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SPANNING SURFACES FOR PROJECTIVE
PLANES IN FOUR SPACE

T. M. PRICE

The purpose of this paper is to investigate two questions about
the complements of projective planes in S\ We work in the piece-
wise linear (PL) category (see Hudson [7] for basic definitions). All
embeddings are assumed to be PL locally flat. (Equivalently PL
locally unknotted, see Hudson [7] page 138.) We note though, that
PL locally flat codimension two embeddings are smoothable, and vice
versa (see the paragraph preceding Lemma 1) so that we could work
with smooth embeddings instead. The first problem we consider is
the bordism problem. Of course, we are immediately faced with
the well-known fact that the projective plane does not bound any
3-manifold. Progress is further hampered by Whitney's result, [14],
that a smooth projective plane in E* does not support a normal
vector field. It follows that a PL locally flat projective plane in S*
cannot lie on the boundary of a 3-manifold in S4 nor can it lie in
the interior of a 3-manifold in S4. The solution to this dilemma
lies in the concept of a 3-manifold with singular points. We show,
Theorem 2, that every PL locally flat projective plane in S4 bounds
a 3-manifold with singular points in S\ We also show, Theorem 1,
that a PL locally flat projective plane in S4 is unknotted iff it bounds
a particular 3-manifold with singular points (namely, the cone over
a Moebius band). The second problem we investigate here is a
mapping problem; namely, does the complement of a knotted projec-
tive plane map onto the complement of the unknotted projective
plane. In Theorem 3 we give a necessary and sufficient condition
for this to occur. While the condition in Theorem 3 is necessary
and sufficient, we feel there are better results possible and we
discuss the shortcomings of Theorem 3 and conjecture a better
result.

The first theorem characterizes unknotted projective planes in a
fashion analogous to the result that a PL locally flat 2-sphere in S4

is unknotted iff it bounds a PL 3-cell. First we remark that the
standard or cannonical projective plane in S4, denoted p9, is the one
sketched in Fig. 1 and described just before Lemma 1. (See Price
and Roseman [10] for a more complete discussion of this choice of
cannonical embedding.) Analogous to the case for spheres, we define
a PL locally flat projective plane P, in S4 to be unknotted iff there
exists a PL homeomorphism h: S4 —»S4 with h(P) — P2. To describe
the analogue of the 3-cell we need the concept of a cone. Briefly,
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if X is a subset of S''J 2 S4 and v is a point in S4 — S:\ then the
cone over X from v, denoted v * X, is the union of all "straight
line segments" starting at v and ending in X (see page 6 of Hudson
[7] for a definition of "join", which is a generalization of "cone").
In particular, if M2 is a Moebius band in S3 and if v e S4 — S\ then
we are interested in v * M2. In this case M2 U v * (3ΛP) Q. v * M2 is
homeomorphic to p2 and is referred to as the boundary of v * M2,
denoted 3(i?*ikP). We say that a protective plane P in £4 bounds a
polyhedron, R> with PL homeomorphic to the cone over a Moebius band
iff there exists a PL embidding h:v*M2-> S4 such that P=h(d(v*M2)).

THEOREM 1. Let P be a PL locally flat protective plane in S4.
Then P is unknotted iff P bounds a polyhedron, R, with R PL
homeomorphic to the cone over a Moebius band.

Proof. It is easy to see from Fig. 1 (by isotoping M2 vertically
until it lies in S'λ — 3B4) that the cannonical embedding, p2, bounds
a polyhedron homeomorphic to the cone over a Moebius band. Hence
any unknotted protective plane in S4 bounds such a polyhedron.

