sh(Cy ^ Sh(Cy.

Hence, there are 2C compacta in βR* — 223 no two of which have
the same shape. Since there are at most 2C compacta in βR3, there
are exactly 2C compacta in βR5 — Rs no two of which have the
same shape.

COROLLARY 2. For n^3, there are 2C compacta in βRn — Rn,
no two of which have the same shape.

THEOREM 7. There are 2C nonhomeomorphic continua in βR*—R\

Proof. As in the proof of Theorem 6, let S £ <Szf such that
card S = c; Ar = hra(A); and Cs = \JaeSAf.

Consider a plane P tangent to each solenoid of \JaeSAr9 and let
p* = /SP - PQβR* - R\ Let X - Cs U P*. One can easily verify
that X is a continuum. Now suppose Cτ = U&er-B? is the result of
a collection of solenoids corresponding to the subset T of J ^ where
card T = c and T φ S. Then Γ = CΓ U P* is a continuum of βR* - R\

We will show that Xand Y are not homeomorphic. The method
will be as follows. If h is a homeomorphism from X onto Y, then
Λ(Cs) = Cτ which implies that Gs and Cτ are homeomorphic, contra-
dicting the fact that Cs and Cτ have different shapes by Theorem 6,
and therefore are not homeomorphic.

Claim 1. Let x e βR2 - R\ and F an open set of βR2 - R2 con-
taining #. Then there exists a closed set F containing x, such that
F ζZV and F has dimension 2.

Proof o/ CZαim 1. Since V is an open set in βR2 - R2, V = 17 Π
(/Si22 - i?2), where f/ is open in βR2. There is a set Wf open in
such that x e W and W C C/. Let J9 = clΛ2( PΓ n #2). Now

so that the set βD - D = C\βAC\AWΠ R2)) - QIAWΠIP) is a closed
subset of V in /3i22 - R2.

For any compact subset C of D, D— C is open in D=ClB2(WΓ)R2).
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Since W Π R2 is open in R\ D — C contains a subset Z that is open
in R1. Let N be a basic open set in R2 such that N G Z. Since
dim N --= 2, by Theorem 2 Sd(/SZ> - D) ;> 2. By Theorem 3,

dim(/3D - D) ^ 2 .

(See also [8].) Since dim(/SD - D) ^ 2, it follows that dim(£Z>- Z» =
2. Hence, .F = /9D — D is a closed subset of F containing χ of
dimension 2.

Claim 2. If £ G A ; such that # £ P * , then h(x)eCτ.

Proof of Claim 2. The claim follows from the fact that any
neighborhood of a point in Y — Cτ £ P* has dimension 2, by Claim
1, while x has neighborhoods of dimension <^ 1.

Claim 3. If x e A;: ΓΊ P*, then ft(α ) e C r.

Proof of Claim 3. We will show that x is a limit point of
A? Π (X - P*). Then by Claim 2, since WA? n (X - P*)) £ C r, it
follows that fc(a ) e CΓ.

Let U be an open set in βR* — R3 containing x. There is a set
W, open in βR3 - R3 such that x e WQ WQ U. Now, W - (βR3 - JB3) Π
F, where F is open in βR?\ Since F is an open set containing
x e Af = /3Ar — Ar, V C\ A φ 0 . This implies that F intersects an
infinite number of solenoids of Ar.

Let xneArΓ\V <Γ\ (R] — P) such that j # w ; -> ^ as ?ι —> co. This
is possible since F (Ί R3 is open, and A r Γ) P is a countable set. Let
V € /S({ίcw: ft ^ 1}) — {x%: n ^ 1} £ /3ίί3 — iί3. Since α;Λ 6 Ar for every
ft, 1/ G βAr — Ar. Now, define / on P U {%<<:* n ^ 1} by /(P) — 0 and
/(a;Λ) = 1 for every n. Since P U {xn- n ^ 1} is closed in J?3, there
is a continuous extension of / to all of R3, say /. Then / can be
extended continuously to βR\ say by βf. Now βf(xn) = 1 for every
ft implies that βf(y) - 1. Since βf(P) = 0, /S/(P) - 0. Hence, # ί /SP.
Also, xn G F for every ft, which implies that y e V — V, and hence
2/6 W QU. Therefore, £7 Π (A* — P*) ^ 0 , which implies that a; is
a limit point of A? n (X ~ P*). Hence, fe(ίc) 6 C r.

By Claim 2 and Claim 3, h(A*) Q Cτ for every Af. Then fe( U A?) g
CΓ, which implies h(UAf)Q Cτ = CΓ, and /x(C,s) £ CΓ. Similarly,
h~χCτ)^Cs, which implies CτQh(Cs). Therefore, h(Cs) = Cτ and
CλV and CΓ are homeomorphic. This contradicts Theorem 6, since
Sh(Cy Φ Sh(CΓ). Hence, X and Y are not homeomorphic.

By Theorem 6, there are 2C choices for X, and since no two of
them are homeomorphic, there are 2C nonhomeomorphic continua in

R3.
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COROLLARY 3. For ?^^3, βR* — R" contains 2C nonhomeomorphic
continua.

COROLLARY 4. Let X and Y be as in the proof of Theorem 7.
Then there does not exist a continuous map f: X—>Y that is a shape
equivalence. In particular, X and Y are not homotopic.

Proof. By Theorem 4, if / is a continuous map, / : X— >Y, which
is a shape equivalence, then / is a homeomorphism, contradicting
Theorem 7.

Note that Corollary 4 does not imply that X and Y are not shape
equivalent, since there are shape morphisms that are not induced by
continuous functions.

The problem appears much more nontrivial in the cases n = 1,2.
Since solenoids cannot be embedded in R2, the same argument fails
in the case n = 2. In fact, the method of Theorem 5 fails in general
for R2, since the cohomology of a continuum in the plane is either 0
or a direct sum of copies of Z, the integers. The solution in the
case of n — 1 appears even more difficult, and is yet unsolved.
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