BOUNDARY VALUE PROBLEMS FOR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

SAMUEL M. RANKIN, III

Sufficient conditions are given to ensure the existence of solutions for the boundary value problem

(1)
$$y(t) = T(t)\phi(0) + \int_a^t T(t-s)F(y_s)ds \quad 0 \le t \le b$$

$$(*)$$
 $My_0 + Ny_b = \psi$, $\psi \in C(=C([-r, 0]; B)$ by def.).

It is assumed that T(t), $t \ge 0$, is a strongly continuous semi-group of bounded linear operators on the Banach space B and T(t), $t \ge 0$, has infinitesimal generator A. The function F is continuous from C to B and M and N are bounded linear operators defined on C.

Denote by C the Banach space of continuous functions from [-r,0] into the Banach space B, where for each $\varphi \in C$, $||\varphi||_C = \sup_{-r \le \theta \le 0} \sup ||\varphi(\theta)||$. Let A be the infinitesimal generator of a strongly continuous semigroup of linear operators T(t), $t \ge 0$ mapping B into B and satisfying $|T(t)| \le e^{\omega t}$ for some real ω . We let F be a nonlinear continuous function from C into B. If y(t) is a continuous function from [0,T] to B for some T>0, define the element $y_t \in C$ by $y_t(\theta) = y(t+\theta)$. Throughout this paper the reference y(t) is a solution of Equation (1) (*) will mean y(t) satisfies Equation (1) and the boundary condition (*). The statement $y(\varphi)(t)$ is a solution of Equation (1) will mean y(t) satisfies Equation (1) and the initial condition $y_0 = \varphi$. The notation Equation (1) without (*) will always denote the initial value problem.

In a recent paper [8] C. Travis and G. Webb have considered initial value problems for Equation (1). With F satisfying

$$||F(\varphi) - F(\bar{\varphi})|| \leq L||\varphi - \bar{\varphi}||_{\sigma}$$

for some L>0 and φ , $\overline{\varphi}\in C$, Travis and Webb obtain the existence of unique solutions of Equation (1) for each $\varphi\in C$. In another paper W. E. Fitzgibbon [2] has shown that global solutions of Equation (1) exist if F satisfies for each $\varphi\in C$

$$(3)$$
 $||F(arphi)|| \leq K_{\scriptscriptstyle 1} ||arphi||_{\scriptscriptstyle \mathcal{C}} + K_{\scriptscriptstyle 2}$ for some $K_{\scriptscriptstyle 1},\,K_{\scriptscriptstyle 2} \in R$,

and if T(t), t>0 is compact.

When Equation (1) has unique solutions for each $\varphi \in C$, the mapping $U(t)\varphi = y_t(\varphi)$ is well defined for each $t \ge 0$ and $\varphi \in C$. Here $y_t(\varphi)$ represents the element of C such that $y(\varphi)(t)$ is a solution of

Equation (1). If F satisfies (2) the following estimate from [8] is true:

$$(4) ||U(t)\varphi - U(t)\overline{\varphi}||_{\mathcal{C}} \leq e^{(\omega + L)t}||\varphi - \overline{\varphi}||_{\mathcal{C}} \text{if} \omega \geq 0$$

for all $t \ge 0$. Throughout this paper it will be assumed that $\omega \ge 0$.

If F satisfies (3), then we have for each $\varphi \in C$ and $0 \le t \le b$

$$egin{aligned} ||U(t)arphi||_{\mathcal{C}} &= ||y_t(arphi)||_{\mathcal{C}} = \sup_{-r \leq heta \leq 0} \left\| T(t+ heta)arphi(0) + \int_0^{t+ heta} T(t+ heta-s)F(y_s)ds
ight\| \ &\leq e^{\omega t} ||arphi||_{\mathcal{C}} + e^{\omega t} \int_0^t e^{-\omega s} K_1 ||y_s(arphi)||_{\mathcal{C}} + K_2 ds \;. \end{aligned}$$

This implies that

(5)
$$||y_t(\varphi)||_c \leq \bar{K}_1 ||\varphi||_c + \bar{K}_2$$

where $\bar{K}_{\scriptscriptstyle 1}=e^{\scriptscriptstyle (\omega+K_1)b}$ and $\bar{K}_{\scriptscriptstyle 2}=e^{\scriptscriptstyle (\omega+K_1)b}K_2b$.

