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ON LINEAR FORMS AND DIOPHANTINE
APPROXIMATION

JEFFREY D. VAALER

Let x be a vector in RX and let Aj(;), j=1,2,++<,] be J
linear forms in K variables. We prove that there is a lattice

point % in Zx, 1;;&(1 for which I/l,-(t?)l are all small (or zero)
and the components of # are not too large. The bounds that
we obtain improve several previous results on this problem.

1. Introduction. Let A(), 4(z), ---, 4,(x) be J linear forms
in K real variables z, 2,, ---, zx. We assume that B = (b,;) is a
J X K matrix with complex entries such that

—_ K
A;(x) = kg; b,

X,
forj=1,2, .-+, Jand so « denotes the column vector ( . > A Dbasic
Tx
problem in Diophantine approximation is to show that there exists a
Uy - o
vector 'L_i:<- . > in the integer lattice 2%, u+0, such that each |/1,-(ﬁ)l
Uk
is small while the components |u,| are not too large. Quantitative
results on this problem are known with various hypotheses on the
4;’s; the usual method of proof involves an application of the pigeon-
hole principle (Baker [1], Lemma 1, p. 13, Gel’fond [3], Lemma 1, p.
11, Mordell [7], Theorem 3, p. 32, Siegel [8], Stolarsky [9], Chapter
2). In the present paper we make improvements on previous results
of this kind by using a generalization of Minkowski’s linear forms
theorem which we established in [10].

In order to state our main theorem we make the following as-
sumptions. We suppose that the forms 4; are real for j =1,2, ... »
- and that the remaining forms consist of ¢ pairs of complex conjugate
forms arranged so that A,.,;_, = 4,4, for 5 =1,2, ---,q. ThusJ =
» + 2q. We also suppose that a, =1 for k=1,2, ---, K, 8; > 0 for
J=1,2,---,J, and B,ipj1 = Bpss; for 7 =1,2, ... q.

THEOREM 1. Let M be a positive integer and suppose that

(L.1) M{lf_} o {ﬁ (1+ Bgzkz’; ailbu)} = 1.

J=1
Then there exist M distinct pairs of monmzero lattice points i;;m =

475
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Vim

i(- . ->, m=12 --.-, M, in Z* each of which satisfies the following
va

conditions:

A0 £ 850 G=1,2 -, D,
- 1/2
lAj(ivm)|§<%> Bi» Jj=p+1p+2 ---J,
[Vim| =, k=12 -+, K.

Next we deduce several corollaries to Theorem 1 which are easier

to use in applications. For simplicity these results are stated for
the case M =1

COROLLARY 2. Suppose that 1 < J < K and that the coefficients
b, satisfy |b;,| < T for some positive T. Then for each 3, 0 < B = T,
N w — -
there exists a lattice point u = ( -1-), u %= 0, in Z¥ such that
Uk

4 <68, =12 --p,
I/lj(ﬁ)lé(%yﬂﬁ, j=p+L p+2 -+, J,
and
1.2) || < (B'TVK + 1)/*", k=12 ---,K.

Proof. We apply Theorem 1 with M =1, o, =a =1, and gB; =
B < T. Then the left hand side of (1.1) is

7 K
a—k ];[1 (1 + ,6’_26(2 ,Z‘l|bf’°]2> < a¥F(q? 4+ B T*K )’
< a¥ K (B TYK + 1)) .

(1.3)

If we choose
a = (B TVE T 1)7ve-

then @ = 1 and the expression on the right of (1.3) is equal to 1.
Hence the corollary follows from the theorem.

We note that in previous versions of Corollary 2 (see Gel’fond
[3]) the bound on |u,| was

|uk| é 2(B—ITK>J/(K—J) .

However, in the special case J =1 a bound similar to (1.2) was
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obtained by Mahler [6].
If the coefficients b;, are integers we obtain an improvement in
“Siegel’s lemma” (Baker [1], Siegel [8], Stolarsky [9]).

COROLLARY 3. Suppose that 1 < J < K and that the coefficients

b, are integers satisfying |by| = T for some T =1. Then there

— w - e

exists a lattice point u = ( -l-), u #= 0, in Z* such that

Uk

(1.4) Lw)y=0, =12 --,J,
and

]ukl =< (T’I/K + 1')J/(K-J) , k = 12 - - K.

