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ISOMORPHISMS OF THE FOURIER ALGEBRAS IN
CROSSED PRODUCTS

YOSHIKAZU KATAYAMA

Let (M,G,a), (N,H,β) be TF*-systems, Fa(G; M*) and
Fβ(H;N*), their Fourier algebras. The main result is that
Fa(G; M*) and Fβ(H; N*) are isometrically isomorphic as
Banach algebras if and only if M (resp. G) is isomorphic
to N (resp. H) by θ (resp. I) such that βI{g^θ—θoag for all
g € G, or M (resp. G) is anti-isomorphic to ΛΓ (resp. H) such
that βI{g-h°θ=θoag for all #e(?.

1* Introduction* For locally compact abelian groups G and

H, Pontryagin's duality theorem mentions that L\G) is isomorphic
to L\H) if and only if G is isomorphic to H. Y. Kawada [4] and
J. G. Wendel [11] proved the same statement for arbitrary locally
compact groups.

When G is a locally compact abelian group, L\G) is isometrically
isomorphic to the Fourier algebra A(G) in [7]. Therefore A(G) is
isomorphic to A(H) as Banach algebras if and only if G is isomor-
phic to H.

P. Eymard [1], on the other hand, defined the Fourier algebra
A(G) of a locally compact group G and showed that it is isomorphic
to the predual m{G)* of the von Neumann algebra m(G) generated
by the left regular representation of G.

M. E. Walter [10] showed that A(G) and A(H) are isometrically
isomorphic as Banach algebras if and only if G and H are isomor-
phic.

Recently for Wr*-system (M, G, a), the Fourier space Fa(G; M*)
was defined in [8] such that Fa(G; Λf*) is isometrically isomorphic
to the predual of the crossed product G ® α M as Banach spaces.

M. Fugita [2] quite recently defined the Banach algebra structure
in the Fourier space Fa(G; Λf*). Then he showed that the group

of all characters Fa(G; Λf#) of Fa(G; M*) is isomorphic to G and
studied the support of the operators in G ® α M.

In this paper we generalize the Walter's result for W^-system
(AT, G, a).

The author would like to express his thanks to Professor 0.
Takenouchi, Mr. M. Fugita for many fruitful discussions, Professor
M. Takesaki for a lot of suggestions and constant encourgement
during his stay at U.C.L.A.

2* Notations and preliminaries• Let M be a von Neumann
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algebra on a Hubert space $ and G be a locally compact group.
The triple (M, G, a) is said to be a T7*-system if the mapping a of
G into the group Aut(ikf) of all automorphisms of M is a homomor-
phism and the function g\-+ωoag(x) is continuous on G for all xeM
and ω e Λf* where M* is the predual of M.

The crossed product G® α Λf of M by a is the von Neumann
algebra generated by the family of operators [πa(x)9Xo(g); xeM,

(πa(x)ξ)(h) = a-h\x)ξ(h)

(

for f e L 2 ( G ; £ )
Each element ω in the predual (G(g)αM)* of G®αikf may be

regarded as an element uω of Cb(G; M*);

(2.2) %Jί/]W - (πa(x)XG(g), α>>

for all &eΛf, geG where C\G\ M*) is the space of all bounded
continuous ilf^-valued functions on G. We denote Fa(G; Λf*) = {̂ ω;
ω 6 (G ® α ikf)#} c C&(G; Λf J . A norm || || is defined on ^ α (G; Λf*) by

Then | | w | U ^ \\u\\ for all ueFa(G;M*) where || |U is the sup-norm
on C\G; ΛfJ. We define a product on Fa(G; ikfj by

(2.3) ( u ^ ) M W - u[g](x)v[g](X)

for all w, veFa(G; M*), xeM and geG. Then jFα(G; Λί*) is a Banach
algebra ([2] Theorem 3.5). So that we can define products between
G®aM and Fa(G; M*);

(uT, v) = <

for TeG®aM, u, veFa(G;M*)((Z.Ί), (3.9) in [2]).
Let IT be an operator in G®αikf. Then the supp(T) of T is

the set of all geG satisfying the condition that XG(g) belongs to
the σ-weak closure of TFa(G; Af#) [See [2] Proposition 4.1].

THEOREM 1. Let (Λf, G, α), (iSΓ, i ί, β) be W*-systems and Fa(G;
M#), Fβ(H; N*) their associated Fourier algebras. Let φ be an
isometric isomorphism of Fa(G; M*) onto Fβ(H; N#) as Banach
algebras.

