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GENERALIZATION OF A THEOREM OF LANDAU

MIRIAM HAUSMAN

A well known theorem of Landau asserts that
(L.1) lim #®) loglogn _
oy n

where 7 = Euler’s constant. In this paper a generalization
is obtained by focusing on

n+1 n+1

Clearly, the assertion G(1) =¢™" is precisely Landau’s theorem.
It is proved that

N-—co

(1.2) G(k) = lim (log log 7)"/* max <¢('n + 1)’ e, é(n + k)) .

1 -1/k
1.3) Gll) = 7+ T (1 - —) (k)
<k p
where
1 i/p 1 /K [k/pl+i/k

1.4 vk =0 (1 ~— —> I <1 —~) )

plk P ptk D

p<k <k

The function (k) satisfies 0 < 4(k) =< 1 and it is easily seen from
(1.4) that

(1.5) lim () = I <1 . %)1”' .

2. Preliminary lemmas. The results obtained in this paper
depend on the following well known theorems [1], [2], and [3].

(2.1) lim g(n) loglogm _ er (Landau’s theorem)
N—00 n

(2.2) 1_ loglogx + ¢ + O<L> (Mertens’)
el log 2
T 1\ e7 1 ,

(2.3) 1 (1 - .5) =gz * 0<__10g2x> (Mertens’)

3. Proof of (1.3). We introduce

(4, -1 -2
and -
(3.2) fum) =11 (1 - %)
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and note that f,(n) is periodic with period 4, = II,< »-
We also observe that (1.2) is clearly equivalent to

3.3) G(k) =min i log log )V gn +1) . gnt k)
(8.3) G(k) l_g}g}k lim (log log n) maX( mri n+k>

n=J(mod “j)

On the sequence n = J(mod 4,)

Eog(n 4+ 4) E o + ) :
(3.4) (1og log n> 11220 = (oglogm) 1 <Tff>k FlT +9) .

Since a prime p divides » + % and n + j only if p divides 7 — 7,
1<j<i=k; and the primes involved in (¢(n)/n), are » =k, we

have
o 1 (n+ z)])

E(om + )\ _ i
H< >Ic ]il(n‘l'"l)

=1\ N+ 1

This together with the result

i g1 0(22) — 11 1~ 1)

(which follows from Landau’s theorem) yields
Goglogm) [1[ #2012 1+ oqaper I (1 - L) 1140 + ),
i=1 n+ 1 <k D i=1
which implies

(3:5)  lim (loglog m)”* max (Mﬂ)

n= J(mod k) /n+/L

zet 1 (1-2) A+ 0]

p<k

In (3.5), taking the minimum over J, 1 < J < 4,, and using (3.3) yields

I (N EAR

<k 1SJS pi=1

Choose J* such that

I: min ﬁfk(J -+ i)]w = ‘:,H; FTF £ /i):ll/k

1SJ £ i=1

We next observe that for the (k) given in (1.4) we have

3.7) [g FT* + i)]”k = (k) .

To see this note first that the left side of (3.7) equals
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@ minl M- D)0 (- 5) L -)]"

Since each of the factors (1 — 1/p) < 1, the minimum of the product
in (3.8) is achieved for that value of J for which each prime » <k
divides as many of the k integers J + 1, ---, J + k as possible. Since
p<kk=pt+r,t=[k/p],0Zr<p. If r=0,i.e., p|k, then the
k integers J + 1, ---, J + k can be broken up into exactly ¢ complete
residue systems modulo p and in each system we have one integer =
0(mod p); this situation is independent of the choice of J. If » >0
then the k& integers J + 1, ..., J + k form ¢ complete residue classes
modulo p together with » < p remaining integers. In each of the
complete residue classes there is one integer = 0(mod p). We would
like to show that it can be arranged that for each » < k, » } k, one
of the r remaining integers is =0(mod p), and thus we have [k/p] + 1
integers divisible by p. Since 1 < J < 4, where 4, = [],<. », we can
choose J = 4, — 1; then every p < k divides J + 1. Hence for p } E,
the [k/p] + 1 integers J+ 1+ 7p,0 =<7 <t are divisible by p as
desired, and (3.7) follows.
From (3.6) and (3.7) we see that
_ ‘ 1\ "V
(3.9) Gy z e I (1= 1) ") ;
p<k p

and it remains to prove the reverse inequality. This is achieved by
showing that there exists an infinite sequence » = J*(mod 4,) on which

o(n + i))

(3.10) lim (log log »)* max ( -
=Lk \ M g

n—o
n=J%(meddy)

<o (1- %)“””Qp(k) :

This is done by producing a sequence % = J*(mod 4,) for which

1k $(n + 1) ~ oIk __l Tk )
(3.11) (log log n) ig§§k<—n+i >k e pI([k (1 p> A
where for all 1 =1, ---, k,
. N
R ACAREE)|

On this sequence

. —1/k
(log log )"* max (W‘—“)-) ~ e ] (1 - l) " max (VAT + 1)
i=1,+++,k n + p i=1,-+,k

1 <k
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—1/k
~ e T (1= ) ),
»<k p
which gives the reverse inequality to (3.9) and establishes (1.3).
To construct the sequence n = J*(mod 4,) which satisfies (3.8) let
B, =

k=p<exp(eqlogr)

B; = IT p, 1=2-k;

expllc;_y) (logz) i—1ly §p<oxp(ci(lngz)5’)

where ¢, = 1, and for ¢ =0, ---, &k — 1, ¢; is determined by

—'~— = ”‘H(l — ——> Uk?\- .
p<k

Since [Ii-in; =1 it follows that ¢, =e 7 [[,, (1 — 1/p). As the B,

1 =1, ---, k are k integers made up of primes » = k and are relatively

prime in pairs, as well as each relatively prime to 4,, by the Chinese

Remainder Theorem the system

¥ + 1 = O(mod B,)

¥ + 2 = O(mod B,
(3.13) :
y + k = O(mod B,)
y = J*(mod 4,)

has a solution y = n*, 0 < n* < 4, [I%., B, which is unique modulo
4, l':~1 B,.

i=

For this integer n* = J*(mod 4,) we have for ¢ =1, ---, k

(o 9) (- L)spi- )

7
2

= %:il_<lo;x * O<lo;2x> ’

(note that the value obtained for ¢, validates this for ¢ = 1). Then
d(n* + 1) *
(———n* . ) FulJ* + 4)

(3.14) N 1 (1 _ l)—l/k
rek PL£(T* + D)L+ o)) .

A

log 2

But from the Prime Number Theorem since

k
w<41B= T », (=1,

p<expilogx}
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it follows that

10g‘ n* < Z log p = O(e(mgm)k)

p<explloge}k

so that
(38.15) log log n* < (log x)* + O1) .

Since (3.14) holds for all =1, ---, k, it certainly holds for the
maximum of these functions. Thus inserting (8.15) in (8.14) yields

(log log #n*)¥* max (W) FulT* + 1)
(3.16) e

< (1 + o)L (1 - %)”"wo .

Clearly as = tends to infinity the »* (which depends on z) also tends
to infinity, so that (3.16) yields

_ 1\ ~Vk
(3.17) Gl < e [ (1 — _> ()
o<k _’p
which completes the proof of (1.3).
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