Proof. We apply Corollary 1 with 0 <3< 1, p=4J and ¢ = 0.
Since 4;(u) is an integer whenever u € Z¥ it follows that there exists
ueZ¥, u #+ 0, such that (1.4) holds and

(1.5) lu,| < (BmlTl/K__-f- 1)/ &= k=12 -, K.

Now among the finitely many lattice points z—ieZK, u # 6, which
satisfy (1.4) and (1.5) with B = 1/2 there must be at least one which
satisfies (1.4) and (1.5) for values of B arbitrarily close to 1. Thus
we may take 8 = 1 on the right of (1.5) for some u € Z%, u = 0.
COROLLARY 4. Suppose that 1 < J < K and that H, H,, ---, Hy
- U,
are positive integers. Then there exists a lattice point u = ( . -),
o "
w =0, in such that *

lu,| < Hy, k=12 .--, K,
m@n<%??©, i=12, -
A2 (G o)

(i)

)

| A,(w)| <

’ j:p+1;p+2,"',J-

Proof. Let 0 <6 <1l. We apply Theorem 1 with M =1, «, =
H, + 6 and

8y = v elval)
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where

—1/2

K
vo = {IL @, + 0y - 1}
It follows that the left hand side of (1.1) is
K
ILH + 07 A + 497" = 1.

Thus there exists u € Z%, u # 0, such that

(1.6) lu,| < H,, , k=12 ---, K,
- K 12 .

(1'7) [AJ(u)l é q/"&(]azﬂ(Hk + 0)2ibjk|2> ’ ] = 1’ 2, e, D,

and

w8 )= (2) (S @+ orbar)

=1

i=p+1,p+2 - J.

Only finitely many u e Zx, u + 0, satisfy (1.6) and so, as in the proof
of Corollary 3, at least one of these lattice points must satisfy (1.7)
and (1.8) for all 4, 0 < 6 < 1. Thus we may take & = 1 on the right
hand side of (1.7) and (1.8). Finally we observe that

(1.9) (S + 116aF) " = 2(3; Hilbal)”
and
(1.10) Y = @1 H,,)_w {lIfIl 1+ H) — ,Ii Hf”} -

Since K > J we have

K K K K
(1.11) ]:[ (1 + Hl—l)Z/J — H H;Z/J z ]] (1 + HfZK/J)I/I{ — ]:[ Hl—2/J

=1 l=1 =1 =1

=1+ [ H* ~ [T H* =1,
i=1 1=1

where we have used Theorem 27 and 10 of [5] in the first and
second inequalities respectively. Putting (1.9), (1.10) and (1.11)

together gives the desired result.

Our upper bound in Corollary 4 sharpens an inequality in
Stolarsky [9], p. 15.

We also remark that Corollary 4 has an interesting geometrical
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interpretation. Let 51, 52, .- BJ denote nonzero column vectors in R
with 57 = (b bye - - byx). We write 4;(@) = by, @, [1b;]| = (S [0l
and recall that ]<b], x>]|lb [|7* is the length of the projection of &

onto the subspace spanned by the vector b,. Applying the corollary
with H, = H,= --- = Hy = H we find that there is always a non-

zero lattice point we ZX with components at most H in absolute

value and having a projection onto the span of each b: of length at
most 2H*~¥/7,

2. Preliminary results. The remainder of our paper is devoted
to a proof of Theorem 1. This is accomplished by combining the
following lemmas. Here we write §;, for the Kronecker delta and
B* for the complex conjugate transpose of the matrix B.

LEMMA 5. Let B = (b;;) be a J X K matriz with complex entries
and let D=(d,0;,) be a diagonal matrixz with d, > 0 for k=1,2, ---, K.
Then

@.1) det (D + B*B) < <£I d,) g (1 + kzi; d;‘[bjk|2> .

It is possible to bound det (D + B*B) by using Hadamard’s
inequality (Bellman [2], Gantmacher [4], p. 252). But the result we
obtain is

K J
det (D + B*B) = 11 (d, + 33 1bal*) ,
and this is generally weaker than (2.1) if 1 < J < K.

Proof of Lemma 5. Let I, denote the K x K identity matrix.
We will begin by proving that

(2.2) det (Iy + B*B) < Ij (1 + k_i ijkP) .

