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RAMSEY QUANTIFIERS AND THE FINITE
COVER PROPERTY

JOHN T. BALDWIN AND DAvVID W. KUEKER

The main results of this paper are the following Theorem
A. The Magidor-Malitz quantifier (in the ¥,-interpretation)
is eliminable from a countable stable theory 7 if and only if
T does not have the finite cover property. Theorem B.
There is an ¥,-categorical theory which is not finitely model
complete.

We consider various extensions of a countable first-order logic
obtained by adding w-ary quantifiers which assert the existence of
of a “large” set of m-tuples satisfying the formula following the
quantifier. Specifically, the Ramsey (or Magidor-Malitz) quantifier
Q" is defined in the W,-interpretation by A =,Q*x,,- - -, 2.9, - -, %,,@)
iff there is an infinite YC A which is homogeneous for o, i.e., such
that A =, - -+, Ya, @) for all (y,---,y,>€Y". We denote by L*
the language which adjoins all the quantifiers @ and by L& the as-
sociated logic in the Y-interpretation. Our principal concern is to
identify those complete first order theories 7' in L which remain
complete as theories of L. A sufficient condition on T is

E,: For every formula @ in L§, there is a formula « in L
such that TE,@ — (i.e., if AE=,T then A =, < ).

If E, holds, we say @ is eliminable in 7.

Earlier Vinner [16] has shown that for an },-categorical theory,
the quantifier “there exists infinitely many” is eliminable. Winkler
[17] showed the eliminability of the quantifier “there are infinitely
many sequences” in an Y8,-categorical theory. It is easy to see that
either of these is eliminable in an ¥,-categorical theory. Cowles [4]
showed that the Ramsey quantifier in the ¥ -interpretation was
eliminable from the theory of algebraically closed fields. Keisler [8]
introduced the notion of the finite cover property (f.c.p.) and showed
that every W,-categorical theory fails to have the f.c.p. We gener-
alize these elimination results by showing that if T does not have
the f.c.p. then all the above quantifiers are eliminable from 7. More-
over, we characterize those stable theories 7" which do not have the
f.c.p. as exactly those which satisfy FE,. We also show that if T is
W -categorical then T admits elimination of these quantifiers in the
equi-cardinal interpretation (again generalizing Cowles [4]).

It is natural to ask whether there is some sort of “first order
property” of T which is equivalent to E,. We show several candi-
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dates for such a condition do not work. One of the examples adduced
for this purpose answers a question of Paillet [10]; it is \R,-categorical
but not finitely model complete.

We first observe E, is equivalent to a somewhat more concrete
condition. For any formula ®(z, ---, 2, 7) of L there is a first order
formula HzZ®(x, v) which holds iff there is a set of cardinality = »
which is homogeneous for @. (We will omit the superseript m in the
future.) Now the conecrete condition is

A,: For every L-formula ®(Z, #) there is an # such that
TE,YU(HzPX, v) — QTP(Z, V)).

THEOREM 1. E,= A,.

Proof. A, implies E, by induction on formulas of Ly. For the
converse suppose E, but that A, fails for the formula (%, 7). By E,
there is a (@) of L such that T &,QT9&, 7)< (). Add to L a
unary predicate symbol U and constants ¢. Since A4, fails, by com-
pactness, the following set I of sentences is consistent:

TU{va, ---, Vxn[/:‘\ Ulr,) — 9Z, ©)], ~v(@)}U{3*"2U(x): n € w} .

But any model of ' contradicts E,.
The next result was observed independently by Baudisch [2].

THEOREM 2. If T is W,-categorical then E, holds of T.

Proof. We show A, holds. For any formula ®(%, ¥), by the Ryll-
Nardjewski theorem only finitely many of the formulas H,Z®(Z, #) can
be inequivalent. Hence for some N, T &= V «(HyZ9(%, ) — HIP&, 7))
for all k= N. If Tk, HZPZE, v) — QEP(Z, v) then for some @ € A.
the countable model of T, A=, HyZPZ, @) \ ~ QEP&E, @&). Let (D)
generate the principal type realized by @. Then by a compactness
argument as in Theorem 1, and Y},-categoricity of T, there is a b
in A such that Al=,v(b) A QZ2(Z, b). But this contradicts the homo-
geneity of A.

We cannot improve this by assuming that T has only finitely
many countable models since the Ehrenfeucht example T of a theory
with 3 countable models (in its finite language version [15]) does
not satisfy E,. This example is connected to our later results since
the archetypal example of an w-stable theory with the f.c.p. (an
equivalence relation with one class of each finite cardinality) is inter-
pretable in 7.