It is shown in [8] that if the semigroup T(t), $t \ge 0$ is compact for t > 0, then the solution mapping $U(t)\varphi = y_t(\varphi)$ is compact in φ for each fixed t > r.

Equation (1) is the integrated form of the functional differential equation

$$y'(t)=Ay(t)+F(y_t) \quad 0 \leq t \leq b \ y_0=arphi \ .$$

Our results then can be applied to partial functional differential equations of the form

$$egin{aligned} v_{(t}x,\,t) &= v_{xx}(x,\,t) + f(v(x,\,t-r)) & 0 \le t \le b, \ 0 \le x \le l \ v(0,\,t) &= v(l,\,t) = 0 & t \ge 0 \ lpha(x,\,t)v(x,\,t) + eta(x,\,t)v(x,\,b+t) &= \psi(x,\,t) & -r \le t \le 0, \ 0 \le x \le l \ . \end{aligned}$$

Boundary value problems of the type Equation (6) (*) have been studied recently by R. Fennell and P. Waltman [1], G. Reddien and G. Webb [7] and P. Waltman and J. S. W. Wong [9] when $B = R^n$. The work here extends results found in [7] and [9] to Equation (1) (*) when B is infinite dimensional. Certain technical difficulties arise when B is infinite dimensional. For example, the solution mapping $U(t)\varphi$ for Equation (1) is not compact as is the case when $B = R^n$, see J. Hale [4]; this is a problem when trying to apply standard fixed point theorems. This difficulty is overcome by assuming the semigroup T(t), $t \ge 0$ is compact for t > 0. It will become clear that our results depend on the operators M and N, the Lipschitz constant L, and the length of the interval b.

Define $S(b)\varphi = x_b(\varphi)$; $x_b(\varphi)$ is the element of C such that $x(\varphi)(t)$ is the unique solution of the system

$$egin{aligned} x(t) &= T(t)arphi(0) & t \geqq 0 \ x_{\scriptscriptstyle 0} &= arphi & arphi \in C \ . \end{aligned}$$

Notice that S(b) is a special case of $U(b)\varphi \equiv y_b(\varphi)$ where $y(\varphi)(t)$ is the solution of Equation (1) for the initial function $\phi \in C$. That is, the mapping S(b) is U(b) when $F \equiv 0$. Also, if the semigroup T(t), $t \geq 0$ is compact for t > 0, we have that U(b) is compact and therefore S(b) is compact.

We also have need to consider the system

(8)
$$z(t) = \int_0^t T(t-s)F(y_s(\varphi))ds \quad 0 \le t \le b$$

$$z \equiv 0 \quad \text{on } [-r, 0]$$

where $y(\varphi)(t)$ is the solution of Equation (1) for the initial function $\varphi \in C$.

PROPOSITION 1. Let F satisfy condition (2).

- (a) Suppose $(M+N)^{-1}$ exists with the range R((U(b)-I)) of U(b)-I contained in $D((M+N)^{-1})$, that $||(M+N)^{-1}N(U(b)-I)||_{\text{Lip}} < 1$ (b>r) and $\psi \in D((M+N)^{-1})$, then solutions of Equation (1) (*) exist and are unique.
- (b) Suppose $(M + NS(b))^{-1}$ exists with $R(N(U(b) S(b))) \subset D((M + NS(b))^{-1})$ and $||(M + NS(b))^{-1}N(U(b) S(b))||_{\text{Lip}} < 1$ (b > r), then solutions of Equation (1) (*) exist and are unique.

Proof. For an initial function $\varphi \in C$ and its corresponding unique solution of Equation (1) we have

$$My_0 + My_b = M\varphi + NU(b)\varphi = (M + NU(b))\varphi$$
.

