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THE PROJECTIVITY OF EXT (T, A)
AS A MODULE OVER E(T)

JOSEPH N. FADYN

Let A and T be abelian groups. Then Ext(Γ, A) can
be considered as a right module over E(T), the ring of
endomorphisms of T. In this paper necessary and sufficient
conditions are developed for Ext (T, A) to be JS'ίD-projective
whenever T is reduced torsion and A is reduced.

In this paper A and T will be abelian groups and Ext (T, A)
will be considered as a right E(T)-modυle. (See [5].) We consider
the question of when Ext (T, A) is a protective 2?(T)-module. Theo-
rems 1 and 2 provide necessary and sufficient conditions for
Ext (Γ, A) to be i?(!Γ )-projective whenever T is reduced torsion and
A is reduced. It is interesting to note (Theorem 3) that if B is
any reduced group, a necessary condition for Ext (B, A) to be E(B)-
projective is that Ext (B, A) ~ Ext (T(B), A). Hence if Ext (B, A)
is £r(jB)-projective, Ext (B, A) ~ Ext (T(B), A) and Ext (T(B), A) may
be considered as an i£(T(Z?))-module, where T(B) is, of course,
reduced torsion.

We shall employ the following notations and conventions: The
word "group" will always mean "abelian group." We reserve the
letter T for a torsion group, and in this case, Tp will be the p-
primary component of T. For an arbitrary group A, TP(A) is the
p-primary component of the torsion part of A. For a ring R and
a left JS-module My τR{M) will refer to the rank of M as defined in
[4], hdR{M) and idR(M) will refer, respectively, to the homological
and injective dimensions of M as defined in [6]. An isomorphism

of JS-modules M and N will be denoted by: M ~ N. Other notations
will follow [2], Importantly, whenever we speak of Ext (T, A) as
a right i£(T)-module we may assume without loss of generality

y

that A is reduced as a group. Finally, if A ~ (v) 0 A', and if a e
Ay we will write, conveniently, when defining an endomorphism a
of A: a(v) — α, a = 0 otherwise. We mean, more precisely, that:
a(v) = a, a \A, = 0. We now state our main theorems:

THEOREM 1. Let T be a reduced p-primary group and let A
be a reduced group. Then Ext(Γ, A) is a protective right E(T)~
module if and only if either Ext (T, A) = 0, or all of the following
conditions hold:

( i ) T is bounded, with minimal annihilator pk, say.
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(ii) A[pk] is either zero or is a direct sum of cyclic groups of
order pk.

(iii) If D is a divisible hull of T(A) and E is a divisible hull
of AIT(A), and if

— m ,

m an infinite cardinal, then T is either finite, or in a decomposition
of T into cyclic groups, there are at least m summands isomorphic
to Z(pk).

THEOREM 2. Let T be a reduced torsion group and let A be a
reduced group. Then Ext(Γ, A) is a protective E{T)-module if and
only if for every p, Ext (Tp, A) is a protective E(Tp)-module.

THEOREM 3. Let A and B be reduced groups. Then a necessary

condition for Ext (B, A) to be E(B)-projective is that Ext (B, A) ~
Ext (T(B), A).

Proofs of the theorems. The proof of Theorem 1 will require
numerous preliminary results. We postpone its proof. Theorem 2
follows easily from Lemmas 1 and 2 below. We now prove Theo-
rem 3:

Proof of Theorem 3. Since B is reduced, it is easily verified
that E(B) is reduced. Now, from the ^-exact sequence: 0—>T(B)—>
B-*B/T(B)->0, we obtain the ^-exact sequence: 0->Kerΐ*-+

Ext (B, A) ^ Ext (T(B), A) -> 0. Since Ker i* is a subgroup of
Ext (B/T(B), A), and since B/T(B) is torsionfree, Ker i* is divisible.
(See [2].) Since Ext (T(B), A) is reduced (see [2]), it follows that
Kerΐ* is the maximal divisible subgroup of Ext(J5, A). Now, since
E(B) is reduced as a group, any free i£(J3)-module is reduced as a
group. So if Ext (J5, A) is to be £?(JB)-projective, we must have
Ker ΐ* = 0.

