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EXTENSION OF ACTIONS ON STIEFEL MANIFOLDS

ISABEL DOTTI DE MIATELLO

It is natural to ask for examples of π-biaxial actions
in the unitary and simplectic case which do not come from
the orthogonal case. Here we provide examples of such
actions.

Introduction* Let us consider the left translation action of
U(n)(Sp(n)) on the Stiefel manifold U(n + k + 2)/U(n + k) (Sp(n +
k + 2)/Sp(n + k)), k nonnegative integer, n ^ 2.

The main result to be proved here is that the above action can
not be extended to a biaxial O(2n)(U(2n)) action. The proof uses
strongly the correspondence between U(n)(Sp(n)) π-biaxial manifolds
with orbit space diffeomorphic to a disk and framed submanifolds
of the sphere.

The main references for this article are the book Introduction
to Compact Transformation Groups (Bredon [3]) for the general theory
of groups actions and the mimeographed notes (Bredon [4]) Biaxial
Actions of the Classical Groups for the classification of such actions
and characterization of restrictions of ττ-biaxial manifolds.

1* Preparatory material* Let G be a compact Lie group and
σ: G —> Gl{ V) be a representation of G on the real vector space V.
By a G-manifold "modeled on σ" we mean a smooth G manifold
such that each orbit in M has an open invariant neighborhood which
is equivariantly diffeomorphic to an open invariant set in the
representation space V oί σ.

Let d = 1, 2, 4. In these three cases we let Gί stand for O(n),
U(n) or Sp(n). The standard representation of Gί on Rnd will be
denoted by σn and the trivial real fc-dimensional representation by
θk. A G-manifold M is modeled on 2σn + θk k < 0 if M x R~k is
modeled on 2σn(Gί acts trivially on R~k).

DEFINITION 1.1. A Gί manifold M, n^2, will be called biaxial
if it is modeled on the representation 2σn + θk. It is not hard to
see that a Gί manifold is biaxial iff the following four conditions
hold:

1. The principal orbit type is Gί\Gί^. The other orbit types
(if any) are Gί\Gί_x and fixed points (if any).

2. The representation of Gί about a fixed point is 2σn + θk.
3. The slice representation of G Li on the normal space to an

orbit at a point with isotropy group Gί_± is σn_x + θk+d+i-
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4. The slice representation of Gί_2 normal to a principal orbit
i s θk+d+2.

Suppose now that K is a closed subgroup of G, G a compact
Lie group, M a, G-manifold and M{κ) the set of points on orbits of
type G/K. Under this hypothesis it is proved in Bredon [3] that
the orbit map M[κ) -> Miκ)/G is a fiber bundle projection with fiber
G/K and structure group N(K)/K.

DEFINITION 1.2. A biaxial manifold M is called π-biaxial if its
bundle of principal orbits is trivial.

Let Gi act on Rdn x Rdn via twice the standard representation.
The orbit map πd: Rdn x Rdn —> Rdn x Rd*/G* induces a functional
structure on the orbit space, (i.e., a function / on an open set Ud
Rdn x Rdn/Gί to R is smooth iff foπd: π~d\U) -> R is smooth). The
following theorem is proved in Bredon [4].

THEOREM 1.1. The orbit space RdnxRdn/Gd

n, with the functional
structure induced from πd, is diffeomorphic to the subset K(d) of
R x Rd+1 consisting of those points (y, a, &, c, d, e) e R x Rd+1 such
that y ^ (α2 + b2 + c2 + d\ eψ2 (the functional structure on K(d)
being the induced one from R x Rd+1). The map that induces the
diffeomorphism is

πd: Rdn x Rdn > R x Rd+1

(u, v) > (\u\2 + \v\\ \u\* - M2, 2(u, v)) .

Notice that K(d) is a positive solid cone, diffeomorphic outside the
origin to the half space Rh x Rd+1.