Therefore, in order to solve the boundary value problem Equation (1) (*) we must solve the operator equation

$$(M + NU(b))\varphi = \psi$$
.

In case (a) we can write Equation (6) in the form

$$(M + N + N(U(b) - I))\varphi = \psi$$

and in case (b) in the form

$$(M + NS(b) + N(U(b) - S(b)))\varphi = g(c)$$

Since $(M + N)^{-1}$ exists in (a) and $(M + NS(b))^{-1}$ exists in (b) the above equations become

$$(9) (I + (M+N)^{-1}N(U(b)-I))\varphi = (M+N)^{-1}\psi.$$

and

(9')
$$(I + (M + NS(b))^{-1}N(U(b) - S(b)))\varphi = (M + NS(b))^{-1}\psi$$

when $\psi \in D((M+N)^{-1})$ or $\psi \in D((M+NS(b))^{-1})$. The equations (9) and (9') are in the form x+Sx=y with $||S||_{\text{Lip}}<1$ and so are uniquely solvable.

Given an initial function $\varphi \in C$ and the solution $y(\varphi)(t)$ of Equation (1) we can write

(10)
$$y(\varphi)(t) = x(\varphi)(t) + z(0)(t)$$

$$y_t(\varphi) = x_t(\varphi) + z_t(0)$$

$$0 \le t \le b$$

where $x(\varphi)(t)$ and z(0)(t) are solutions of Equations (7) and (8), respectively. Using the identity (10) we have the following corollary to Proposition 1(b).

COROLLARY TO PROPOSITION 1(b). If operator $(M + NS(b))^{-1}$ exists on C and $||(M + NS(b))^{-1}N||e^{(L+w)b} < 1$ (b > r), then the boundary value problem Equation (1) (*) has a unique solution.

Proof. We show that the mapping $(M + NS(b))^{-1}N(U(b) - S(b))$ is a strict contraction:

$$egin{aligned} &\|(M+NS(b))^{-1}N(U(b)-S(b))arphi-(M+NS(b))^{-1}(U(b)-S(b))ar{arphi}\|_{\mathcal{C}}\ &\leqq\|(M+NS(b))^{-1}N\|\sup_{- au\inar{artheta}\in\mathcal{C}}\left\|\int_0^{b+ heta}T(b+ heta-s)(F(y_s(arphi))-F(y_s(ar{arphi})))ds
ight\|\ &\leqq\|(M+NS(b))^{-1}N\|Le^{\omega b}\|arphi-ar{arphi}\|_{\mathcal{C}}-ar{arphi}\|_{\mathcal{C}}\int_0^be^{LS}ds\ &<\|(M+NS(b))^{-1}N\|e^{(\omega+L)b}\|arphi-ar{arphi}\|_{\mathcal{C}}<\|arphi-ar{arphi}\|_{\mathcal{C}}\ , \end{aligned}$$
 for all $\ arphi,\ ar{arphi}\in\mathcal{C}$.

The result now follows by Proposition 1(b).

PROPOSITION 2. Let F satisfy condition (2). If the mapping M^{-1} exists on C with $||M^{-1}N||e^{(L+\omega)b} < 1$ (b > r), then Equation (1) (*) has a unique solution.

Proof. For an initial function $\varphi \in C$ and its corresponding solution $y(\varphi)(t)$ of Equation (1), we have $My_0 + Ny_b = (M + NU(b))\varphi$. Thus, for the equation $(M + NU(b))\varphi = \psi$, $\psi \in C$, we can write $(I + M^{-1}NU(b))\varphi = M^{-1}\psi$. From (4) we have that

$$||M^{-1}NU(b)\varphi - M^{-1}NU(b)\overline{\varphi}||_{\mathcal{C}} \leq ||M^{-1}N|| ||U(b)\varphi - U(b)\overline{\varphi}||_{\mathcal{C}} \\ \leq ||M^{-1}N|| e^{(L+\omega)b} ||\varphi - \overline{\varphi}||_{\mathcal{C}} < ||\varphi - \overline{\varphi}||_{\mathcal{C}}$$

for all φ , $\bar{\varphi} \in C$. The mapping $M^{-1}NU(b)$ is a strict contraction and so the equation $(I + M^{-1}NU(b))\varphi = M^{-1}\psi$ has a unique solution for each $\psi \in C$. The result easily follows.