If Q@ is a K X K unitary matrix, that is if Q@*Q = QQ* = I, then
the left and right hand sides of (2.2) are unchanged when B is
replaced by BQ. Since B*B is a positive semi-definite Hermitian
matrix we may choose the unitary matrix @ so that Q*B*BQ is a
diagonal matrix. In particular we may choose @ (see Gantmacher
[4], p. 274) so that

Q*B*BQ = (BQ)*(BQ) = (M0;1)

where
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)\'127\'22'.'27\'1">0:)\'M+1:7\‘M+2="'=7\:K.

Thus rank (B) = rank (B*B) = M < K. (Of course if rank (B) =0
then (2.2) is trivial so we may suppose that 1 < M.) By replacing
B by BQ it follows that we may assume without loss of generality
that B*B = (\0;,), or equivalently that

(2.3) " bubu = Mids -

L'M~

Taking j=k =M+ 1 in (2.3) we find that b;, =0 if k=M + 1,
M+2 ---, K.

Next we define w;, = M;"*b;;, so that by (2.3) the J x M matrix
W = (w;) has M orthonormal columns (and so M < J). It follows
from Bessel’s inequality that

(2'4) kzzllekIZ é 1 ’
for j=1,2,-..,J. Since I, + B*B = ({1 + \}0,,) we have
det (I + B*B) = T (1 + M) = [1(L + np¥hmuton®
k=1 k=1

= T {ITa + e}

i=1 =

Thus to establish (2.2) it suffices to show that
K
(2.5) H @+ At <1 4+ LA
foreachj=1,2, ---,J. If 3. |w;l* = 0 then (2.5) is trivial since

the left hand side is one. If >ji°, |w,.|* > 0 then by the arithmetic-
geometric mean inequality (see [5], Theorem 9) we have

ﬁ( 142 )“,, 2 < lé 1'wjk [2(1 + )"k) Lpey 1wkl ) (1 . éw: [b].k [2 They lwjp 2
k=1 - é Iw]kIZ

= (L 5 0ak) = (14 3 bal)-

uMa

’walc|2

In the last inequality we have used (2.4) together with the observa-
tion that (1 + (¢/x))* is an increasing function of x for x > 0 and
any fixed ¢ = 0. This proves (2.2).

To complete the proof of the lemma we note that

det (D + B*B) = det (D"?) det (Ix + D~"*B*BD~"?) det (D"?)
= (Icll—:ll dk> det (Ix + (BDY®)*(BD~%)
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Next we suppose that Lj(i), j=1,2,-.., N are N linear forms
in K variables,

— K
L(x) = ka QjpXy s

so that 4 = (a;,) is an N X K matrix. We assume that the forms
L; are real for j = 1,2, ---, r and that the remaining forms consist
of s pairs of complex conjugate forms arranged so that L,.,;,_, =

L, for j=1,2, ---,s. Let ¢, ¢, ---, ey be positive with ¢,,,; , =
Erre; fOr 7=1,2,--.,s. We define the N x N diagonal matrix FE
by E = (¢;0;;) where ¢; =¢&;' if j=1,2, ---, 7 and ¢; = (2/m)"%;" if
j=r+1,r+2 ---, N.
LEMMA 6. Let M be a positive integer and suppose that
M|det A*EPA* < 1.

Then there exist at least M distinct pairs of monzero lattice points
+Vn m=1,2, -, M, in Z% such that

|Li(£v,)| < ¢;

Jor each j=1,2,---, N and each m =1,2, -.., M.
For a proof of Lemma 6 we refer to [10].

3. Proof of Theorem 1. Let N=J + K. We apply Lemma
6 with

Li®=2, j=.,2 - K,
Lyss(@) = A2y,  §=1,2, -+, J.

Thus # = K + p and s = q. The matrix A can then be partitioned
as

(3.1) A= (I;) .

We also let
& = ay, j=142,---, K,

5K+j:Bj) j:1’2’°")p9

1/2
5K+j=<—:_"> Bi s J=p+L p+2 ---,J.
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Using (3.1) it follows that
(3.2) A*E*A = D + (GB)*(GB)

where D = (a;%;;) is a K X K diagonal matrix and G = (87'9;,) is a
J x J diagonal matrix. Combining (1.1), (3.2) and Lemma 5 we find
that

M*det (AE*PA*) = 1.

Thus the conclusion of Theorem 1 follows as an application of Lemma
6.
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