We now want to show that if 7 does not have the f.c.p. then T
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satisfies E,. Before dealing directly with the f.c.p. we introduce an
intermediate condition M on the existence of maximal homogeneous
sets. Note that for any formula ®(%, ¥) there is a first order formula
H,xp(%, ) which is true of @ just if there is a set X of cardinality
n which is homogeneous for ®(%, @) but no superset of X is homo-
geneous for @@, @).

M: For every L-formula ®(Z, 7) there is an N such that
if m>N, T=vVy ~ Hz9Z, 7).

LeMMA 3. M implies E,.

Proof. If E, (i.e., A,) is false then for every n there exists a
model A, and a sequence @, such that A, =, H,Zz9Z, a,) \ ~QTP(Z, @,).
Then for some m, n < m < w A, =, H, 5P, &, so M fails.

Surprisingly, as we will show later, the converse to this lemma
is false.

DEFINITION. A formula ®(Z, ¥) has the finite cover property in
T if in some model of T for arbitrarily large n there exist a,, ---, a,_,
such that

Ak A (33 A 9@ 3)) A ~38 A 9@, @) .
i<n i#] i<n

The theory T has the finite cover property if some formula ®(Z, ¥)

has the finite cover property in T.

LEMMA 4. If T does not have the f.c.p. then T satisfies M.

Proof. If M fails then for arbitrarily large =, say n e J, there
exist A= T and @, in A such that for a fixed formula @(x,, ---, 2,._,, 7),
A= Hz9®, a@,). By adding a dummy variable if necessary we may
assume m = 2. We may assume also that ¢ has the following prop-
erty: if x* e {x,, - - -, 2,,} for all ¢ < m, then = @&, v) — P&*, ©). We
will show the formula (x,, #) = Py, €, =+, Loy, T) A %, # %, has the
f.c.p. Let for each nelJ, H, ={c, -, ¢,_,} be a maximal homo-
geneous set for ¢(%, @,) and let Z, = {s,, - - -, §,_,} enumerate the m — 1
tuples from H,. Set, for 1 <k, b,=5,N@&, For any YCk we
write P(Y) if A 32 Ajer ¥(%, b;). Then P(k) holds since Ak
V @[ A<k P@, b5) = Vica @ = €]

Let V ¢ k be a minimal set such that P(V) holds. Then V has
at least n elements in it, since if Y < k has fewer than n elements
then A= 3%, A ey ¥(%, b;) (simply choose x, € H, but different from the
first term of b; for all jeY). So listing V={d, ---,d;} where



14 JOHN T. BALDWIN AND DAVID W. KUEKER

Il>n—1 we see that A= 71 3x, Aic; v(2, d;) since P(V) holds, but
AE ANiwd® Aixj w2, d;) by the minimality of V. Thus (x, %) has
the finite cover property.

We collect the preceeding results in:

THEOREM 5. (a) If the complete theory T does not have f.c.p.
then T satisfies K.
(b) In particular, 1f T 1s YW,-categorical then T satisfies E,.

Proof. Part (a) follows immediately from the lemmas. For (b)
we need only recall Keisler’s theorem [8] that an }R,-categorical theory
does not have f.c.p.

Now we show that for stable theories FE, exactly captures the
notion of the f.c.p. We rely on: Theorem A (Shelah [13, II, §4.4]). If
T is stable and has the f.c.p. then there is a formula ®(zx,, x,, ¥) such
that for every @, ®(x, x,, @) is an equivalence relation and for arbi-
trarily large » there exist @, and &k, » < k < w, such that o(x,, x,, @,)
has exactly % equivalence classes. (This result was obtained inde-
pendently but later by G. Cooper.)

THEOREM 6. If T 4s stable, the following properties of T are
equivalent: E,, M, ~f.c.p.

Proof. By the lemmas above, it suffices to show that if T has
the f.c.p. then T does not have E,. Choose ®(x,, x,, 7) to satify Theo-
rem A, and consider

P,y Xy V)2 &, F Ty —> ~ P, Xy V) .
If E, holds, for some mu:
T =.H,2z,2,9" (2, 2, V) — Qu,, TP (X, %,y V) .

But this contradicts the conclusion of Theorem A.

Note that in Theorem 6 we are able to apply E, to a formula
involving @*. Thus for stable theories the eliminability of the @*
quantifier in the W-interpretation implies the eliminability of all the
@". In contrast the language L(Q"+') is strictly stronger than the
language L(Q") (due in the YW -interpretation to Shelah [12] and in
the W.-interpretation for a > 0 to Shelah [12], Garavaglia [6] and
(assuming <) to Baudisch [2]). Presumably, some hypothesis on the
theory T is necessary since Cowles [5] pointed out the theory of
real closed field eliminates the quantifier “there exists infinitely many”,
but does not satisfy KE.. '

We now consider the extent that these results apply to other
formalizations of the notion, “for many sequences %, ®(%) holds.”
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Sticking first to the W,-interpretation we introduce the Ramsey quan-
tifier on sequences.