Using the identity (10) we are able to extend a result found in [9].

PROPOSITION 3. The two point boundary value problem Equation (1) (*) has a solution if and only if $Nz_b(0) \in \psi + R(M + NS(b))$, $\psi \in C$, b > r.

Proof. Given an initial function $\varphi \in C$, and its corresponding solution $y(\varphi)(t)$ of Equation (1) we have by (10) that

$$My_0(\varphi) + Ny_b(\varphi) = M\varphi + N(x_b(\varphi) + z_b(0)) = (M + NS(b))\varphi + Nz_b(0)$$
.

If $\psi \in C$ and $My_0(\varphi) + Ny_b(\varphi) = \psi$, we obtain $\psi = (M + NS(b))\varphi + Nz_b(0)$; this gives $Nz_b(0) = \psi - (M + NS(b))\varphi$ and so $Nz_b(0) \in \psi + R(M + NS(b))$.

If there exists a solution ϕ of $Nz_b(0) = \varphi + R(M + NS(b))\varphi$, define $v = -\varphi$. Then for the solution y(v)(t) of Equation (1) we have

$$egin{aligned} My_{_0}(v) \, + \, Ny_{_b}(v) \, = \, Mv \, + \, Nx_{_b}(v) \, + \, Nz_{_b}(0) \ &= \, (M \, + \, NS(b))v \, + \, Nz_{_b}(0) \ &= \, -(M \, + \, NS(b))arphi \, + \, Nz_{_b}(0) \, = \, \psi \; . \end{aligned}$$

Therefore the boundary value problem is solved.

The following result is due to A. Granas [3].

PROPOSITION 4. If T is a compact operator mapping the Banach space X into X and satisfying $\overline{\lim_{||x||\to\infty}} ||Tx||/||x|| < 1$, then R(I-T)=X.

PROPOSITION 4. (i) Suppose the semigroup T(t), $t \geq 0$ is compact, (ii) F takes closed bounded sets of C into bounded sets in B, and $\lim_{\|\varphi\|_{C^{-\infty}}} \|F(\varphi)\|/\|\varphi\|_{c} = 0$, (iii) there exist unique solutions to the initial value problem Equation (1), $(M+NS(b))^{-1}$ (b>r) exists on C as a bounded operator. Then the boundary value problem Equation (1) (*) has a solution.

Proof. Condition (ii) implies that there exists K_1 and K_2 such that $||F(\varphi)|| \leq |K_1||\varphi||_c + |K_2|$ for all $\varphi \in C$, so that global solutions for Equation (1) exist [2]. Furthermore, we can find constants \bar{K}_1 and \bar{K}_2 such that condition (5) is true. Let φ_n be a sequence of functions in C such that $||\varphi_n||_c \to \infty$ as $n \to \infty$ and define $\beta_n = \sup_{0 \leq t \leq b} ||y_t(\varphi_n)||_c$. Note that $\beta_n \leq \bar{K}_1 ||\varphi_n||_c + \bar{K}_2$ for each n. Let ε

be such that $0 < \varepsilon < 1/b\bar{K}_1 e^{\omega b} || (M + NS(b))^{-1} N ||$, then by (ii) there exists h > 0 such that if $|| \varphi ||_{\mathcal{C}} > h$, $|| F \varphi || \le \varepsilon || \varphi ||_{\mathcal{C}}$. We define $R = \max \{|| F(\varphi) ||: || \varphi ||_{\mathcal{C}} \le h\}$ then

$$\begin{split} || (M + NS(b))^{-1} N(U(b) - S(b)) \varphi_n || \\ & \leq \sup_{-r \leq \theta \leq 0} || (M + NS(b))^{-1} N || \int_0^b || T(b + \theta - s) || || F(y_s(\varphi_n)) || \, ds \\ & \leq || (M + NS(b))^{-1} N || e^{\omega b} \int_0^b || F(y_s(\varphi_n)) || \, ds \\ & \leq || (M + NS(b))^{-1} N || e^{\omega b} b \max \{ R, \varepsilon(\bar{K}_1 || \varphi_n ||_C + \bar{K}_2) \} \; . \end{split}$$