We will now aim at proving Theorem 1.

LEMMA 1. Let M=Y[ieIMi where each Mi is an Ri-module,
R — ΐίieiRi, and M is an R-module via the coordinatewise action
of TlieiRi Then M is R-projective (resp. injective) if and only if
Mi is Rcprojective (resp. injective) for all iel.

Proof. The proof is easy and is omitted.
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LEMMA 2. Let F: Ab x A& -> Ab be either of the functors Horn
or Ext. Then:

( i ) 1/ A — φtei Ai where the At are fully invariant subgroups

of Aythen F(A, B) ^ ILe, F(Aίt B).

(ii) // B — ΐlieiBί where the Bt are fully invariant subgroups

of B, then F(A, B) ^ ILe, F(A, Bt).

Proof The isomorphism in (i) is given by: F{A,B) ~ ϊ[ieIF(Ai9B)
where, for feF(A, B), ψ(f) = [fat]ieI where a^E{A) is defined
by: oCi \A. = 1A., cti — 0 otherwise. It is easily verified that ψ is an
ϋ7(A)-homomorphism.

The isomorphism for (ii) is similar.
Lemma 3 computes the injective dimension over E(T) of

Ext (T, A) when T is torsion and A is torsionfree:

LEMMA 3. Let T be torsion and let A be torsionfree. Suppose
S is the set of primes for which A is p-divisible. Then:

( i ) idj0(Γ)(Ext (Γ, A)) — 0 if and only if for every prime p£ S,
Tp is either bounded or has an unbounded basic subgroup.

(ii) Otherwise, iάE{T)(Έxt(T, A)) = 1.

Proof If D is a divisible hull of A, then DjA is torsion and

Hom(Γ, D/A) E~] Ext (Γ, A). By Lemma 2, it suffices to prove the
result in the case in which T is a p-group, and we may assume
(D/A)p Φ 0, since otherwise Ext (T, A) = 0. Assuming this, we note
that by [8, Lemma 2], Horn (T, D/A) is jEr(T)-injective if and only
if T is JS(Γ)-flat. From [9] we know that this holds if and only if
the condition (i) of the lemma holds (where T is a p-group, and
p g S.) Otherwise, from [1], we know T has dimension one as an
i?(T )-module, and if we take a projective resolution of T and dualize
it, applying [8, Lemma 2] again, we obtain an injective resolution
for Horn (Γ, DjA), establishing part (ii) of the lemma.

LEMMA 4. Let A be a reduced group with TP(A) unbounded.
Then if M is a right E(A)-module with Hom^A, Z(p°°)) £ M, then
M is not E(A)-projective.

Proof We will show that there is no i?(A)-monic map ψ:

0 > Horn (A, Zip00)) — Θ E(A)b

beB

for any indexing set B. This will complete the proof. Consider
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/ = {1, 2, 3, •}. Since TP(A) is reduced and unbounded, for each
ίel, we may choose vt e TP(A) with the property that (v%) is a cyclic
summand of TP(A) and such that O(ι>t) < O(vi+1), i = 1, 2, 3, . Say
(v,) = Z(pw0 for i = 1, 2, 3, . Now, let fc< e Horn (A, ^(p00)) be
defined by:

hJVi) = ——, Λ< = 0 otherwise .

Let:

f ( ^ ) - α M + aHi + + abjH.

where abj{ eE(A)hji for all j = 1, 2, , &,. Define β^E{A) by:

/5.(x;.) = 0, & = 1 otherwise .

Then the computation:

0 - α/r(0) = ψ(htβt) - α&l.A + abuβt + • + α6fc<i/34

shows that α^..^ = 0 for all j = 1, 2, , &έ, and hence that α δ i ι = 0,
except possibly on vif for all i = l, 2, , kt and for all ΐ = l, 2, 3,
Suppose abji(Vi) = ίif. Then ΐitf e T^A), and not all ίy< are zero for
a fixed i, where i = 1, 2, , fc^. By defining ^ eE(A) by:

δi( î-i) = p - * - ^ ,

^ = 0 otherwise

for i — 2, 3, 4, , the computation:

shows that we may assume kt = k2 = = &, say, and that:

ah'i-i = ah'iδ* f o r all i = 1, 2, , fc .