Conversely, suppose P bounds such a polyhedron, R. Let
h: v *M2—>R be a PL homeomorphism. Since v * M2 collapses to v,
it is easy to show (e.g., using Lemma 1.22 page 33 and the ideas
of § 3 Chapter VI of Hudson, [7]) that there is a PL homeomorphism
H: S4 > S4 with H o h: v * M2 —> S4 being a cone embedding (that is
H o h(v * M') = (if o h(v)) * (H o h(M2))). To simplify notation, we
assume that P — d(v * M2) with v * M2 embedded in S4 as a cone.
Let N be a regular neighborhood of v * M2 mod M2 m S4 (see Cohen
|1]). Then N is a 4-cell and (dN) Π (v * M2) = (3N) Π P = M2 is a
Moebius band. Let J be the center line of M2. We wish to show
that J is unknotted in 3N. Since P is PL locally flat in S4 it follows
that v * dM2 (which is a subcone of v * M2 £ JV) must be unknotted
in N and hence 3ikf2 must be unknotted in dN. But dM2 is a (2, g)
cable about J (that is dM2 lies on the boundary of a solid torus Γ
whose centerline is J and dM2 goes around Γ 2 times longitudinally
and q times meridionally). Since dM is unknotted it follows from
Schubert Satz 1 page 247 [11] that 0 = genus dM2 ^ 2 genus J where
the genus of a simple closed curve, K, is the smallest integer n for
which K bounds on orientable surface with exactly ^-handles. Hence
J bounds a disk and must be unknotted also. Furthermore, since
-/ is unknotted in dN we have that dM2 is a (2, g)-torus knot and
hence its Alexander polynomial is (t2q — l)(t — l)/(£2 — ϊ)(tq — 1), see
Crowell and Fox [2] pages 92, 132. On the other hand dM2 bounds
a locally flat disk in N, namely v * dM2 so it is a slice knot and
must have an Alexander polynomial of the form p(t)p(l/t) for some
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polynomial with integer coefficients, see Fox and Milnor [3] or
Terasaka [12]. It follows easily that q = ± 1 . Since dM2 is a
(2, ±l)-torus knot it is now straightforward to construct a PL
homeomorphism taking M2 onto a standard Moebius band in dN and
then to show that P is unknotted.

Theorem 1 suggests the following class of polyhedra to be used
in bordism problems involving projective planes. A 3-manifold with
singular points is a compact polyhedron X in which there exists a
finite number of points xlf x2, •••,«» with X — {xlf x2, , xn} being
a 3-manifold-with-boundary and each xt(i = 1, 2, , n) having a
polyhedral neighborhood Nif in X, satisfying:

(a) Nt Π closure (X — Nt) = 27* is connected 2-manifold with
nonempty, connected boundary, and

(b) Ntfvxt + Σt.

The Xi are called singular points. Furthermore, if X is a 3-manifold
with singular points, then we define the interior of X by int X =
{xeX\x has a neighborhood, in X, homeomorphic to E3} and we
define the boundary of X by dX = X - int X. We note that X ==
closure (int X), that int X is a 3-manifold, with no boundary and
that dX is a compact 2-manifold with no boundary. Clearly v * M2

is a 3-manifold with singular points and d(v * M2) — M2 U v * (dM2).
Any 3-manifold with singular points can be constructed by starting
with an appropriate compact 3-manifold-with-boundary, M, choosing
pair wise disjoint connected surfaces Σi(i = 1, 2, , n) on dM (with
dΣi being a simple closed curve) and forming M \JΣl Σx * v1 (Jr2 Σ2 *

In order to simplify the statements and proofs of the next two
results we introduce the following notation. We consider S4 as be-
ing the union of two 4-cells, B4 and 2?j, sharing a common boundary.
We consider the standard projective plane, P2, in S4 as the union of
a Moebius band, M2, embedded in B4 (with M2 isotopic, keeping dM2

fixed, to an unknotted, untwisted Moebius band in dB4) and a disk,
D2 (namely, the cone over dM2), embedded in B4

0 (see Fig. 1). For
a more complete description of this embedding and a discussion of
how this embedding is related to other natural candidates for a
standard embedding, see Price and Roseman [10]. The normal disk
bundle of P2 in S4, denoted v(P2), is the union of the normal disk
bundle of M2 in B4, denoted v(M2), and the normal disk bundle of
D2 in BU denoted v(D2). We identify v(M2) with the mapping
cylinder of the 2 to 1 convering map of the solid torus, T3, onto
the solid Klein bottle, Kz (see Fig. 1). We let α denote the boundary
of one of the meridional disks of K3 and we call any curve isotopic
to a, in dv(P2), a meridian of dv(P2). We let b denote a simple closed
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curve on K2 = diP that intersects some meridional disk exactly once
(transversally) and that bounds a disk in B4 — intv(M*) (see Fig. 1).
We call b the standard longitude on dv(P2).