If $\beta_n \to \infty$ as $n \to \infty$, we have $\overline{\lim_{n \to \infty}} || (M + NS(b))^{-1} N(U(b) - S(b)) \varphi_n ||_c / || \varphi_n ||_c < 1$ and if β_n bounded as $n \to \infty$ then $\overline{\lim_{n \to \infty}} || (M + NS(b))^{-1} N(U(b) - S(b)) \varphi_n || / || \varphi_n ||_c = 0$. Notice that U(b) exists by (iii) and that by (i) (M + NS(b)) N(U(b) - S(b)) is compact. Thus by Proposition A there is a solution to $(I + (M + NS(b))^{-1} N(U(b) - S(b))) \varphi = (M + NS(b))^{-1} \psi$ and the proposition is proved.

To prove Proposition 5 we need the following result of Z. Nashed and J. S. W. Wong [5].

PROPOSITION B. If A_1 is a strict contraction on a Banach space X, i.e., $||A_1x-A_1y|| \leq \gamma ||x-y||$ ($0 < \gamma < 1$), $x, y \in X$, and A_2 is a compact mapping on X such that $\lim_{\|x\| \to \infty} ||A_2x||/||x|| = \beta < 1 - \gamma$, then $R(I - (A_1 + A_2)) = X$.

PROPOSITION 5. (i) If the semigroup T(t), $t \ge 0$ is compact for t > 0, (ii) F takes closed bounded sets of C into bounded sets in B, and $\lim_{\|\cdot\|_{C} \to \infty} \|F(\varphi)\|/\|\varphi\| = 0$, (iii) there exist unique solutions to the initial value problem Equation (1), (iv) M^{-1} exists on C as a bounded operator and $\|M^{-1}N\|e^{wb} < 1$ (b > r). Then the boundary value problem Equation (1) (*) has a solution.

Proof. Given an initial function $\varphi \in C$, we can write

$$y_b(\varphi)(\theta) = T(b+\theta)\varphi(0) + \int_0^{b+\theta} T(b+\theta-s)F(y_s(\varphi))ds$$

where $y(\varphi)(t)$ is the solution of Equation (1) corresponding to φ . Define the operators A_1 and A_2 on C as follows:

$$(A_{\scriptscriptstyle 1}arphi)(heta)=T(b+ heta)arphi(0) \quad ext{and} \quad (A_{\scriptscriptstyle 2}arphi)(heta)=\int_{\scriptscriptstyle 0}^{b+ heta}\,T(b+ heta-s)F(y_{\scriptscriptstyle s}(arphi))ds\;.$$

The operator A_2 is compact by (i) and for φ , $\bar{\varphi} \in C$ we have

$$||M^{-1}NA_{1}\varphi - M^{-1}NA_{1}\bar{\varphi}||_{\mathcal{C}} \leq ||M^{-1}N||e^{ab}||\varphi - \bar{\varphi}||_{\mathcal{C}}.$$

By (iv) the operator $M^{-1}NA_1$ is Lipschitz with Lipschitz constant $\gamma \leq ||M^{-1}N|| \, e^{ab} < 1$.

