
PACIFIC JOURNAL OF MATHEMATICS
Vol. 84, No. 1, 1979

THE HYPERBOLIC METRIC AND COVERINGS
OF RIEMANN SURFACES

CARL DAVID MINDA

Suppose X and Y are Riemann surfaces which have the
open unit ball as universal covering surface. Let dσx, dσγ

be the hyperbolic metric on X, Y, respectively. Given any
analytic function f:X->Y the principle of hyperbolic metric
asserts that (f*{dσγ)ldσx)(/p) ̂  1 for each point peX where
f*{dσγ) is the pull-back to X via / of the hyperbolic metric
on Y. Moreover, equality holds if and only if / is an (un-
branched, unlimited) covering of X onto Y. This paper has
two main objectives. The first is to study how the principle
of hyperbolic metric can be strengthened if we only consider
analytic functions which are not coverings. The second is
to investigate the set of all analytic coverings of X onto Y.

l Notation and terminology• Throughout this paper, unless
the contrary is explicitly stated, X and Y will always denote
Riemann surfaces whose universal covering surface is the open unit
ball B. The set of all analytic functions /: X -» Y will be denoted
by A(X, Y). Often we will fix points peX, qe Y and consider
analytic functions /: (X, p) -> (Γ, q). This notion implies that f(p) = q.

We shall make free use of the theory of covering surfaces.
For example, the material in [3, pp. 27-44] or [15, Ch. 5] is sufficient
for our purposes. To say that f:X—> Y is an analytic covering
projection will always mean that X is an (unbranched, unlimited)
covering surface of Y and / is an analytic function. Let C(X, Y)
denote the set of all analytic coverings /: X —> Y; it is possible that
C(X, Y) is empty. N(X, Y) is the complement of C(X, Y) in A(X, Y).
One basic result we shall need is the following. Suppose /: X —» Y,
g: Y-^Z9 and h: X —> Z are analytic mappings of Riemann surfaces
such that g°f— h. Then if any two of these functions are coverings,
so is the third. In particular, the composition of coverings is again
a covering.

Given a Riemann surface X with the unit ball as universal
covering surface, there is a unique conformal metric dσx = Xz(z)\dz\
of constant curvature -4 on X called the hyperbolic metric. It is
defined on X by projecting the Poincare hyperbolic metric on B onto
X by means of any analytic universal covering projection. For any
analytic function / : I - > F w e will let f*(dσγ) denote the pull-back
to X via the function / of the hyperbolic metric on Y. Note that
if π: B —> X is an analytic universal covering projection, then
π*(dσz) =• dσB. If dsλ = pι(z)\dz\ and ds2 = p2{z)\dz\ are two conformal
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metrics on X, then the quotient dsjds2 defines a function on X.
The fundamental group of X with base point p will be denoted

by π^X, p). As is well-known each analytic function /: (X, p) —> (F, q)
induces a group homomorphism f^\π1{XJp)—>π1{Y9q) defined by
/*(M) = [/°τ], where [7] ([/°τ]) denotes the homotopy class of the
closed path 7(/°7) based at p(q).

2* The principle of hyperbolic metric* Suppose f:X-> Y is
an analytic function. The principle of hyperbolic metric asserts that

for each point p e X. We want to determine when equality holds
at a point. In order to do this it is necessary to recall the brief
proof of the principle of hyperbolic metric. Fix peX and set
q = f(p). Let π: (B, 0) -> (X, p) and ω: (B, 0) -> (Γ, q) be analytic
universal covering projections. Then there is a unique analytic
function /: (B, 0) -> (B, 0) such that foπ = a>of. The inequality (1)
is equivalent to |/'(0)| ^ 1 and equality holds in (1) if and only if
it holds in this inequality. Thus, equality holds if and only if /
is a rotation of B; that is, if and only if /: (Bf 0) -> (2?, 0) is an
analytic covering. From /°ττ = α>o/ we see that / is a covering if
and only if / is a covering. Therefore, in the principle of hyperbolic
metric we get equality at a point if and only if / is a covering. Of
course, if / is a covering, then equality holds at every point of X.