Now, since not all tH are zero for a fixed ΐ, where j = 1,2, , fc,
assume that:

«68l(^i) = *.i ^ 0 where s e {1, 2, •••,&}.

From this, we easily obtain the relations:

Eel — V τs2
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However, this is a contradiction, since the subgroup of A
generated by the t9i, i = 1, 2, 3, is isomorphic to Z(p°°), and A
was assumed to be a reduced group.

COROLLARY 1. Let T be a reduced torsion group. Then the
following statements are equivalent:

( i ) T is a protective left E(T)-module.
(ii) Hom(T, Q/Z) is a protective right E(T)-module.
(iii) Every p-primary component of T is bounded.

Proof. In [7] it is shown that a torsion group T is a projec-
tive left J£(T)-module < = >ΓP is bounded for all p.

Now, to prove the equivalence of (i) and (ii), we note first that
by Lemma 1 we may assume that T is p-primary. Let T be bounded
with minimal annihilator pk and let v generate a cyclic summand of

T of order pk. Then Γ ^ ( y ) φ f , the isomorphism being one of
abelian groups. Hence:

Horn (Γ, (»)) E~] Horn (T, Z(p~)) ,

is seen to be an E(T) direct summand in E{T)E{T). If T is not
bounded, then Lemma 4 completes the proof.

COROLLARY 2. Let T be a torsion group. Then Horn (Γ, Q/Z)
is a protective right E(T)-module if and only if for every prime
p, Tp is either bounded or has an abelian group summand isomor-
phic to Zip™).

Proof. We may assume that T is p-primary. If T is reduced,
the result follows from Corollary 1. If T is not reduced, then T=
Z(p°°) © Γ for some group T', and it is clear that Horn (T, Z(p°°))
is an E(T)-άirect summand in E{T)E{T).

COROLLARY 3. Let A be a torsion free group of finite rank, and
let T be a torsion group. Further, let S be the set of primes for
which A is p-divisible. Then Ext (Γ, A) is a protective right E(T)-
module if and only if for every prime p& S, Tp is either bounded
or has an abelian group summand isomorphic to Z{p°°).

Proof. Let D be a divisible hull of A. Then: D/A ~ ®P&P> Dpf

where Dp is a divisible torsion group of finite rank, and where
P' = P- S. Then:

Ext (T, A) E~] Horn (T, JLY^ Π Horn (T9, Dp) .
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The proof is completed by Lemma 1 and Corollary 2, recalling also
that a direct sum of projective modules is projective.

LEMMA 5. Let T be a bounded p-primary group with minimal
annihilator pk and let n be any cardinal. Further assume that in
a decomposition of T into cyclic groups, there are at least n sum-
mands isomorphic to Z(pk). Then for any indexing set I with
\I\^*n, Hom(T, 0 i e r Z^p00)^ is a cyclic projective E(T)-module.

Proof There is a set {vd}jeJ where vi generates a cyclic abelian
y

group summand of T of order pk, and where \J\ = \I\. Then T ~
Θiej(^ ) Θ T'f where the isomorphism is one of abelian groups.
Thus, Horn (Γ, θiej(tfy)) ^Γ* Horn (Γ, ®i&1 Z^)^ is seen to be an
jδ?(T)-direct summand in E(T)mτ).

LEMMA 6. Let V be a vector space of infinite dimension over
a field k, and E = End(V). Let H = Horn (V, © i e z V). Then H
is not projective as an E-module if \I\ > dim(F).

Proof. We first note that if F is a countable subset of H, then
F is contained in a cyclic submodule of H. To see this, let W be
a subspace of © i e / 7 containing f{V) for all feF, and such that
dim(T7) = dim(F). We may regard Hom(F, W) as an £7-submodule
of H and this submodule certainly contains F. Since W a V,
Hom(F, W)~E.

We next note that any module with the above property cannot
have an infinite direct sum decomposition (clearly). Now if H were
projective, it would be a direct sum of countably generated sub-
modules (by Kaplansky's theorem in [3]). Since H is clearly not
countably generated, this would mean that it had an infinite direct
sum decomposition, which, as we have just seen, it does not.