DEFINITION. Let %, -+, Z, be an m-tuple of n-tuples. Form the
logic L(Qy) where A=,Q*™"%, -+, %, P&, +--, T,) just if there is
an infinite set Y of w-tuples from A such thaty, ---, ¥,€ Y implies
A lzoq’(gu Tty ?_/—m)

By applying our earlier arguments to sequences rather than ele-
ments one obtains the following.

THEOREM 7. (1) If T is Y,-categorical or does not have the f.c.p.
then T admits elimination of quantifiers in L(QF).

(ii) If T is stable then T admits elimination of quantifiers in
LQF) if and only if T does not have the f.c.p.

The quantifiers QF generalize two notions in the literature other
than the Ramsey quantifiers.

DEFINITION. (i) AE.I™2, ---, 2,9, ---, x,) if there are in-
finitely many pairwise distinct sequences (@,:7 < w) such that
AE,PZ,).

(i) Ae.I*"x, -, 2,9, -, £, if there exist infinitely many
m-ary sequences <@, 1 < ®wy such that AE,p(@;) and if 4 == j then
mga; Nrnga; = J.

Clearly I™ is just the quantifier @*™', while I*™p(x) is equiva-
lent to

Qo5 & 0E) NPEIA Avi =iV A ai#ad]]
i<m 1y

g<m

where %, = (&, -+, 2 and &, = <al, ---, &P .

Schmerl [11] considers a variant of I* and remarks that it is elimi-
nable in a theory which is W-categorical. Winkler [17] proves that
I* is eliminable in any theory which is either ¥, or W,-categorical.
All of these results follow from Theorem 7.

One sense in which I and I* are weaker than the Ramsey quanti-
fier is that there exists a stable theory 7 in which both I and I*
are eliminable but T does not have the f.c.p.

For this, consider a language with infinitely many constant sym-
bols ¢, and one ternary relation symbol E(x, y, 2). Partition an infinite
set X into infinitely many infinite classes X, for i€ w and each X,
into ¢+ 1 classes X,; for 75 <¢ with each X,; infinite. Now let
E(a, b, ¢) hold just if for some 7 a, b, ¢ are all in X, and for some j
both a and b are in X,;. Let the constants name one member of
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X,;, for each ¢ and j. It is easy to see that the formula o(x;»):
E(x, x, y) A ~ E(x, ¥, y) has the finite cover property. On any satu-
rated model of T the maximal quantifier-free types are first order
complete so T is quantifier eliminable in L. Thus, to show that T
admits elimination of the quantifier I*, it suffices to find for any
quantifier-free L-formula ®(Z, %), an L-formula equivalent in 7T to
I*'zop@, ¥). Now if AET and AE31Z9E, @) then A, I*zp(E, @)
unless @(Z, ¥) logically implies that some x; is equal to some y; or to
constant ¢, (necessarily occuring in ). But then I*Z@(%, @) is equiva-
lent to 3z,(x, # x,). The quantifier I is handled similarly, replacing
“some z,” by “each z,”.

Our results partially extend to the logic L* where A=, Qx®(x)
is interpreted as: there is a set X with |X| = |A| which is homo-
geneous for @. In this logic we assume A is infinite. In particular
if we write A,, K, as the obvious analogs of A, E, we get by the
same proof as Theorem 1. Theorem 1: E, = A,.

We want to extend Theorem 5b to the equicardinality interpre-
tation. The required lemma is

LEmMmA 8. If o(x) is am L-formula, A is |Al*-universal and
AE,Qep(x) then A=, Qup(x).

Proof. Since ArE,Qx®(x), by compactness and downward
Lowenheim-Skolem there is a model B of 7 with |B|=|A4| and
B=,Qxo(x). But since A is |A|* universal it follows that A =, Qxp(x).

THEOREM 9. If T is W.-categorical then T satisfies F.,.

Proof. By Theorem 5b, E, and hence A, holds of T; we show
A, holds of T. It suffices to show for any A T and L-formula @
that A =,Q79(%, @) implies A =, Q%®(%, @). But this is tautological
if A is countable and follows immediately from },-categoricity and
Lemma 8 if A is uncountable.

Note that we did not prove that if A is saturated and @ is an
L*-formula then A=, implies Ak=.p. In fact, that assertion is
false as can be seen by examining the saturated model of cardinality
W, of the theory of an equivalence relation £ with one equivalence
class of size n for each finite ». The relevant formula is Qx ~
QyE(x, y).