One question that we shall investigate is whether the inequality
(1) can be improved if we restrict our attention to the class N(X, Y)
of analytic functions which are not coverings. To be more precise
we define a function Ω:Xx Y~>[0, 1] by Ω(p, q) = snι>{f*(dσγ)/dσx(p):
feN(X,Y),f(p) = q}. Our program is two-fold. First, we want
to investigate the behavior of the function Ω. Unless X is simply
connected we shall see that Ω is pointwise strictly less than one.
We will also consider the possibility of uniform estimates of Ω.
Secondly, we shall study the class C(X, Y) of all analytic coverings
of X onto Y. Generally, C(X, Y) is not a very large subset of
A(X, Y).

For the special case X = Y and p = q the function Ω(p, p) was
first studied by Aumann and Caratheodory [4]. For an annulus the
actual value of Ω(p, p) was rather implicitly determined by Heins
[6] and Herve [9]. A more explicit and more elementary determina-
tion of this constant and the extremal functions for an annulus was
given by Minda [16].

3* An improved version of the principle of hyperbolic metric*
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We begin by establishing an analog of Schwarz' lemma.

PROPOSITION 1. Suppose αei?\{0} and 0 £Ξ δ < 1. Let &'(a, δ)
be the set of all analytic functions f: (B, 0) —> (B, 0) which also satisfy
\f(a)\£δ\a\. Then

Ju = max{|/'(0)!:/e^'(α,δ)} =
1 + \a\δ

Also, fe<3?(a, δ) is extremal if and only if f{z) = eίφh(eίOz), where
0= — Arg a and h(z) = S(/J — s)/(l — μz).

Proof. First, note that we may assume a e (0, 1) and f(a) e [0, 1).
If this were not true, then simply consider e~ίφf(e~ίθz), where Θ- —
Arg a and φ = Argf(a). Now, fe^{a,δ) satisfies this normaliza-
tion if and only if there is an analytic function g: B —> B with /(s) =
zg(z) and 0 ̂  g{a) ^δ. In this case g(0) = /'(0). Let ̂  be the set
of all such functions g, then μ = max{|#(0)|: g e &o}. Now, it is
elementary to determine μ. Since 0 <Ξ g(a) <; δ, the point flr(0) must
lie in the closed hyperbolic ball with center g(a) and radius 1/2 log
(1 + α)/(l — α), which is the hyperbolic distance from 0 to α. This
hyperbolic ball is symmetric about the real axis and intersects the
real axis in the two points [g(a) — α]/[l — ag(a)] and [g(a) + a]/
[1 + ag(a)]. The latter point is farther from the origin so

1 + ag(a) 1 + aδ

Equality holds if and only if g(z) = (j« — z)/(l — ̂ ) . This establishes
the proposition.

THEOREM 1. Let X and Y be Riemann surfaces and assume
that X is not simply connected. Then the function Ω is pointwise
strictly less than one.

Proof. Fix analytic universal covering projections π: (B, 0) —>
(X, p) and ω: {B, 0) —> (Y, q). Because X is not simply connected,
there is a point peB\{0} with π(p) = p. We may assume that | p |
is minimal among all such points. Now, <o~\{q}) is a discrete subset
of B so there are just finitely many points in (ύ~\{q\) with modulus
strictly less than \p\. Hence, there is a constant δ, 0 <̂  δ < 1, such
that if qeω~\{q}) and |g| < \p\, then actually |g| <Zδ\p\.

Consider any feN(X, Y) with f{p) = g. There is a unique ana-
lytic function /: (B, 0) —> (B, 0) such that / o π = a)of. From

= f(π(p)) = /(P) we see that /(p) e α)"1^}). Because / is not



174 CARL DAVID MINDA

a covering, the function / is not a rotation of B. Hence, | f(p)\ <\p\
by Schwarz' lemma. The preceding paragraph implies that
f(p)\ ^δ\p\, where δ is independent of the particular function /.