COROLLARY 4. Let T be a bounded p-group, of exponent pk,
and such that in a direct sum decomposition of T there are n
summands of order pk where n is an infinite cardinal (i.e., n —
dim(T/T[ί)fc~1]), where T/Tlp1*'1] is viewed as a vector-space over ZjpZ).
Let H = Horn (Γ, U), regarded as an E(T)-modulet where U is a
direct sum of m copies of Z(p°°), for some m, m > n. Then H is
not a projective E(T)-module.

Proof. Let E = End (T/Tlp^1]). There is a natural map
End(Γ)->J^ (since T[pk"*] is a fully invariant submodule of T)
which is clearly surjective. If / is the kernel of this map of rings,
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(so J = { / e E n d ( Γ ) : / ( Γ ) ^ Tb*"1]}), then one easily identifies H/HI
with Horn (Γ/ΓIp*"1], U Ϊ P I / I / I P * " 1 ] ) . If -ff is [protective as an End
(T)-module, then H/HI must be protective as an J^-module, which,
according to the previous lemma, it is not.

LEMMA 7. Let T be a bounded p-group which is infinite, but
such that it's highest nonzero Vim invariant is finite. Let U be
the direct sum of a countable number of copies of Z{p°°), and let
E = End (Γ). Then H = Horn (T, U) is not a protective E-module.

Proof. If there is a split mono μ: H-+@ieIE, then it induces
a split mono H/H[pk~1]-*φieIE/E[pk~1], where we choose k such
that pkT = 0, p^T Φ 0 (i.e., pk is the exponent of T). We note
that H/H[pk~x] is infinite dimensional and all of the terms on the
right above are finite dimensional over Z/pZ. We now let /: T/pT~>
U[p] be a surjective homomorphism. If g: T —> U[p] is any homo-
morphism with Tip16"1] in its kernel, then there is an endomorphism
εg: T -> Γ such that g = fεg. It follows that if heH, then for some
endomorphism φ of E, p^h = fφ. Now if TΓ; is the projection onto
the ΐth summand in the above free £7-module, then πtμ(f) Φ 0 for
only a finite number of indicies i. Let this finite subset of / be
J. It follows that p^n^Qi) = 0 unless i e J, for all heH. Hence
the image of the induced map

is actually in the submodule ® i e j E/E[pk 1], This is a contradiction,
since this is finite dimensional, and H/Hlp16'1] is not.

COROLLARY 5. Let A be torsionfree, and let D be a divisible
hull of A. Let S be the set of primes for which A is p-divisible,
and let T be a reduced torsion group. Then Ext (Γ, A) is a pro-
jective E(T)-module if and only if for every pi S the following
two conditions hold:

( i ) Whenever rp(D/A) is finite, Tp is bounded.
(ii) Whenever rp(D/A) = mf m being an infinite cardinal, Tp

is either finite, or Tp is bounded of exponent pk and in a decom-
position of Tp into cyclic groups, there are at least m summands
isomorphic to Z(pk).

Proof. We note first that for any finite group T, and any
index set /, and groups At(ί e I), there is a natural isomorphism:
Horn (T, φ i e 7 A,) ~ φ ί e / Horn (T, A,). Hence if T is finite and
p-primary, Horn (Γ, φίei^P0 0)*) is a projective 1<7(T)-module. The
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proof follows from this fact and from Lemma 7 and Corollary 4.

LEMMA 8. Let T be a reduced primary group. Then Horn (I7,
Z{pco)) is an indecomposable E{T)-module.

Proof. Suppose Horn (T, Z(p°°)) E~] M10 M2 where M1 Φ 0 and
M2 Φ 0. Now let v and ω generate cyclic summands of T, where
o(v) <k o(ω), say, and where v and w need not be distinct. Suppose
there exists hγ e Mu h2 e M2 with hγ Φ 0, h2φ 0, and having:

hx(v) = - I - , Λ2(α>) - - 4
p s pz

where

(r, p) = (u, p) = 1 .