Let $\varphi_n \in C$ such that $||\varphi_n||_{\mathcal{C}} \to \infty$ [as $n \to \infty$ and define $\beta_n = \sup_{0 \le t \le b} ||y_t(\varphi_n)||_{\mathcal{C}}$. As in the proof of Proposition 4 we have constants K_1 , K_2 , \overline{K}_1 , \overline{K}_2 such that $||F(\varphi)|| \le K_1 ||\varphi||_{\mathcal{C}} + K_2$ and $||y_t(\varphi)||_{\mathcal{C}} \le \overline{K}_1 ||\varphi||_{\mathcal{C}} + \overline{K}_2$; therefore, we have $\beta_n \le \overline{K}_1 ||\varphi_n||_{\mathcal{C}} + \overline{K}_2$. If the sequence β_n has limit infinity as n approaches infinity, then by (ii)

$$egin{aligned} \overline{\lim}_{n o\infty} ||\mathit{M}^{\scriptscriptstyle{-1}}NA_2\mathscr{P}_n||_{\scriptscriptstyle{\mathcal{C}}}/||\mathscr{P}_n||_{\scriptscriptstyle{\mathcal{C}}} & \leq \overline{\lim}_{n o\infty} ||\mathit{M}^{\scriptscriptstyle{-1}}N||\,e^{\omega b}arepsilon \int_0^b (ar{K}_1||\,arphi_n||_{\scriptscriptstyle{\mathcal{C}}} + ar{K}_2)ds/||\,arphi_n||_{\scriptscriptstyle{\mathcal{C}}} \ & \leq ||\mathit{M}^{\scriptscriptstyle{-1}}N||\,e^{\omega b}arepsilon b \in ar{K}_1 \ , \end{aligned}$$

where $\varepsilon>0$ is arbitrary. Thus if we choose $\varepsilon<1-\gamma/||\mathit{M}^{-1}N||\,e^{\omega b}b\bar{K}_1$, then $\overline{\lim}_{n\to\infty}||\mathit{M}^{-1}NA_2\mathcal{P}_n||_c/||\,\mathcal{P}_n||_c<1-\gamma$. If the sequence β_n is bounded, then $\overline{\lim}_{n\to\infty}||\mathit{M}^{-1}NA_2\mathcal{P}_n||_c/||\,\mathcal{P}_n||_c=0<1-\gamma$. Applying Proposition B, we see that for each $\psi\in C$ there exists a solution \mathcal{P} of

$$(I + M^{-1}N(A_1 + A_2))\varphi = M^{-1}\psi$$
 .

From the above equation we can solve the boundary value problem Equation (1) (*).

To illustrate our results we consider the partial functional differential equation

$$w_t(x, t) = w_{xx}(x, t) + f(w(x, t - r)) \quad 0 \le t \le b \quad 0 \le x \le l$$

 $w(0, t) = w(l, t) = 0 \qquad t \ge 0$.

Here f is a real-valued, Lipschitz continuous and continuously differentiable function. We let $B=L_2[0,l]$, and define A and F respectively as:

A: $D(A) \to B$ by $Au = \ddot{u}$, $D(A) = \{u \in B \mid u \text{ and } \dot{u} \text{ are absolutely continuous, } \ddot{u} \in B \text{ and } u(0) = u(l) = 0\}$ and $F: C \to B$ by $F(\varphi)(x) = f(\varphi(-r)(x))\varphi \in C$ and $x \in [0, l]$. It is known that A generates a strongly continuous semigroup T(t), $t \ge 0$ such that T(t) is compact for t > 0 and w = 0, see A. Pazy [6, pages 9 and 47]. The function F is Lipschitz continuous and continuously differentiable.

If we let M = I, N = 1/4 I, then $(M + N)^{-1} = 4/5$ I and

$$\begin{split} ||(M+N)^{-1}N(U(b)-I)\varphi-(M+N)^{-1}N(U(b)-I)\bar{\varphi}||_{\mathcal{C}} \\ &\leq ||(M+N)^{-1}N||(||U(b)\varphi-U(b)\bar{\varphi}||_{\mathcal{C}}+||\varphi-\bar{\varphi}||_{\mathcal{C}}) \\ &\leq 1/5(||y_{b}(\varphi)-y_{b}(\bar{\varphi})||_{\mathcal{C}}+||\varphi-\varphi||_{\mathcal{C}}) \leq 1/5(e^{Lb}||\varphi-\bar{\varphi}||_{\mathcal{C}}+||\varphi-\varphi||_{\mathcal{C}}) \\ &\leq 1/5(e^{Lb}+1)||\phi-\bar{\varphi}||_{\mathcal{C}}. \end{split}$$

Part (a) of Proposition 1 is applicable if $1/5(e^{Lb} + 1) < 1$. This is true if Lb < ln4.