2* Complex and quaternionic Stiefel manifolds* We shall
now apply the results of the preceding section to the unitary and
simplectic groups acting on the Stiefel manifold F%+A:+2,2(C), Vn+k+2>2(Q)
where Fw+fe+2,2(C) - U(n + k + 2)/U(n + k), Vn+k+2,2(Q) = Sp(n +k + 2)/
Sp(n + k). By U(n) aU(n + k + 2)(Sp(n) c Sp(n + k + 2)) we will
denote the standard embedding of U{n) (Sp(ri)) into U(n + k + 2)
(Sp(n + k + 2)), and by

U(n):
U(n + k)

the restriction to U(n) c U(n + k + 2)(Sp(n) c Sp(w + fc + 2)) of the
action given by left multiplication.

THEOREM 2.1. The Stiefel manifold Vn+k+2,2(C)(Vn+k+2y2(Q)) is a
π-biaxίal U(n)(Sp(n)) manifold.
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Proof. Let us observe that the U(n) manifold U(n + k + 2)/
U(n + k) is an invariant submanifold of Cn x Cn x Cfc+2 x Cfc+2 with

the representation 2σ% + θik+8, the submanifold being

- {(vlf v2, wu w2) eC« x Cn x C*+2 x

I^il2 + l ^ i Γ = K I 2 + \w2\
2 = l

a n d

<^i, v2>c + <>i, w 2>β = 0} .

The isotropy subgroup of U(n) at (v^ v2, w^ w2) is Z7(w — i) if dim
{v19 v2} = i, i = 0,1, 2. Since Vn+k+2,2(C) contains elements that
satisfy any of the above conditions, the first condition of Definition
1.1 is satisfied. Using the implicit function theorem it is not hard
to see that the tangent space to Vn+k+2f2(C) at a fixed point, say
(0, 0, wlf w2) is U(n) equivalent (as U(n) modules) to Cn x Cn x
R4k+4, the U(n) action on Cn x Cn x R4k+i given by 2σn + θ4k+i.
Similar arguments apply to the slice representations. Since Vn+k+2,2(C)
contains a principal orbit of Cn x Cn x Ck+2 x Cfe+2, its bundle of
principal orbits is a subbundle of that of Cn x Cn x Cfc+2 x C*+2

which is trivial (Theorem 1.1). Therefore U(n + k + 2)/U(n + k) is
a π-biaxial ?7(̂ ) manifold. The proof in the simplectic case is
completely analogous.

All the proofs in this section will be carried out for the unitary
case since the simplectic case can be dealt with in a similar way.

Suppose that θ: G x Af—> M is a smooth action of a Lie group
G on a smooth manifold M. The orbit map π: M —> M/G induces a
functional structure on M/G which we call the induced functional
structure. Thus a function / on an open set UczM/G to R is called
smooth iff foπ:π~ι(U)—>R is smooth. From Theorem 1.1 it follows
that the orbit space of a biaxial manifold with the induced func-
tional structure is a smooth manifold except at the fixed point set.

The next theorem characterizes the orbit space of the U(ri)
(Sp(n)) action on Vn+k+2,2(C) (Vn+k+2,2(Q))

Let X(C)(X(Q)) denote the subspace of Ck+2 x Ck+\Qk+2 x Qk+t)
c o n s i s t i n g o f a l l p o i n t s (wlf w2) s u c h t h a t , \ w 1 \ 2 ^ l , \ w 2 \ 2 ^ l a n d

THEOREM 2.2. The orbit space of the U(n)(Sp(n)) action on
Vn+k+2t2(C) (Vn+k+2ί2(Q)) is diffeomorphic to X(C)(X(Q)). (The func-
tional structure on X(C)(X(Q)) being the restriction of the C00 one
on R2k+4 X RP+XR**** x /?4fc+8).)

Proof. Clearly, the map φ: VnΛk+^(C) —> X(C), φ(vlf v2, wu w2) =
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(wlf w2) induces a one to one morphism of functional structures, φ:
Vn+k+2i2(C)IU(n) ->X(C). To prove that φ is onto let (wu w2) be an
element of X{C), then by Theorem 1.1 there exist (vu v2)eCn x Cn

such that
( i ) \vΛ2 + \v2\

2 = 2 - (\Wl\
2 + \w2\

2)
( i i ) \vΛ2 + \v2\

2 = \w2\> - \Wl\*
(ii i) 2(vlf v2) = - 2(wlf w2).