P2 = standard projective plane v(P2) - normal disk bundle

FIGURE 1

Let P be an arbitrary PL locally flat embedding of the projec-
tive plane in S\ Using results of Wall [13] and Hirsch [5] we can
ambient isotope P to a smooth embedding taking its regular neigh-
borhood to a smooth normal disk bundle. Hence by Theorem 1 of
Massey [8] we have that the regular neighborhood of P, denoted v(P),
is homeomorphic to v(P2). Let h: (v(P2), P2) -> (v(P), P) be a PL home-
omorphism. Clearly h(a) is null homotopic in v(P). Since H^S4 —
intv(P); Z) & Z2 and since h(a) is not null homologous in S4 — P,
we have either h(b) or else h(ab) null homologous in S* ~ intv(P).
It is easy to construct a homeomorphism of v(P2) onto itself that
takes a to a and takes b to ab (see Price [9]). Hence we can assume
that h: (v(P2), P2) -> (v(P), P) is chosen so that h(b) is null homologous
in S4 — intv(P). Finally we assume that P is isotoped so that
P Π BQ is a disk with (J?j, P Π Bi) unknotted and that h is chosen so
that h{v{Dz)) = v(P) n JBO4 and h((v)M2) = v(P) n S4.

Using the above notation we show the following:

LEMMA 1. The homeomorphism h~ι\\ v(P) f] J54 —> v(M2) extends to
a map f: B* —> JB4 ^iίfe

/(5 4 - int v(P)) S J?4 - int

Proof. We will use elementary obstruction theory, see Hu [6]
Chapter VI. First note that B4 — int v{P2) is a deformation retract
of S4 - P 2 (since) £4, P 2 Π .Bo) is unknotted). Hence we have πz{B* -
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int v(P1)) M π/S4 - P?) ~ π^P1). Let X = B* - int v(P) and let Xo =
y(P) Π X. Then X is a deformation retract of S* — P and hence we
have H\X; G) w ίF(S4 - P; (?) r* H%P\ G) for any coefficient group,
G. Similarly, it is easy to check that Xo deformation retracts to
the Klein bottle h(K*) and hence H'iXo, G) ^ H\K\ G) for any
coefficient group, G. The long exact sequence for the pair (X, Xo)
yields the following computations.

H\X, Xo; π^B* - int v(M2)))

I
0 > JEΓι(JΓ, Zt) -?-* H\X0, Zt) -?-* i?2(X, Zo; £2) » 0

Furthermore, if we let a and 6 denote the cocycles algebraically
dual to the cycles h(a) and Λ(6), in fe(£:2) £ Xo, t h e n ^ ί ί 1 ^ , Z,) is
generated by α, Hι(XOf Z2) is generated by α and 6 and hence
H\X, Xo; Z2) is generated by δ(b). (By algebraically dual we mean
that <α, Λ(α)> = 1, <α, fc(δ)> = 0, <6, Λ(α)> = 0 and <6, Λ(6)> = 1 where
< , > denotes the Kronecker product. See Greenberg [4] page 132.)