By Proposition 1 we have

1 + |jp|δ

Hence,

£ μ ,

which gives Ω(p, q) <̂  μ. This establishes the theorem.
In the special case X = Y and p = q this result is due to Aumann

and Caratheodory [4]. For this reason the number Ω{p, q) will be
called the Aumann-Caratheodory rigidity constant. Actually, to
exactly recover the theorem of Aumann and Caratheodory it is
necessary to observe that every covering /: (X, p) —• (X, p) must be
a conformal automorphism of X.

4* The modular spectrum of a Riemann surface* In this
section we recall some basic facts about the modular spectrum of a
Riemann surface which will be employed in later sections. For
details the reader is referred to the work of Huber [10], Marden,
Richards and Rodin [14] and Jenkins and Suita [11].

Let X be a Riemann surface. Given a closed curve 7 on X let
{7} be the class of all closed curves on X which are freely homotopic
to 7. The module MΣ{y) of {7} is the greatest lower bound of the
set of all hyperbolic lengths of the curves in {7}. The modular
spectrum of X is the set of all nonnegative real numbers MX{Ί),

where 7 ranges over all closed curves on X which are not freely
homotopic to a point. A number M in the modular spectrum is
said to have finite multiplicity if there are only finitely many dis-
tinct free homotopy classes {7} with Mx(y) = M. X is said to have
a discrete modular spectrum if the modular spectrum is a discrete
subset of the real numbers. Finally, X has a finite modular spect-
rum if the modular spectrum is discrete and every nonzero element
of the spectrum has finite multiplicity.

There is an alternate way to express the modulus of a free
homotopy class which uses covering surfaces. Let {7} be a non-
trivial free homotopy class on X. Then {7} uniquely determines a
covering surface X(y) of X whose fundamental group is infinite
cyclic [14]. In fact, X(7) is conformally equivalent to the punctur-
ed ball B\{0} or to a proper annulus AR = {z: 1/R < \z\ < E] for
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some R > 1 according as Mx(y) is zero or positive. If Mx(y) > 0,
then we can take X(γ) = AR9 where R is uniquely determined by
Mx(y) = π2/2 log R. Also, if Mx(y) > 0, then there is a unique
curve 70 in {7} whose hyperbolic length is equal to Mz(y). The curve
To is the image of the unit circle if we represent X(y) as the an-
nulus AR [11]. When 7 is not freely homotopic to a point, Mx(y) = 0
if and only if 7 is retractable to an isolated pointlike boundary
element [14]. Such a closed curve is called a point-cycle. An iso-
lated pointlike boundary element is a point of the ideal boundary
which is isolated and has a neighborhood in X conformally equivalent
to a punctured disk. A surface X possesses a closed curve 7 with
Mχ(y) > 0 except when X is conformally equivalent to B or B\{0}.

PROPOSITION 2. Suppose X and Y are Riemann surfaces, 7 is
a closed curve on X and feA(X, Y). Then Mγ(f°y) ^ Mz(v). If
MX(Ί) > 0, then equality holds if and only if f is a covering.

Proof. The inequality is well-known ([10], [11], [14]); it is a
simple consequence of the principle of hyperbolic metric. Our interest
is in determining when equality holds. Since a covering preserves
the hyperbolic metric and {f°y} = {f°d: δ e {7}}, it is clear that equality
holds if / is a covering. On the other hand, suppose equality holds
and Mx(y) > 0. We may assume that 7 is the unique curve in {7}
with minimal hyperbolic length. Then

^ ( dσγ=\ f*(dστ) ^ \ dσx = Mx(y) .
if or ir Jr

Since equality must hold throughout, we see that f*(dσγ)/dσx = 1
on 7 so by the principle of hyperbolic metric / must be a covering.

Observe that the proof shows that if /: X —> Y is a covering
and 70 is the unique curve in {7} with hyperbolic length equal to
Mx(y), then /o70 is the unique curve in {/°7} with hyperbolic length
equal to Mγ(f<>y).