Then we have five elements (fc, p, q, I, Θ) with the following
properties:
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( 1 ) k e G such that Xβ(k) — V(^( e )) where *φ is the transposed
map of φ and e is the identity of H.

( 2 ) / is an isomorphism or anti-isomorphism of H onto G.
( 3 ) p (resp. q) is a projection of ZM Π Λf " (resp. Z^ Π NH)

where ZM (resp. ZN) is the center of M (resp. iV) and ikfG = {xeM:
ag(x) = x for all g e G}, NH = {xe N: βh(x) = x for all h e H).

( 4 ) Θ is an isometric linear map of N onto M such that
Θ is an isomorphism of Nq onto ΛfP,
θ is an anti-isomorphism of Nt_q onto ikf^.

(5 ) φ(u)[h](y) = (ku)[I(h)](β(y)P) + (kU)[I(
for all y e N, h e H and u e Fa(G; AT*), where (*%)[flr](2/) = %[

( 6 ) θ[βk(y)] - [ccI{hAy)]p + [ot7hAy)](l - p) for all y e ̂ , h e JET.

Proof. The transposed map V of ^ is an isometric linear map
of H®βN onto G ® α l f . Using [3] Theorem 7, 10, we get;

V - V(λH(e))(7z + ΎA)

where j z is an isomorphism of (iϊφ^iNΓ)^ onto (G® α i l ί ) z , j A is an
anti-isomorphism of (H(^β N)a_zΊ onto ((τ®αikf)(Z_z), 2J (resp. z')
being a central projection of G ® α M (resp. H®βN). (2.4)

It follows from (2.3) that for all u,ve Fa(G; Λf*),

= (^W, Φ(u*v))

- (XH(h) (g) λ^Λ), ^

Therefore V(^(^)) is a character of Fa(G; M*) for all fee if,
which implies that ^(XH(H)) £ λG(G) because the group of all

characters Fa(G; Af*) is isomorphic to G ([2] Theorem 3.14), more-
over since φ is an isomorphism,

We denote XG(k) = V
By the same argument in [10] Theorem 2, we get that

(2.5) 7 = VCWe))"1^ = 7χ + 7^

is a C*-isomorphism in Kadison's sense [3] and τ(λJΪ(/&1)λJΓ(/&2)) is
either 7(λjff(Λ1))7(λH(A2)) or 7(λiy(/^2))7(λH(A1)), moreover if we put

(2.6) then I is either an isomorphism or an antiisomorphism of H
onto G.

The transposed map ψ of 7 is also an isometric isomorphism of
Fa(G; Λf*) onto J^(iϊ; N*). Then we get;
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), u*v) = (πβ(y), ψ(u*v)}

) (x) f (v

for all yeN,u,ve Fa(G; MJ.
By [5] Proposition 2.3, we obtain y(πβ(y)) is an element of πa{M),

so that we can define an isometric surjective linear map θ of N onto
M by θ = Tr^oγo^.

Since 7 is a Jordan isomorphism,

= 7([Γ, *']) =

for all TeHφβN, therefore we get y(Tz') =
Hence 7(πβ(xy))z = Ύ(τrβ(x))y(πβ(y))z for all x, y eN.
Since 2 is a central projection of G ®«M, z is also a projection

of πa(M)', then we get;

(2.7) Ύ(πβ(xy))p = 7(πβ(x))y(πβ(y))p

for all x, y eN where p is the central support of z in πa(M)'.
We denote by g the central support of zr in πβ(N)', then the

equations 7(ff)s = 7(?»0 = Ύ(Z') = 2 imply that 7(ί)ί> = P, similarly we
obtain Ύ~\p)q = ? so that 7(ί) = Ί{Ί~\v)q) = fY(y~1(p))Ύ(q)p = ί>7(?) = p.

Hence 0 is an isomorphism of JVg onto ikfp and θ is an anti-
isomorphism of N{1-q) onto Λίd-p).

The projection p (resp. q) is G-invariant (resp. iϊ-invariant) since
πa{M)' = XG(^)7Ta(ilf)%(^)* and XG{g)zXG(g)* = 2.

Now we have already proved (1) ~ (4) and the statements (5),
(6) still remain to prove.