H\X, Xo; π2(B* - int v(M2)))

I
0 = H\X0; Z) > H\X, Xo; Z) > H\X\ Z) = 0

H\X, Xo; πz(B* - int v(M2)))

I
0 = H\X0; Z) > H\X, Xo; Z) > H\X; Z) = 0

Prom the above computations it is clear that the only possible non-
zero obstruction to extending h~ι \ Xo: XQ -> B* — int v(M2) is the 2-
dimensional obstruction lying in H\X, Xo', π^B* — int v(M2))) & Z2.
This obstruction will be zero, if we extend h"1 to the 1-skeleton of
X in the right way. Towards this end, let S be an orientable
surface in B* — int v(P) with dS = h(b) (recall that the notation
was chosen so that h(b) was null homologous in S4 — int v(P) and
hence in 2? — intv(P)). Let K be a triangulation of X that sub-
divides Xo and S. Since 6 bounds a disk in I?4 — int v(M2), it is easy
to extend h^lXo to take S onto that disk. The extension to the
remainder of the 1-skeleton of K may be chosen arbitrarily. Let g
denote this extension. The obstruction to extending g\X0 = h~x\X0

to the 2-skeleton of K, denoted J2(g), lies in H\X, Xo; π^B* -
int v(ikF))) ^ ^ 2 which is generated by δ(b). Hence to see that
7%g) = 0we need only show that y\g) Φ 3{b). To see this, consider
c2(S), the fundamental homology class in H2(X, Xo; Z2) carried by S.
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Then c2(S) generates H2(X, Xo; Z2) & Z2 and (7\g)f c2(S)) = 0 because
g(S) C disk (see the definition of y2(g), page 176 Hu [6]). On the
other hand <<?(&), c2(S)> = <δ, dc2(S)) = <6, δ> = 1. Hence Ί\g) Φ δ(b)
and hence h~ι \ XQ extends to take the 2-skeleton of K into Bi —
intv(ikP). As remarked before, extending h~ι to the 3- and 4-skele-
tons of K follows easily because the cohomology groups containing
the appropriate obstruction elements are trivial.

THEOREM 2. Let P be a PL locally fiat protective plane in S\
Then P bounds a Z-manifold τvith singular points having exactly
one singular point.

Proof. The idea of the proof is to use the inverse image of the
v*M2 bounded by P2. Of course, we do not have a map of S4 — P to
S4 — P2 so the proof is slightly more complicated. Let R be a poly-
hedron in S4 with R PL homeomorphic to v * M2 and P2 = dR. We
assume further that R π (54 — int v(M2)) is a solid Klein bottle K with
MQ = Kf]dv(M2) and Mι = KΠdB* being Moebius bands. It is easy to
see (just as in Theorem 1) how to construct such a polyhedron R
using Fig. 1. The meridianal disks of K are flat-shaped disks whose
boundary consists of an arc parallel to a spanning arc of M2 plus
a straight line interval in dB\ We also assume that K has a normal
bundle in B4 — intv(M2).

We can now apply Theorem 3.3.1 of Williamson [15] to homotope
the map /: B' — int v(P) —> B4 — int v(M2) given by Lemma 1, to a
map g that agrees with / on Xo and g is transverse regular to K.
In particular, g~ι(K) will be a compact 3-manifold-with-boundary
properly embedded in B'— inty(P). The boundary of g~\K) will
consist of f~\M0) = h(M0); a 2-manifold-with-boundary, denoted M[ £
(9β4) — int v(P) (whose boundary coincides with dh(M0))m, plus a collec-
tion of pairwise disjoint compact 2-manifolds without boundary in
(dB4) - intu(P), call them Su St, , Sn.

To complete the construction of the 3-manifold with singular
points bounded by P, we merely extend g"\K) across B4 Π v(P) so
it contains h(M2) on its boundary, then we cone over M[ (actually
we cone over the slightly extended M[) and finally we cap off each
of Slf S2, - - , Sn with a 3-manifold-with-boundary in Bl — (cone over
M[) note that each SL bounds a 3-manif old in (dB4) — int v(P) so we
can cap off the St by pushing such a manifold slightly into Bί to
keep them pairwise disjoint. The one singular point is introduced
when we cone over M[.

Note. Dennis Roseman has suggested that Theorem 2 could also
be proved using the projection of P into S3 combined with a checker-
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board technique analogous to that used for constructing spanning
surfaces of knots in E*. Using this method of proof, though, one
would get one singular point of the 3-manifold with singular points
at each branch point of the projection.