Is there some “first order property” of T which is equivalent to
E,? Clearly, ~f.c.p. is not equivalent to E, in general since any
W-categorical unstable theory has the f.c.p. [14] but also has E, by
Theorem 2. A more likely candidate is the condition M. The follow-
ing example dashes this hope.
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THEOREM 10. There is an Yicategorical theory T, which does
not satisfy M.

Proof. Let L, be a language containing one binary relation R
and for all » < w, n + l-ary relations P, and Q,. We let a,(x,, ---, 2,)
denote the formula asserting all the z; are distinet and R(z;, «;) holds
for all i < j < n. Let T, be axiomatized by the universal closure of

(1) R, x) A (B2, y) — Ry, 2)

(ii) Pu@®) — [.®) AV Y(Aizn ¥ # T — ~ A B(Y, 7))

(iii) Qu(@) — a,(@)

(iv) @, (@) — (P,(Z) = ~ Q,@)).

Now T, is a universal theory with the joint embedding and amalga-
mation properties (the union of any two models is a model), so T,
has a countable ultrahomogeneous (i.e., homogeneous in the sense of
Jonsson [7]) and universal model A. The symbols P, and Q, are
trivial on sequences of less than n elements so for each » the number
of nonisomorphic substructures of A with cardinality n is finite.
Whence by ultrahomogeneity and the Svenonious characterization of
W,-categoricity, T = Th(A) is Y,categorical. Moreover T admits
elimination of quantifiers because in the only countable model of T the
quantifier free types are complete. Let A* be the reduct of A4 to the
language whose only relational symbol is B. The P, and @, are definable
from R in T. In particular, Tk P,(%) = (@,&) AV Y[ A< ¥ 7= ©; —
Vizo ~R(y, 2,)]). This follows from the universality of A. Thus
T* = Th(A*) is also Y,categorical. But it is easy to see that A*
contains arbitrarily large maximal finite homogeneous set for R(z, v),
namely sets {w, ---, z,} such that AE P,(Z). Hence T* does not
satisfy M.

A first order theory T is said to be finitely model complete if
there is an extension of 7 by adding a finite number of definable
predicates which is model complete. J. L. Paillet [10] asked whether
every W,-categorical theory is finitely model complete.

THEOREM 11. There is an YWr-categorical theory which s not
finitely model complete.

‘Proof. The theory T* defined in the previous theorem provides
an example. Since T is quantifier eliminable (and a foritori, model
complete), if any finite definitional extension of 7'* is model complete,
for some n, the theory T, obtained by adding the symbols P,, Q.
m < n and their definitions to T* must be model complete. But no
such T, is model complete. Indeed, P,.,(Z) is equivalent in 7T, to a
universal but not to an existential formula.

When the second author suggested the example for Theorem 9,
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the first author recalled its similarity (virtual identity, as it turns
out) to the example of 2% W,-categorical theories due to Ash [1].
Our verification of the Y,-categoricity of 7 is by Ash’s method.

There are several further questions suggested by this work.

1. Find a “purely first order” property equivalent to E,. One
notion of “first order property” is suggested by Cooper in [3]. It
may be too restrictive for our purposes. At the other extreme one
can ask if E, is an absolute property of 7.

2. For T a theory in a finite language, if T is L*-complete must
it have E,? This seems more likely if, in addition, 7' is stable. Matt
Kaufman has shown the assumption that L is finite is essential here.

3. Does the theory of differentially closed fields of characteristic
p, p =0, satisfy E,? Equivalently, does each such theory fail to
satisfy the f.c.p.?

4. For T a theory in a finite language, if 7 admits E, must T
be Y,-categorical? This is false if we don’t assume the language is
finite. Since E, implies T has no two cardinal models the question
reduces to, “if T, in a finite language, satisfies E, must it be w-
stable?”.

Added in Proof. (1) Recall that Shelah [14] has proved that
every unstable theory has the f.c.p. Thus Theorem 6 could be re-
phrased as

THEOREM 6’. T has f.c.p. iff T is stable and E, holds. We used
the formulation in Theorem 6 because the goal in this paper is the
characterisation of KE,.

(2) The quantifier elimination given by our proofs is not ef-
fective (Theorem 2 and Lemma 4 are the relevant ones). In each
case we know (either by Ryll-Nardzewski or the failure of f.c.p.)
that a certain finite number exists for each formula (@), but we
do not know how to compute it effectively. H. Kierstead and Jeff
Remmel have exhibited a complete decidable theory in L which is not
decidable in L* even though it is w-categorical.

(8) P. Tuschik and P. Rothmaler have shown question 4 has
a negative answer. Subsequently we verified that the theory of an
infinite binary tree with two successor functions is such an example
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