5* Coverings of Riemann surfaces* We now investigate the
set C(X, Y) of all coverings of the Riemann surface X onto the
Riemann surface F. We shall see that there are many analogies
between this set and the group J&(X) of conformal automorphisms
of a Riemann surface. Since J*f(X)c:C(X, X), many known results
concerning the group Jzf(X) follow as corollaries of our work. We
shall not explicitly cite these corollaries.

THEOREM 2. Let X and Y be Riemann surfaces and assume X
has nonabelian fundamental group. Given any sequence (/»)?=! of
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distinct functions in C(X, Y) and any point p e X, the sequence
(fn(p))n=i has no limit point in Y.

Proof. Suppose there were a sequence (/«)£=i of distinct functions
in C{X, Y) and a point peX with fn(p)-^qe Y. By a result of
Komatu and Mori [12] we may even assume that (/J^U converges
to an analytic function /: X —> Y uniformly on every compact subset
of X. The uniformity of convergence is with respect to the hyper-
bolic distance. Let π: (B, 0) — • (X, p) and ω: (B, 0) —> (Y, q) be analytic
universal covering projections. Take an open ball B centered at the
origin such that ω\B is injective. We assume that fn(p)eω(B) for
all n. Let fn:B—>B be the unique analytic function which satisfies
/Λ(0) eB and fnoπ = ω<>fnm Each fn is a conformal automorphism of
B since it is a self-covering of B. Then (fn)n=i converges uniformly
on compact subsets of B to a conformal automorphism /: (B, 0) —>
(B, 0) which satisfies / ° π — a)of.

Let Γ(A) be the group of cover transformations associated with
the covering π(ω). Since fnΓaΔfn, fΓcΔf, the functions fn9 f in-
duce group homomorphisms fΐ, f*\Γ -> Δ defined by f*(T) =
Λ° Tof~\ /*(Γ) = foTof-\ Consequently, f*(T) = (/,o/->/*(Γ)o
{f°fΰι) Now, fn°f~

ι converges to the identity function uniformly
on compact subsets of B, so it follows that f*(T) —> f*(T) uniformly
on compact subsets of B for each TeB. But the group z/ is dis-
crete, so there is an integer n(T) such that f£(T) — f*(T) for all
n ^ n(T). This implies that ( /^o/ joΓ = To(f-1ofn)9 Or the Mδbius
transformations f~ι°fn and T commute for n^n(T). Since f~lofn

is not the identity, we may conclude for T not the identity that
f~lofn and T have the same fixed points on dB for n^n(T) [13,
p. 72]. A simple argument shows that all nontrivial T in Γ have
the same fixed points which implies that the group Γ is abelian.
Since Γ is isomorphic to the fundamental group of X, this establishes
the theorem.

Simple examples show that this theorem is false for any surface
X with abelian fundamental group. For a Riemann surface X with
nonabelian fundamental group Theorem 2 shows that the set C(X, Y)
is countable and for fixed p e X, q e Y the set of all coverings
f:(X,p)->(Y,q) is finite.

THEOREM 3. Let X and Y be Riemann surfaces and suppose
X has nonabelian fundamental group. Given feC(X, Y) there does
not exist a sequence (/„)«=! in A(X, Y) such that fn ~-> f uniformly
on compact subsets of X and fnφf for all n.

Proof. Fix a closed curve 7 on X with Mx(y) > 0. Suppose
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that such a sequence (/J?=i did exist. Without loss of generality
we may assume that all the fn are distinct. Then fn°7 is freely
homotopic to f 07 for all n sufficiently large. Therefore, Mγ(fnoj) =
Mγ(foy) for all n large enough. Now, Mγ(f°y) = Mz(y) since / is
a covering. Then Mγ(fnoy) = MX{Ί) which implies that fn must also
be a covering for all n sufficiently large. We now assume fn is a
covering for all n. Fix peX. Then fn(p)—>f(p)G Ywhich violates
Theorem 2. This contradiction proves Theorem 3.