But the above conditions imply that the element (vί9 v2y wu w2)
belongs to Vn+k+2>2(C) and hence φ is surjective. Since in Ck+2 x
Ck+2 the C°° functional structure is the same as the one induced
from the projection p2: C

n x Cn x Ck+2 x Ck+2 -> Ck+2 x Cki2 the
theorem follows.

Note that the fixed point set of the U(n) action on Vn+k+2,2(C)
is diffeomorphic to U(k + 2)/U(k) and the image under φ is the set

Σ(C) = {(wu w2) e Ck+2 x

PROPOSITION 2.1. Tfte subspace X(C)(X(Q)) is contractible.

Proof. It is not hard to check that the function /: Dik { 8

χ

2α

(a?, ί/) α = 0

where α denotes the real number \(x, y}\2 — |^|2 |τ/|2/(l^i2 + IV I2)2 is
a homeomorphism onto X(C).

3* The pullback construction• The main result of the theory
of 7r-biaxial actions (Bredon [4]) gives a one to one correspondence
between Gί π-biaxial manifolds with orbit space diffeomorphic to a
fixed manifold X and framed cobordism classes of framed submani-
folds of dX cobounding the fixed point set. As a consequence we
have that to U(n): U(n + k + 2)/U(n + k) corresponds [F 4 f c + 5, J Π
where [ F4 / k + 5, a^\ denotes the framed cobordism class of a framed
submanifold of d(X(C)) cobounding Σ(C).

Our objective now is to characterize V4k+5 and ̂ 7
Let τ: Ck+2 x Ck+2 -> R x R x C

τ(wlf w2) = (2 - ( | ^ | 2 + | ^ 2 | 2 ) , \w2\
2 - \w.\\ -2(wlf w2}) .

It is easy to see that τ is transverse regular to zero therefore
there exists a neighborhood about (wu w2) e Σ(C) diffeomorphic to
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U x (JB x Rx C), U open in Σ{C), where τ is just the projection on
the second factor. Now X(C) = τ'\K(2)) where JSΓ(2) is the image
of π2: C* x C» -> R x iί x C (§ 1), so in X(C), about (wlf w2) 6 Σ(C) we
have a neighborhood diffeomorphic to U x iΓ(2) where τ is just the
projection.

PROPOSITION 3.1. The map τ\ dX —> d(K(2)) is transverse regular
to Λ+(l, 1, 0).

Proof. Transverse regularity is clear at zero so we may confine
our attention to points (wu w2) such that | w11

2 < 1, | w21
2 = 1 and

(wu w2) = 0. For these points we observe that

/ cos t sin t
7x(ί) = (wu w2)[

\—smί cosί

cos t i sin t

^Slnί cosί

are curves in dX such that the tangent vectors to τ°Ίi i — 1, 2 at
£ = 0 span the normal space at τ{w19 w2).

We will denote by F i f c + \ the inverse image under τ of iϋ+(l, 1, 0).
Note that

{(!, 2) e Cfc+2 x
(wl9 w2) = 0}, dV*k+* = Σ(C).

It follows from Proposition 3.1 that V4k+δ is a submanifold of
dX with trivial normal bundle.

Let &l denote the standard framing of R+(l, 1, 0) in d(K(2)),
jr0 = { χ l f x j , χ < : /j+(i? 1, 0) -> Λ x Λ x C, i = 1, 2, X±(a, a, 0) = (0, 0, 1),
X2(α, α, 0) = (0, 0, i) and let *β~ be the pullback by τ of ̂ , i.e.,

The pullback ^ ~ consists of smooth functions

χ

It is not hard to see that Yt(wlf w2) is perpendicular to the tangent
space of Va+δ at the point (wlt w2). Thus ^ defines a framing of
V4k+δ (after dividing F* by | |Γ 4 | | ) . Now it remains only to show
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that (F4fc+5, J H is the framed submanifold of dX cobounding Σ(C)
that corresponds to U(n): U(n + k + 2)/U(n + k).