For all y eN, heH we get,

hence

θ°βk = θίI{h)oθ on Nq ,

and similarly

on

Therefore θoβh{y) = anh)oθ{y)p -\- anh-hoθ{y){l - p) for all
and heH. To prove the statement (5), we shall show first,

supp Ύ(πβ(y)XH(h)) =
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For since Ύ(πβ(y)XH(h))u = Ύ(πβ(y)XH(h)ψ(u)) for all u e Fa(G; M*)
and ψ is surjective,

[Ύ(7rβ(y)XH(h))Fa(G; AT,)]-'-

- Ύ[πβ(y)XH(h)Fβ(H; NJΓ'-"

where [ -]~°-w means a σ-weak closure, on the other hand,

[πβ(y)XH(h)Fβ(H; N*)Γ°~» n XAH) = CXH(h)

because of supp πβ(y)XH(h) = {fe}, so that we obtain;

[Ύ(πβ(y)XH(h))Fa(G; AT*)]-*- Π λ*(G) = CX*(I(fc))

supp Ύ(πβ(y)Xs(h)) = {/(λ)} .

By [2] Theorem 4.4 or [6] Proposition 6.1, there exists an
element x of M such that 7(πβ(y)XH(h)) = πa(x)XG(I(h)).

πa(x)XG(I(h))z

= Ί(πβ{y)XH{h))z

then

»3> = (̂2/)ί>, and similarly a(l - p) = α7

We get;

By (2.2), 0(V) = ψ»(t%) for % e -Fα(G; ΛΓ#) and the above equation,
we can get the statement (5).

REMARK 2. Theorem 1 is a generalization of [10] Theorem 2.

COROLLARY 3. Let (M, G, a), (N, H, β) be W*-systems and the
two actions a and β are ergodίc on their centers (that is ZM D MG =

zN n NH = c).

The following statements are equivalent;
(1) Fa(G; M*) is isomorphic to Fβ(H; N*) in the sense of Banach

algebra
(2) there exists either an isomorphism I of H onto G, an

isomorphism θ of JV onto M such that θ°βh = aI{h)oθ for all heH,
or an anti-isomorphism I of H onto (?, an anti-isomorphism θ oί N
onto ikf such that 0o/3A = aI{h-i)oθ for all heH.
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Proof. Suppose φ is an isometric isomorphism of Fa(G; M*) onto
Fβ(H; N*) and we use the same notations in Theorem 1. The pro-
jection p in (3) of Theorem 1 must be zero or 1 by the ergodicity
of the action a, then θ is either an isomorphism or an anti-isomor-
phism of N onto M.

When G is a locally compact abelian group (it follows from (2.6)
that H is a locally compact abelian group), / in (2.6) can be regarded
as both an isomorphism and an anti-isomorphism, therefore the
statement (2) follows from Theorem 1 when G is abelian. Hence we
may assume that G is non-abelian.

When I is an anti-isomorphism of H onto G, the projection
(1 — z) in (2.4) must be nonzero. For if the projection z is the
identity in <?®αM, then 7 in (2.5) is an isomorphism of H&βN
onto G ®α My so / is an isomorphism, which is a contradiction.
Taking the central support of (1 — z) in πa(M)' as (2.7), θ is an
anti-isomorphism of H onto G such that anh-h°θ = θ°βh for all he
H. If I is an isomorphism, θ is an isomorphism such that anh)oθ =
θoβh for all heH.

Conversely suppose I is an isomorphism of H onto G such that
βoβh~ aI{h)oβh for all heH. Then there exists an isomorphism Γ
of H®βN onto G®aM such that Γ(πβ(y)) = πa(θ(y)) for all yeN
and Γ(XH(h)) = Xe(I(h)) for all heH (cf. [9] Proposition 3.4). Then
the transposed map φ of Γ is an isometric isomorphism of Fa(G; M*)
onto Fβ(H; i\Γ*).

Suppose / is an anti-isomorphism of H onto G such that θ<>βh =
<Xuh-h°θ f ° r a U heH. Considering the opposite von Neumann algebra
M° of M and the isomorphism J of H onto G by J(h) = /(ΛΓ1) for
all heH, there exists an isomorphism Γ of i ϊ ® β N onto G ® α M °
such that Γ(πβ(y)) = τrβ(0(y)) for all y e ΛΓ, Γ(XH(h)) = XG(J(h)) for all
heH. On the other hand, G ® α M ° is isometrically isomorphic to
G ® α -M as Banach spaces, therefore Γ is a σ-weakly continuous
isometric linear map of H(2)βN onto G®αikΓ. Then the transposed
map φ of Γ is an isometric isomorphism of Fa(G; M*) onto Fβ(H; N*).
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