Theorem 3 simultaneously generalizes a theorem of Heins [7]
and Theorem 1. Note that Theorem 3 is false for any surface with
an abelian fundamental group. However, the following holds for
any surface X conformally equivalent to an annulus: There is no
sequence in N(X, Y) which converges to an element of C(X, Y).
The same argument as in the proof of Theorem 3 establishes this
result which will be used later.

THEOREM 4. Suppose X has nonabelian fundamental group and
Y has finite modular spectrum. Then the set C(X, Y) is finite.

Proof. Take any closed curve 7 on X with Mz(y) > 0. Without
loss of generality we may assume that 7 is the unique closed curve
in its free homotopy class with minimal hyperbolic length. For any
feC(X, Y) we have ikfF(/°7) = Mz(y). Since Y has finite modular
spectrum there are just finitely many distinct free homotopy classes
{δi}, ' "f {$*} on Y with Mτ(δt) = MZ(Ύ). We suppose that each 3, has
minimal hyperbolic length in its free homotopy class. Then each
feC(X, Y) maps 7 onto some δt. Let C<(1 ̂  i <*ri) be the set of
all feC(X, Y) which map 7 onto δt; it is enough to show that each
Ct is a finite set. Fix a point p on the curve 7. For each feCt

the point f{p) belongs to the compact set δt. Now, Theorem 2
implies that the set Ct is finite.

The question of whether a Riemann surface with nonabelian
fundamental group can have a self-covering which is not a conf ormal
automorphism was first raised by Heinz Hopf [8]. Such a covering
is called nontrivial. Note that the punctured disk, once punctured
plane and a torus have abelian fundamental group and possess non-
trivial coverings. On the other hand, the annulus theorem [14]
implies that every self-covering of an annulus is trivial. The work
of Huber [10] implies that every Riemann surface with finite
modular spectrum and nonabelian fundamental group has no non-
trivial covering. Heins [8] showed that if a Riemann surface has
no Green's function, then it also has no nontrivial coverings. The
next theorem generalizes Huberts result about the existence of
nontrivial coverings.
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THEOREM 5. Let X be a Riemann surface with nonabelian
fundamental group. If some number in the modular spectrum of
X has finite multiplicity, then every self-covering of X is a con-
formal automorphism.

Froof. First, we consider the case in which some positive
number M in the modular spectrum has finite multiplicity. Suppose
{7j, * * f {?*} are the only distinct free homotopy classes with
Mx(Ύi) = M. If /: X -> X is any covering, then Mz(f ° 7*) = M so
/°7i is freely homotopic to 7* for some unique integer i, 1 ^ i ^ n.
Let / ( w ) denote the w'th iterate of /. Then / w ° 7 i is freely homo-
topic to 7i(»). This implies that there exist distinct integers l<^j<k
with f{j)oy1 freely homotopic to f{k)°y19 or f{k~j) maps /ω°7i onto a
curve which is freely homotopic to itself. Since Mx(fU) ° 7i) > 0,
this implies that f^k~j) is a conformal automorphism of X [14].
Therefore, / itself is a conformal automorphism.

Now, suppose zero belongs to the spectrum of X and has finite
multiplicity. Then X has finitely many isolated pointlike boundary
elements. This means that there is a Riemann surface F D J such
that Y\X is a finite nonempty set of points and Y has no isolated
pointlike boundary elements. By a generalized version of Picard's
theorem [14] / extends to an analytic self-map of Y. Since / is a
self-cover of X, its extension to Y must map Y\X into itself. As
in the preceding case there is an integer j such that fU) fixes one
point p e Y\X. Then either / is a conformal automorphism of Y or
else fιnj) converges to p uniformly on compact subsets of Y [14].
This would imply that for any closed curve 7 on X, Mx(f(nj)°y) = 0
for all n sufficiently large. This is a contradiction because each
iterate of / is again a covering.

Similar arguments show that the hypotheses of Theorem 5 imply
that the group of conformal automorphisms of X is finite.