By an analogous argument to the one in § 9 of Bredon [2] it
suffices to prove that the following diagram

Vn+k+2,2(C) — C " x Cn

\Φ k
Ck+2 χ Ck+2 _L_> R x R x C

is a pullback diagram in the differential category. Here φ stands
for projection on the last two coordinates and π2 is the map defined
in § 1. Clearly Vn+k+2)2(C) is a pullback in the topological sense.
Since the derivative of π2 is surjective except at the origin and τ
is transverse regular to zero, the map π2 x τ is transverse regular
to the diagonal. Hence the above diagram is a pullback diagram in
the differential category.

Let M be an O(2n) biaxial manifold. The restriction of σ2n:
O(2n) -> Gl{R2n x R2n) to U(n) c O(2n) is the standard representation
σn of U(n). It follows that the restriction to U(n) of an O(2n)
biaxial manifold is a U(n) biaxial manifold.

The most important result about restrictions of π-biaxial actions
is proved in Bredon [4]. The theorem relates characteristic mem-
branes (i.e., framed submanif olds of the boundary of the orbit space
cobounding the fixed point set) of the 0{2n) action and its restric-
tion to U(n). The statement of the theorem is the following:

THEOREM 3.1. // M is an O(2ri) π-biaxial manifold such that
(M*,MG) is diffeomorphic to (W, Σ), and the characteristic mem-
brane is VadW, then the restriction to U(n) gives a U(n) π-
biaxial manifold with orbit space diffeomorphic to (W X I, Σ)
{corners straightened) and characteristic membrane VadWad(WxI)
with the framing extended by the positive normal field of dW in
d(Wx I).

Now we apply the theorem to our particular case.
We proved (§2) that ({U(n + k + 2))/U(n + k)/U(n), (U(n + k + 2)l

U(n + k))Uίn)) was diffeomorphic to (X(C), Σ(C)).
Assume there exists a π-biaxial O(2n) action on U(n + k + 2)/

U(n + k). Let us denote by Y the orbit space (U(n + k + 2)/
U(n + k))/0(2n), with Z the fixed point set (U(n + k + 2)/U(n + k))0{2n)

and with [V, J?~\ the characteristic membrane of the extension.
Because of Theorem 3.1 we have that, after smoothing the

corners, (Y x I, Z) is the orbit space, and fixed point set of the



EXTENSION OF ACTIONS ON STIEFEL MANIFOLDS 161

restriction to U(n) of the O(2n) action. But, if the O(2n) action is
an extension of the original of U(n): U(n + k 4- 2)/U(n + k) then
(Y x /, Z) is diffeomorphic to (X(C), Σ(C)). Moreover, the character-
istic membrane for U{n): U(n + k + 2)/U(n + k) is frame cobordant
to a framed submanifold of d(Y),

In the next section we will assume that Y is D4fc+7, and we
will contradict the existence of extension by proving the impossi-
bility for F4fc+5 of being frame cobordant to a submanifold of S4fc+6.

4* Main theorem (complex case)* This section contains the
statement and proof of the main result for U(n) acting on Vn+k+2>2(C).
We will study separately the cases k = 0 and k = 2 because in those
cases y4*+5 is a trivial disk bundle. Then k even k ^ 4 and finally
ft odd.

Case 1. fc = 0.

PROPOSITION 4.1. The manifold Vr° is diffeomorphic to D2xS\

Proof. Let ^ denote the map

α>: D2 x S3 > C2 x C2

γ(z, q) - (2;^, g) .

It is not hard to see that ψ gives the desired diffeomorphism.