In proving Theorem 2 we have avoided trying to map S4 — P
onto S4 — P2. Theorem 2 would certainly follow from the existence
of such a map and one might hope that the existence of the spanning
3-manifold with singular points would permit the construction of
such a map. All of our attempts to find such a map seem to run
into the same difficulty, namely, some loop in the spanning 3-
manifold with singular points might link P (that is, it might not
be null homologous in S4 — P). In Theorem 3 we introduce a
hypothesis on P that permits us to construct a spanning 3-manifold
with singular points in which no loop links P. Then we can map
S4 — P onto S4 — P2. The hypothesis we use is that the longitude
on dv{P) bounds a surface S, in S4 — int v(P), so that no loop on S
links P. Using this surface S one can then construct a "nicer"
spanning 3-manifold with singular points than we did in Theorem 2.
(This is not exactly how the proof is written up but it is the reason
that the map can now be constructed.) While this new hypothesis
is necessary and sufficient for the existence of the desired map, we
have two objections to it. The first is that we do not know of an
example that fails to have this property in fact we do not even
have any strong feeling as to whether or not all projective planes
in S4 satisfy it. The second objection is that the hypothesis is too
geometric in nature and two difficult to verify or disprove. Towards
improving this we suggest the following conjecture:

Conjecture. Let P, h and b be as in Theorem 3. Then h
extends to a map F: S4 -> S4 with F(S4 - v{P)) Q S4 - v(P2) if and
only if h(b) lies in the second commutator subgroup of π^S4 —
intv(P)).

It is clear that if h(b) bounds a surface S, as in Theorem 3,
then h{b) lies in the second commutator subgroup of π^S4 — inty(P)).
Our attempts at constructing S given the algebraic conditions on
h(b) have not succeeded although they come so closure it seems the
conjecture must be true.

THEOREM 3. Let P be a PL locally flat projective plane in S4.
Let h: (v(P2), P2) -> (ι>(P), P) be a PL homeomorphism. Let b denote
the standard longitude on dv(P2). Then h~ι extends to a map F:
S4 -> S4 with F(S4 - v(P)) Q S4 - v(P2) if and only if h{b) bounds a
PL locally flat orientahle spanning surface, S, in S4 — int v(P) with

£

H^S; Z) ~> H^S4 — int v(P); Z) being the zero homomorphism.
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Proof. Suppose h~ι extends to such a map F. Let D be a PL
locally flat spanning disk of S4 — int v(P2) with dD = b. We can
assume that F is in general position relative to D. Then F~\D)
contains a surface, S, with hΓ\b) = dS. Furthermore, since
H^S4 — int v(P); Z) is generated by a meridian of dv(P) and since
h~ι takes meridians of 3v(P) to meridians of dv(P2), it follows that

H^S; Z) -=-> H^S* - int v(P); Z)

is the zero homomorphism.
Conversely, suppose S is a surface satisfying the above

hypothesis. Let N(S) be a regular neighborhood of S in S4 — int v(P).
As above, let Z? be a PL locally flat spanning disk of S* — int v(P2)
with dD — b. Let JV(D) be a regular neighborhood of D in S4 —
intv(P2). We assume further that D is chosen so that v(P2) U N(D)
is a regular neighborhood of an unknotted 2-sphere in S* (in Fig. 1
replace a narrow Moebius band about the centerlίne of M2 by the
cone over its boundary, taken in N(D)). It follows then that closure
(S4 - (v(P2) U N(D))) is homeomorphic to Sι x B\

Both N{S) and iV(Z)) are products and we identify them with
S x D2 and D x D2 via some fixed homeomorphism. Using this
product structure it is easy to extend h~λ to a map /: v(P) U
iV(S) —> v(P2) U N(D). We assume further that h~ι was isotoped so
that / can be chosen with f \ N(S): N(S) ~> N(D) a product map
taking S onto D and s x D2 Q S x D2 = N(S) homeomorphically onto
(image(s)) x Dz ζZ D x D2 = N(D). Such an extension is, of course,
not unique and a little later we will have to adjust / so it does
not rotate these normal disks. In order to extend / further, we
resort to obstruction theory. Let X = S4 - int (v(P) U N(S)) and let
Y = S4 - int (v(P2) U JV(Z>)). Then / takes dX onto 3 Γ £ F and we
wish to extend / to take X into Y.