6* Bounds for the Aumann-Caratheodory rigidity constant*
In this section we shall be interested in obtaining upper and lower
bounds for Ω. We are especially interested in obtaining bounds
which are independent of either the first or the second variable.

We begin with an observation about the existence of extremal
functions. Let A(X, Y) be given the topology of uniform conver-
gence on compact subsets. Note that Theorem 3 and the comment
immediately after its proof imply that N(X, Y) is a closed subset
of A(X, Y) if X is not conformally equivalent to B or B\{0}. In
particular, for such a surface X and fixed points peX, qeY the
set of all feN(X, Y) with f(p) = q is compact. This means that
if X is not conformally equivalent to B or J5\{0}, then there exists
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a'function feN(X, Y) with Ω(p, q) = (J*(dσγ)ldσx)(p), where f(p) = q.

PROPOSITION 3. Suppose X is a Riemann surface which is not
conformally equivalent to B or B\{0). Then for any Riemann sur-
face Y the function Ω is upper semicontinuous in each variable.

Proof. Fix p eX and let (pjSU be any sequence in X which
converges to p. For each n let fn be an extremal function for
Ω(pny q). From the work of Komatu and Mori [12] it follows that
there is a subsequence (/Λi)Γ=i which converges to/eA(X, Y),f(p) = q,
uniformly on compact subsets of X. From the preceding remarks
we know that feN(X, Y). Clearly,

dσx dax

so that Ω(pnp q)->Ω(p, q). This implies that limsupr_>pfl(r, q)<,Ω(p, q),
so that Ω is upper semicontinuous in the first variable. A similar
argument demonstrates upper semicontinuity in the second variable.

Suppose X is not conformally equivalent to B or B\{0}. If K
is a compact subset of X and L a compact subset of Y, then Ω is
uniformly less than one on K x L since an upper semicontinuous
function assumes its maximum value on a compact set. In parti-
cular, this is true if X and Y are compact. If just Y is compact,
then for a fixed peX Ω(p, q) is bounded by a constant less than
one, independent of q e Y. This result will be generalized to certain
noncompact surfaces in Theorem 7.

Now, we obtain a lower bound for Ω. Let T(X, Y) be the set
of all analytic mappings /: X —> Y such that the induced homo-
morphism /*: πλ{Xf p)-*πx(Yy f{p)) is trivial. Define Ω: Xx Y-> [0, 1]
by

Ω{p, q) = sup { f y σ γ ) (P): fe T(X, Y), f(p) - q\ .

Clearly, Ω(p, q) ̂  Ω(p, q). It is elementary to express Ω as the
quotient of two conformally invariant metrics.

THEOREM 6. Ω(p, q) = cB(p)jXx{p), where cB(z) \dz\ is the analytic
capacity metric on X and Xx(z) \dz | is the hyperbolic metric on X.
In particular', Ω{p, q) does not depend on q.

Proof Let ω: (B, 0) —> (Γ, q) be an analytic universal covering
projection. Since /* is trivial, each function fe T(X, Y) lifts to
a unique analytic function /: (X, p) —> {B, 0) such that π<>f = f.
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Conversely, any analytic function /: (X, p) -> (J5, 0) defines a function
/ i n T(X, Y) b y / = τ r o / . Since

f*(dσr) = f*(π*(dσγ)) = /

we see that

) = sup ) / y ^ ) (p); /e «^(X), /(p) = 0
I dσx

where &(X) is the set of all analytic functions f:X-*B. This
shwos that Ω(p, q) is actually independent of q and Y. Relative to
a fixed coordinate system at p we have

if /: (X, p) -> (β, 0). A function / in ^ ( X ) which maximizes \f'(p)\
is called an Ahlfors function ([1], [2]) and cB(p) = max { | / ' ( P ) | : / G

is called the analytic capacity metric. Therefore, Ω(p, q) =

For an annulus Ω — Ω and the quantity Ω was investigated in
[16]. Next, we show that generally Ω(p, q) is not uniformly less than
one for a fixed q as p varies over X.