In § 3 we defined ^{dX, Σ) as the set of framed cobordism
classes of framed submanifolds of dX cobounding Σ(C). Now we
are going to define a function

75 J: J^ίdX, Σ(C)) — > [dX, S4J .

Let [W\ {Gly G2)] be a framed submanifold of σX cobounding
Σ(C). To this [W\ (Gi, G2)] we are going to associate a framed S'0

in 5X therefore an element of [dX, S4] (by the Thom-Pontryagin
construction). We consider the embedding

S" - ^ S1 x S" -^ Σ(C) > dX

where a(q) ~ (1, q) and ψ is the map of Proposition 4.1. The
framing of ψ°a: S3 -> dX being Gx, G2, (dψθ(l, ^)(^ 0) and ΛΓ. Here iSΓ
denotes the pointing out normal vector to Σ(C) in Wδ.

Let us consider, now, the following framed S3 in dX. The embed-
ding 7 defined by 7(g) = (0, q) and the framing by £Γx(0, g) = (g, 0),
Z,(0, q) = (iff, 0), Z3(0, ff) - (iff, 0), Z<(0, q) = (kq} 0). This framed Sz
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in dX defines an element [a] of [dX, S4] and it is not hard to see
that [a] = Ύdx[(Vδ, (Yl9 F2))]. After these considerations we are
ready to prove the main result for k = 0.

THEOREM 4.1. The action of U(n) on U(n + 2)jU(n) can not be
extended to a biaxial O(2n) action with orbit space diffeomorphic to

Proof. Assume there exists a π-biaxial action

U(n) U(ri)

which extends the U(n) action on U(n + 2)/U(n) and with the
property (U(n + 2)/U(ri))/O(2ri) ^ D\ Then by the discussion in §3,
[V\(YU Y2)] is frame cobordant to a submanifold of S*adX&S7.
Then the element 7dx[( V5, (Ylf Y2))] is in the image of the suspension
homomorphism s:π6(S3) >ττ7(S

4). We want to prove that this is
impossible. Let us consider the following diagram

where J is the Hopf-Whitehead homomorphism and H is the Hopf
invariant.

Since ΎδΣ[Vδ, (Y^)] = J{[K\) where R(q) is right multiplication
by q, qeS*, we get a contradiction because H°S = 0 but π$([R]) is
not.

Case 2. k = 2.
Let i and α denote the following maps
i: RQ-*R8 = R2 x R6 i(x) = (0, a?)
a: C*->C* a(zu z2, z3, z<) = (^, «2, β8, zA),

Using the Cayley multiplication we define

φ:D6 x S7 >C* x C4

(̂a?, y) = (a((ix)y), a(y)) .

The map φ is a diffeomorphism onto F 1 3.
As in the case k = 0 we define

γ, x:
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and with analogous proof we have that 7dx([ F n , (Yl9 Y2)]) = J([R])
(R(x) right (Cayley) multiplication by x) can not be in the image
of the suspension homomorphism. Therefore we have

THEOREM 4.2. The U(n) action on U(n + 4)/U(n + 2) can not be
extended to a biaxial O(2n) action with orbit space diffeomorphic to
D 1 6.

Case 3. k even, k ^ 4.
Let p: V4k+δ —> S2fc+3 be the projection on the second factor.

Note that when k is even we have a section

s((zlf z2, , zkΛ2)) = ((z2, -zu z4, -z3, -){zu z2, • , zk+2)) .

I t is not hard to see that the map p: V4Ie+δ —> S2k+3 is a disk bundle
projection characterized by a generator of π2k+2(SO(2k + 2)) ^ Z4.

THEOREM 4.3. The action of U(n) on U(n + k + 2)/Z7(w + k), k
even k ^ 4 cαw ^oί δβ extended to a biaxial O(2n) action with orbit
space diffeomorphic to BAk+\

Proof. Assume there exists such an extension. Then (Vik+5,
(Yi, Γ2)) is frame cobordant to (V4k+\ (Ϋl9 Ϋ2)), where V4k^ is a
framed submanifold of SAk+6 adX^ S4k+7.