We consider the case where s5^2, a; — s = d ^ 0 . The case s > z
is similar. Define a, βeE(T) by:

xv β(ω) = pdτ/α>

α = 0 otherwise Ŝ = 0 otherwise

where x and y are nonzero solutions of the linear congruence:

rx — uy = 0 (mod ps) .

Then hλa = fc2/3 ̂ 0 , a contradiction. Thus we may suppose that
for any heMlf say, and any generator v of a cyclic summand of
T, that fe(y) — 0. Since, if T is bounded this implies that h = 0,
the proof is complete in the case of T bounded. For T not bounded,
let heMuh Φ 0. Say /&(£) ̂  0, for some t e T, where o(t) = pfc.
Choose y to be a generator of a cyclic summand of T of order pr^
p% and define aeE(T) by: α(V) = ί, α = 0 otherwise. Then (ha)(v)Φ
0 — a contradiction.

LEMMA 9. Let T be a reduced unbounded p-primary group, and
let A be a reduced group. Then Ext {T, A) is a protective E(T)-
module if and only if Ext (T, A) = 0.

Proof. We show first that if k ^ 1, and & is finite, Ext (T,

Z(pfc)) is not J5'(T)-projective. For this, consider an injective resolu-

tion of Z{pk): 0 -* Z{pk) ->Z{p°°) A Z(p°°) -> 0. This induces: Horn (Γ,

Z(p°°))^Ext(Γ, Z(p f c))-^0. Since T is unbounded, /3* is not an

£r(T)-isomorphism, and hence it follows from Lemma 8 that Ext (Γ,

Z(pk)) is not £r(jΓ)-projective. Now, if TP(A) Φ 0, A has a cyclic



THE PROJECTIVITY OF EXT (T, A) AS A MODULE OVER E(T) 391

abelian group summand isomorphic to Z{pk) for some k Ξ> 1, and the
lemma follows. Hence, suppose that TP(A) = 0. Then the sequence
of abelian groups: 0 -> T(A) -> A -> A/Γ(A )-» 0 yields the £r(T)-isomor-
phism: Ext (Γ, A) ^ Ext (T, A/T(A)). Since A/T(A) is torsionfree,
Corollary 5 completes the proof.

LEMMA 10. Let T be a reduced torsion group. Then Ext (T,
^(pr)) ^ a protective E(T)-module if and only if Tp is bounded
with minimal annihilator pk where k <* r.

Proof. By Lemma 9, it is necessary that Tp be bounded in
order that Ext (Γ, Z(pr)) be £r(Γ)-projective. Consider the injective
resolution of Z(pr):

This induces:

Horn (T, Z(p~)) — Horn (T, ^ λ ) -L> Ext (T, Z(p*)) > 0 .

Now if k > ? , let v generate a cyclic summand of T of order pk.
Define A e Horn (Γ, ^(p00)) by: h(v) = l/p\ h = 0 otherwise. Then πjιφ§,
and so ker A Φ 0. Lemma 8 completes the proof in this case, since

Horn (Γ, J ^ ) ^ Γ ) Horn (Γ,

If & ̂  r, we have: Horn (Γ, ^(pw» ^ T ) E x t (Γ, Z(pr)), and Corollary
1 completes the proof of the lemma.

We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. If A[pk} is homogeneous (i.e., if A[pk] cz
0 ΐ ei^(p f c)i for some indexing set /), and D is a divisible hull for
A, then it is clear that D[pk] ^ A, whence, it is also clear that if
pkT - 0, that the map Horn (Γ, D) -> Horn (T, D/T(A)) is the zero

map. Since Ext (Γ, D/T(A)) = 0f this means that Horn (Γ, D/T(A)) E~]

Έxt(T,T(A)). Since Γ is bounded, an earlier result immediately
says

Ext (T, T{A)) 0 Ext (T, A/T(A)) E~] Ext (T, A) .

The statement of the theorem for such A follows immediately from
Corollaries 4 and 5 and from Lemmas 5 and 7.

If A[pk] is not homogeneous, it is routine that A has a cyclic
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summand of order pr for some r < k, and the result follows from
Lemma 10.

The author wishes to thank the referee, whose suggestions con-
siderably shortened the work of proving Theorem 1.
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