PROPOSITION 4. Let X be a bounded plane region. Suppose a
point ζ 6 dX has the property that two closed balls have ζ on their
boundary, the interior of one ball lies entirely in X and the interior
of the other ball is in the exterior of Ω. Then l imsup^ί?^, q) = 1
for any Riemann surface Y.

Proof. Let / be the interior of the ball which is contained in
X and let E be the exterior of the ball outside of X. Then IaXaE
and

lim hM. = 1
P->: Xj(p)

when p —> ζ so that p — ζ makes with the interior normal at ζ an
angle in absolute value less than a, where a < π/2 [5, pp. 37-38]»
Since laXcE we have

and

\(P) = cB(p, I) ^ cB(p, X) ^

so that
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This establishes the result.
On the other hand, it is sometimes possible to bound Ω(p, q)

above, independent of g.

THEOREM 7. Let X be a Riemann surface which is not con for-
mally equivalent to B or B\{ϋ\. Suppose Y is a Riemann surface
with discrete modular spectrum and no point cycles. Given p e X
there is a constant Ω(p) < 1 such that Ω{p, q) <J Ω(p) for all qe Y.

Proof. Let 7 be a closed curve based at p with Mz(y) > 0.
Given any fe N(X, Y) we have 0 ^ Mγ(foj) < Mx(y) and jkΓF(/oγ) = 0
if and only if /07 is freely homotopic to a point since Y has no
point cycles. Because Y has discrete modular spectrum there are
just finitely many numbers in the spectrum of Y less than M, say
Mu •-, Mn are these values. Set MQ = 0. Let N, = {/ e N(X, Y):
Mγ(foy) = Mt}, 0 <: ί ^ n, and define

^ /GiVXX, Y)

It suffices to prove Ωi < 1, 0 ^ i ^ n.
First, we consider 1 ^ i <; w. Let π: (AΛ, p) —> (X, p) be the

annular covering surface determined by the free homotopy class {7}.
If feNiy then let ωf: (As, q) -> (Y, f(p)) be the annular covering
surface defined by {/°7}. Note that S > R and S is independent of
/. Then / induces a unique analytic function /: (AR, p) —> (A ,̂ g)
such that f^:7V1(ARfp)~>(As,q) is an isomorphism. Thus, each
feNi lifts to an analytic function f:AR-+As which satisfies /°ττ =
ωfof and induces an isomorphism of fundamental groups; suppose
Ni is the set of all such lifts. Because coverings preserve the hy-
perbolic metric we have

Q. =

Note that iV̂  is a normal family whose closure is compact. There-
fore, if Ωt — 1, then there is an analytic function /: AR —> As in the
closure of Nt for which {f*{dσs)ldσn)(p) = 1. Then / must be a
covering. But this covering can have only one sheet since /* is an
isomorphism of π^A^ p) onto nt{As, f(p)). Hence, / is a conformal
mapping of AR onto As which is impossible since R < S. This con-
tradiction shows that Ωi < 1, 1 <: i ^ n.

Finally, we consider i = 0. Suppose feN0. Let ω: (J3, 0) -- >
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(Y, f(p)) be a universal covering projection. Then / lifts to an
analytic function /: (AR, p) —> (B, 0) which satisfies foπ — o)o f. As
before let No be the set of all such lifts. Then |/'(p)| ^ cB(p),
where cB(z) \dz\ is the analytic capacity metric for AB. Thus,

f*(dσB) ( p ) ^ Cj@L < 1
( p ) ^ < 1 9

dσR XR(p)

where dσR = XB(z)\dz\ is the hyperbolic metric on AR. This proves
t h a t Ωo <; cB(p)/XR(p).

Added in proof. Recently, the question of H. Hopf that was
mentioned in Section 5 has been resolved. T. J0rgenson, A. Marden
and C. Pommerenke (Two examples of covering surfaces, preprint)
presented examples of Riemann surfaces that admit nontrivial self-
coverings.
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