Therefore the normal bundle of

is represented by a generator of π2k+2(SO(2k + 3)) which is Z2 for
k even, k ^ 4 (Kervaire [11]). This contradicts the known fact (see
Haefliger [6]) that any S2**3 embedded in S"k+6 is unknotted.

We observe that from the above proof and Theorem 11.2
(Bredon [4]) it follows that there does not exist, for n + k even,
n + k ^ 4 a biaxial O(2n) action on Vn+k+2>2{C) with orbit space
diffeomorphic to a disk.

Case 4. fc odd.
This case follows easily from the even one.

COROLLARY 4.1. The action of U(n) on U(n + k + 2)/U(n + ifc),
n ^ 3, fc odd cαTt ^oί be extended to a biaxial O(2n) action with
orbit space diffeomorphic to a disk.
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Proof. If U(n): U(n + k + 2)/U(n + k) were the restriction of
an O(2n) biaxial action then U(n - 1): U(n — 1 + (A; + 1) + 2)/U(n~
1 + (fc + 1)) would be the restriction of an O(2n — 2) biaxial action,
but this is a contradiction because fc + 1 is even.

REMARK 1. In the preceding theorems we assumed that the
O(2ri) biaxial extension had orbit space diffeomorphic to a disk. It
can be proved that this is no restriction. In fact, if U(n): U(n +
k + 2)1 U{n + k) is the restriction of a biaxial O(2n) action, U(n — 1):
U(n - 1 + (k + 1) + 2)1 U(n - 1 + (k + 1)) is the restriction of a
biaxial O(2n — 2) action, but since the orbit spaces of the U(n) and
U(n — 1) actions are disks we have that the orbit spaces of the
O(2n) and 0{2n — 2) actions are contractible. Following the same
kind of arguments as in Bredon [4], Chapter V we can prove that
the boundary of U(n - 1 + (k + 1) + 2)/U(n - 1 + (k + 1))/O(2n - 2)
is simply connected, hence it is a disk. Therefore we get a con-
tradition.

REMARK 2. Since the classification theorem for SO(n) biaxial
actions is the same that the one for O(ri), n > 3, in the preceding
theorems was proved that the U(n) action on Vn+k+2y2(C) can not be
extended to a biaxial S0(2n) action. A natural question is the
following: Can the U(n) action on Vn+k+2,2(C) be extended to SO(2n)Ί
The next proposition answer almost completely the question.

PROPOSITION 4.3. Given k, n, such that n2 — 5n > 4fc + 4 the
U(n) action on Vn+k+2,2(C) can not be extended to S0(2n) (therefore
to O(2n)).

Proof. Suppose there exists such an extension and let x be a
fixed point for the U(n) action. Then the connected component of
the isotropy subgroup of x, (S0(2n)x)°, contains the maximal torus
of S0(2n). Let Z be the center of (S0(2n)x)°, then

(SO(2n)xγ - (NS0{2n)(Z))° see Borel [2]

where NSfn2n)(Z) denotes the normalizer of Z in S0(2n).
The center Z must be Z2 (therefore x fixed) otherwise (S0(2n)x)°

would be U(n) which is impossible by dimensional reasons.
Now, the tangential representation at x of S0(2n) must be

2σ2n + 04fc+4 because restricted to U(n) is 2σn + θ4k+i therefore the
principal orbit type is SO(2n)/SO(2n — 2). After these considera-
tions the biaxiality of the S0(2n) action follows from a theorem of
Hsiang (see Hsiang [8]), therefore a contradiction.
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5* Biaxial Sp(ri) manifolds. Let us consider the left trans-
lation action of Sp(n) c Sp(n + k + 2) on the quaternionic Stiefel
manifold Sp(n + k + 2)/Sp(n + k). It is not hard to prove, using
the same kind of arguments as the ones we used to prove the
results of § 3, the following theorem.

THEOREM 5.1. Let

V8k+n = {(wu w2)eQk+2 x g 1, \w2\
2 -

X

u w2) = 0}

Wo) =
ί = 2

i = 3

i = 4

Then, the cobordism class of the pair (V8k+n, J^~) is the element
that corresponds (via Theorem 13.3, Bredon [4]) to the action of
Sp(n) on Sp(n + k + 2)/Sp(n + fc).