If the operators M = I and N = -1/4 I then

$$egin{aligned} \|M+NS(b)arphi\|_c &= \sup_{-r \le heta \le 0} \|(M+NS(b)arphi)(heta)\| \ &= \sup_{-r \le heta \le 0} \|arphi(heta) - 1/4 T(b+ heta)arphi(0)\| \ &\geq \sup_{-r \le heta \le 0} \|arphi(heta)\| - 1/4 \|arphi(0)\| \ge \|arphi\|_c - 1/4 \|arphi\|_c = 3/4 \|arphi\|_c \ . \end{aligned}$$

The above estimate implies that $(M+NS(b))^{-1}$ exists on C and $||(M+NS(b))^{-1}|| \le 4/3$, furthermore

$$egin{aligned} & ||(M+NS(b))^{-1}N(U(b)-S(b))arphi-(M+NS(b))^{-1}N(U(b)-S(b))ar{arphi}||_{arphi} \ & \leq ||(M+NS(b))^{-1}N|| ||(U(b)-S(b))arphi-(U(b)-S(b))ar{arphi}||_{arphi} \ & \leq ||(M+NS(b))^{-1}N||\,e^{{\scriptscriptstyle L}b}||\,arphi-ar{arphi}||_{arphi} \leq 4/3\cdot 1/4e^{{\scriptscriptstyle L}b}||\,arphi-ar{arphi}||_{arphi} \ & = 1/3e^{{\scriptscriptstyle L}b}||\,arphi-ar{arphi}||_{arphi} \ . \end{aligned}$$

Here if Lb < ln 3 then $1/3e^{Lb} < 1$, and the corollary to Proposition 1(b) applies.

If M = I and N = -1/2I Proposition 1 is not readily applicable since we can obtain only the following estimate:

$$||(M+N)^{-1}N(U(b)-I)||_{ ext{Lip}} \leqq ||(M+N)^{-1}N||(e^{Lb}+1) \leqq e^{Lb}+1$$
 .

The term $e^{Lb} + 1$ cannot be less than 1 for any positive numbers L and b. Similarly we have

$$||(M + NS(b))^{-1}N(U(b) - S(b))||_{\text{Lip}} \le ||(M + NS(b))^{-1}N||e^{Lb} \le e^{Lb}$$

and e^{Lb} cannot be less than 1 and positive for any L and b. Proposition 2, however, is easily applied since $||M^{-1}N||e^{Lb} = 1/2e^{Lb} < 1$ if 0 < Lb < ln 2.

If we define $F(\varphi)(x)=f(\varphi(-r)(x))=\varphi^{1/4}(-r)(x)$, then

$$egin{aligned} ||F(arphi)||/||arphi||_c &= \left(\int_0^t |arphi^{1/2}(-r)(x)|\,dx
ight)^{1/2} \Big/ \sup_{-r \leq heta \leq 0} \int_0^t arphi^2(heta)(x)\,|\,dx \ &\leq l^{3/8} \Big(\int_0^t |arphi^2(-r)(x)|\,dx\Big)^{1/8} \Big/ \sup_{-r \leq heta \leq 0} \int_0^t |arphi^2(heta)(x)|\,dx \ &\leq l^{3/8} \Big(\sup_{-r \leq heta \leq 0} \int_0^t |arphi^2(heta)(x)|\,dx \Big)^{1/8} \Big/ \sup_{-r \leq heta \leq 0} \int_0^t |arphi^2(heta)(x)|\,dx \end{aligned}$$

and $\lim_{\|\varphi\|_{C\to\infty}} \|F(\varphi)\|/\|\varphi\| = 0$. Furthermore, F takes closed bounded sets of C into bounded sets of $B = L_2[0, l]$. Letting M = I and N = -1/4 I, both $(M + NS(b))^{-1}$ and M^{-1} exist, and Propositions 4 and 5 can be applied to obtain solutions of