As noted above, Γ ^ S1 x J53, hence TΓ^F) ^ Z and π^Γ) = 0 if
ί > 1. The obstructions to extending / to all of X line in
Hί+1(X, dZ;πt(Y)) which are all zero except for H\X,dX\Z). To
complete the proof of the lemma we show how to extend / to the
1-skeleton of X in such a way that the obstruction in H\X, dX; Z),
to extending to the 2-skeleton, is zero. To do that we take a
careful look at HtfX; Z) and H^X; Z).

First we note that, since X is homotopy equivalent to S4 —
(P U S), we have, by Alexander Duality, H^X; Z) & Z ^ {a: } where
a is carried by a simple closed curve in dv(P) — N(S) normal to P
(e.g., a — K~\a) and Ht(Y; Z) *** π^Y) *** {a: } where α, as usual, is
a meridian on dv(P2) (we assume that a is isotoped into dv(P2) —
N(D)). Of course, we also have that /*(α) = α.
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Clearly dX ~ {dv{P) - int N(dS)) \Je S x S\ Furthermore
x S1) is generated by 70, , Ύg where 70 is carried by point

x S1 Q S x S1 while 7i, , Ίq are carried by curves in S x Sι that
project to "longitudes and meridians" of the handles of S. One
easily checks that ifa) = 2ae H^X; Z), where i,: HX(S x Sι; Z)-^
HX{X\ Z) is induced by inclusion. (See Fig. 1 and think of 70 as
lying on dv being normal to 6.) The next observation we need is
that we can assume that ii(7y) = 0 for j > 0. To see this, note that
under the composition

x S1) -^ H£X) -=-> H^S4 - int v(P))
I I

{a: } {a: 2a = 0}

each 7j(j > 0) goes to zero (by hypothesis). Hence ii(7, ) = 2nάa.
Now let 7y = Ύj — >/y7o. Then ii(7ί) = 0 and y'j is still carried by a
curve that projects to a longitude or a meridian of S (it just "twists"
around S differently). To simplify notation we write ys instead of

Ί). We will also need to have /*i1(7i) = 0 e Htf Y) -=> H^ Y) ^ {a: }.

Since / might not have this property, we use Lemma 2 to modify
the map / so it will have this property. From properties of the
map /, we know that /*i1(τJ ) is a multiple, say m, of [point x 3D2] =
2a in Hx(dY). Let T be a disk with one handle contained in £ which
contains the meridian or longitude that aά projects to an interests
only one other meridian or longitude corresponding to any yt. (We
assume that the 7/s were chosen so that they could be separated
this way.) Let g be a homeomorphism of T x D2 £ N(S) = S x D2

onto itself, satisfying the conclusion of Lemma 2 using a carrier
of Ίό for K2 and the negative of the integer m determined above.
Then g extends to all of v(P) U N(S) by letting it be the identi-
ty outside of T x D2. Furthermore, g*iι(Ύs) = ii(7y) — m 2a so
f*ff*ii(7s) = f*ii(7i) - m - 2a = 0 while f^gJ^Ύk) = Λii(7Λ) for A; ̂  i .
Hence / © gr acts the right way on 73- and does not change the action
of / on the other Ύk's. Repeated application of this technique
provides us with the map, which we still call /, from v(P) (J N(S)
to v(P2) U N(D) satisfying fJ^Ύj) = 0 e Hψf) (1 ^ j ^ g). Finally
we observe that H1{dv{P) — int N(dS); Z) is generated by cycles a
and β where a is as above and β is carried by a curve in dN(d&),
parallel to dS and bounding a surface in S x S' £ dN(S) parallel to
S. Then ΐ2(/3) = 06 Ht(X) and/*i2(/3) = 0 6 ^ Y ) where i2 is induced
by including dv(P) - int N(dS) into X

Now the appropriate part of the Mayer-Vietoris sequence

x S1) 0 HtfviP) - int iV(9S)) At^+ Jϊ^δX) > 0
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yields that an arbitrary element η of H^dX) can be written as
Φι(Vi) + ΦziVz) where η, e H^S x S') and η2 e H^dviP) - int N(3S)).
Using the above notation and computations we have that τn =
Σί=o kfti and ηz = ma + w/9 for some integers fc0, ku , 7̂ , m and w.
Hence we can write η = Σi-o&^iC^) + mφ2(a) + nφ2(β).