Assume that the action of Sp(n) on Sp(n + fc + 2)/Sp(n + fc)
can be extended to a π-biaxial action of U(2n) such that the orbit
space Sp(n + k + 2)jSp{n + k)/U(2n) is homeomorphic to j98*+16.
Since we are dealing with biaxial actions, the fixed point sets of
the Sp(n) action and its extension to U(2n) are the same. Let
[(Eok+ίl, &0)] denote the cobordism class of the framed submanifold
of S8fc+13 cobounding the fixed point set that corresponds to the
U(2n) action. Then, by the analog of Theorem 3.1, the restriction
to Sp(n) gives a Sp(n) π-biaxial manifold with orbit space diffeo-
morphic to £)8fc+16 and characteristic membrane (23Ό8fc+1S 2?o) where ̂ 0

is ^ 0 plus the restriction to Et+n of the standard framing of
S8k+ιz c S8k+1\ Since we are assuming that the restriction to Sp(n)
is equivalent to the original action, we have that [(V8k+n, ^")] —
[(Eok+n, &)] (the brackets denote framed cobordism classes). Our
main objective is to show that the last equality gives us a contradic-
tion. We cannot use here the same kind of argument we used in
§ 4 for the U(n) case, because, even when V8k+n is still a disk
bundle over a sphere we do not have (at least for an infinite family
of ft's) nontrivial cross sections (see James [9], [10]).

Let (JSΌ8fc+u, #o) be a connected framed submanifold of S8*+14 with
boundary dE0 diffeomorphic to Sp(k + 2)/Sp(k).

PROPOSITION 5.1. The pair (E0

Hk+n,
Ak + 5 connected pair (E8k+n, gf).

is frame cobordant to a
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Proof, The technique for simplifying (EOf %?0) will be as to be
expected, that of framed spherical modifications as presented in
Haefliger [6] (Proposition 3.3).

Let a e πr(E0), then the hypotheses of Haefliger [6] are:
(1) a is represented by an imbedded sphere s in int EQ.
(2) s bounds an imbedded disk d in S8k+U such that d f) Eo = $

and /xjs points radially into d(g?0 = {/JLi)
(3) the frame (/2, /3) | s extends to a partial normal frame on

d.

The proof of Proposition 3.3, Haefliger [6], shows that if these
hypotheses are satisfied (Eo, Φo) is frame cobordant to (X(E0, f),
Z(#o)) for some imbedding /: Sr x D8k+n~r -> Eo representing a. As-
sume (Eo+1\ %?o) is r — 1 connected, 0 < r ^ ik + 5. We will show
that hypotheses (1), (2) and (3) can be satisfied for all aeπr(EQ);
then will follow from Milnor [13] and Haefliger [6] that (Eo, 5f0) is
frame cobordant to a 4& + 4 connected manifold. In Kervaire and
Milnor [12], Kervaire and Milnor show how to kill the middle homo-
topy group when the boundary of the manifold is a homology
sphere. The same proof works here because of the fact that the
middle dimension homology of the boundary is zero, therefore the
proposition will follow.

Hypothesis (1) is a consequence of classical results of Whitney
together with the fact that Eok+n is parallelizable.

Hypothesis (2) will follow if S8k+H - E$k+n is r-connnected. By
Lefschetz duality H0(Ssk+1* - Eo) ~ Hsk+1%S8k+ίi, Eo) ~ Z. The 1-con-
nectedness of S8k+U - EQ follows from the 1-connectedness of S8k+U

by a general position argument (Milnor [14]). It is not hard to
check that H^S8^1* — JE?0) = 0 for 2 ^ i £ r; an application of the
Hurewicz theorem then shows that S8k+U — Eo is r-connected.

Hypothesis (3) is trivially satisfied because the obstruction to
extending (/2, /3) | s over d is represented by an element

Since 2r < 8k + 11 this group is zero (Browder [5]). Hence the
proposition follows.