(11)
$$y(t) = T(t)\varphi(0) + \int_0^t T(t+\theta-s)y_s^{1/4}(-r)(\cdot)ds$$

$$(\ ^{st}) \qquad \qquad My_{\scriptscriptstyle 0} + Ny_{\scriptscriptstyle b} = \psi \quad b > r \; .$$

Notice that the length of the interval b does not enter into the discussion for the above example, other than b is required to be greater than r.

The next theorem handles periodic boundary conditions, i.e., the boundary condition $y_0 = y_b$.

PROPOSITION 6. Suppose F satisfies condition (2). If the operator M+NS(b) has a bounded inverse defined on C such that $||(M+NS(b))^{-1}|| < d$ for some d>0 and for all (r,γ) where γ satisfies $\gamma > r$ and $d||N||e^{(L+\omega)\gamma} = 1$, then the boundary value problem Equation (1) (*) has a unique solution.

Proof. For a function $\psi \in C$ define the mapping $H: C \to C$ by

$$H\varphi = (M + NS(b))^{-1}\psi - (M + NS(b))^{-1}N(U(b) - S(b))\varphi$$
.

We have for φ , $\bar{\varphi} \in C$

$$egin{aligned} \|Harphi-Hararphi\|_c &= \|(M+NS(b))^{-1}N(U(b)-S(b))arphi \ &- (M+NS(b))^{-1}N(U(b)-S(b))ararphi\|_c \ &\leq \|(M+NS(b))^{-1}N\|\|z_b(arphi)-ar z_b(ararphi)\|_c \ &\leq d\|N\|\sup_{-r\leq heta\leq 0}\|z(arphi)(b+ heta)-ar z(ararphi)(b+ heta)\| \ &\leq d\|N\|\int_0^b e^{u(b-s)}\|F(y_s(arphi))-F(y_s(ararphi))\|ds \ &\leq d\|N\|e^{ub}L\int_0^b e^{-u_s}\|y_s(arphi)-y_s(ararphi)\|_c ds \ &\leq d\|N\|e^{(L+\omega)b}Lb\|arphi-ararphi\|_c \ . \end{aligned}$$

The operator H is a contraction if b is sufficiently small and the boundary value problem is uniquely solvable.

REMARK. Proposition 4 also handles periodic boundary conditions since again the only requirement on M and N is the existence of $(M+NS(b))^{-1}$. The inverse of M+NS(b) exists with domain C if and only if the boundary value problem Equation (7)(*) has a unique solution for each $\psi \in C$.

Acknowledgment. The author would like to thank Professor Glenn F. Webb for several helpful conversations.

REFERENCES

- 1. R. Fennell and P. Waltman, A boundary value problem for a system of nonlinear functional differential equations, J. Math. Anal., 26 (1969), 447-453.
- 2. W. E. Fitzgibbon, Semilinear Functional Differential Equations in Banach Space, J. Differential Equations, 29 (1978), 1-14.

- 3. A. Granas, The theory of compact vector fields and some of its applications to topology and functional spaces, I. Rozprowy Mat., 30 (1962), 93.
- 4. J. K. Hale, Functional Differential Equations, Springer-Verlag, New York, 1971.
- 5. M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech., 18 (1969), 767-777.
- 6. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Lecture Notes #10, University of Maryland, College Park, Maryland, 1974.
- 7. G. W. Reddien and G. F. Webb, Boundary value problems for functional differential equations with L^2 initial functions, to appear.
- 8. C. Travis and G. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200 (1974), 395-418.
- 9. P. Waltman ann J. S. W. Wong, Two point boundary value problems for nonlinear functional differential equations, Trans. Amer. Math. Soc., 164 (1972), 39-54.

Received June 8, 1977 and in revised form October 18, 1978.

WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26505