Let 0: HSβX) —> H^X) be induced by inclusion. Let ~ e
H2(X,dX;Z), and let η = dξeHtfX). In this case p(τ?) = ό(^) =
Σ?=o kiΦΦi(Vi) + mφφ2(a) + nφφ2(β) = Jfco#i(7o) + mφφ2(a) — k0 2α + m α

(we write α for φφ2(a) and i2(tf), etc.). Of course, by exactness,
^ ) = 0 so 2&0 + m = 0. With £ as above we have /*(3|) •=•
Σ?^o Kf*Φι(Ύi) + mf*fa(a) + nf*φlβ) = kJ^Ί,) + mf*φ2(a) = k0. 2a -f
mα = 0 because 2/b0 + m = 0.

Finally we are in a position to extend /. Let I7!, 2 ,̂ * , ΣP be
orientable spanning surfaces of Xso that [2\], [Σ2], , [2^] generate
H2(X, dX; A). Applying the previous paragraph to 5[27J e H^dX) we

have /*(3[JJ) = 0 e 11,(3 Y) ~> jff^Γ). Hence it is easy to extend /

to take Σt into Y. The J/s need not be pair wise disjoint but by
general position we can assume that they intersect in at most a
finite collection of points in their interiors. It is easy to prove that
/: v(P) U N(S) -> v(P2) U N(D) extends to take \Jι=1 -* into Y. Since
Y is path connected this map extends further to take the 1-skeleton
of some triangulation of X into Y. Call this extension fx. Then
the obstruction to extending fx \ dX: dX > Y to take the 2-skeleton
of X into Y lies in H\X, dX) πx(Y)). Since f\ is already defined
on Σl9 Σ2, - - - and Σp and since their homology classes generate
H2(X, 3X; Z) it is easy to check (from the definition of the obstruc-
tion cocycle) that the obstruction is, in fact, zero. Hence the map
does extend to the 2-skeleton and as we remarked earlier it extends
to the 3-skeleton and 4-skeleton by virtue of the fact that those
obstructions lie in trivial cohomology groups.

LEMMA 2. Let T be a disk with one handle. Let J1 and J2 be
a pair of simple closed curves on T that intersect transversely in
exactly one point. Let Kγ and K2 be simple closed curves on
d(T x D2) such that projection from T x D2 to T takes Kt homeo-
morphically onto Jt (i — 1, 2). Let m be an integer. Then there
exists a homeomorphism h: T x D2 —> T x D2 satisfying

(a) h\(dT) x D2 = identity,
(b) h(T x 0) - T x 0,
(c) h\Kx = identity,
(d) h(K2) projects onto J2, and
(e) [h(K2)] = [K2] - m. [point x dD2\ e H,(T x 3D2; Z).

Proof. This is a standard twisting type homeomorphism. Let
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A be an annulus in T with A parallel to Jlf but A Π Jx — ψ and
An J2 being an arc. We consider A as a family of simple closed
curves {At}teίOtll. The homeomorphism h will be the identity except
on A x J92. For each x e Atf h takes x x D2 onto itself by a rota-
tion of — 2πmt radians. Hence h is the identity on Ao x D2 and
Λ x Z)2. The curve K2 misses i x ΰ 2 so h\K2 = identity. The
curve lζ intersects A x ΰ 2 in an arc lying over ^ (Ί A and the arc,
ft(Xi Π (A x D2)) now "wraps around" (Λ ί l i ) x ΰ 2 exactly m times
fewer than iζ Π (A x D2) did, hence (e) follows. The other conclu-
sions are obvious.
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