Let (W, 2ίf) denote the framed cobordism between (V8k+n,
and the 4& + 5 connected submanifold of S8k+U (Proposition 5.1)
(E8k+n, %?).

Applying the technique of framed spherical modifications to
(W, 3ίf) we may assume that the pair (W9 έ%f) is 4& + 5 connected.
The obstruction to make it 4& + 6 connected is its signature and it
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is easy to see that it is a multiple of eight.

THEOREM 5.2. There exists a framed h-cobordism between
(V8k+n, J?H and a framed submanifold of S8k+li.

Proof. Assume sign (W) = 87. It follows from the results of
Browder [5] that there exists a 2(2& + 3) — 1 connected 7Γ-manifold
M8k+12 with dM a homotopy sphere such the sign (M) = 87. Accord-
ing to Hirsch [1], M embeds in S8k+is and since M is a τr-manifold,
M embeds in S8k+iz with normal frame J^M.

Let us consider M embedded in S8k+15 x I with the property
M Π (S8k+lδ x {0}) = dM. The connected sum along the boundary
(Milnor and Kervaire [12]) give us a new framed submanifold
(W, *£?), 3$? = {ΛJU of S8k+15 x /, which is 4k + 5 connected, has
signature zero and is a framed cobordism between V8k+n and
E8k+n#dM. It follows from Milnor [13] that πik+Q(W) may be killed
by a sequence of spherical modifications on W associated with ele-
ments of πik+6(W) whose self intersection number is zero. That
hypothesis (3) of Proposition 3.3, Haefliger [6], is satisfied for all
such elements follows from the fact that the obstruction to extend-
ing hi\s, i = 2, 3, 4 over d is represented by ξeπik+6(V4k+9,d). But if

d: πiM(V4k+9,5) > π4k+δ(SO(4k + 6))

is the boundary homomorphism of the fibration SO(£k + 6) —•
SO(£k + 9) —> F4fc+9,3 then d(ξ) corresponds to the normal bundle of s
according to Haefliger [6]; then by Lemma 20, Milnor [13], d(ξ) — O.

According to Kervaire [11]

ίO k even
πik+6(SO(4k + 9)) =

[Z k odd

and according to Paechter [16] τr4fc+6( V4k+9,3) & Z; then 9 is a mono-
morphism and ξ = 0. Therefore the spherical modifications can be
carried out on (W, £ίf) and we get a framed 4k + 6 connected
cobordism (that we will denote again by (TF, έ%f)) between (V8k+n,
J H and (E8k+n, %?)#(dM, J^M\dM) = (E8k+n, %?). It is not hard to
show that the homomorphisms

>Hέk+7(W)

>Hik+7(W)

are isomorphisms; therefore W is an fc-cobordism and the theorem
follows.



168 ISABEL DOTTI DE MIATELLO

We are ready now to prove the main theorem of this section.

THEOREM 5.3. The Sp(n) action on Sp(n + k + 2)/Sp(n + k)
can not be extended to a π-biaxial U(2n) action with orbit space
diffeomorphic to a disk.

Proof. We know that if such an extension exists, we have a
framed fc-cobordism between (V8k+n, J^~) and a framed submanifold
of S8fc+U. If we restrict J?~ to Sikι~7c V8k+n we have an element
[a] eπ4 k + 7(V4 M,4) where

a{X) - ((a, 0)(ix, 0)(jx, 0)(kx, 0)) .

But then the element [a] is in the image of the homomorphism

H' ^-4k+7\ ' 4fe+7,3/ > ^4k+7\ N i + β , * )

which is impossible, because g#[α] is a generator of π4k+7(S*k+7). (Here
q = F4fc+8,4 —> S4fc+7 denotes the projection onto the last factor). Hence
we proved impossibility of such an extension.

REMARK. In Theorem 5.3 we assumed that the orbit space of
the U(2n) extension was a disk, but this is no restriction. The
proof is similar to the ortogonal case (§ 4).
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