BOUNDARY VALUE PROBLEMS FOR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract

Samuel M. Rankin, III Sufficient conditions are given to ensure the existence of solutions for the boundary value problem $$
\begin{equation*} y(t)=T(t) \phi(0)+\int_{0}^{t} T(t-s) F\left(y_{s}\right) d s \quad 0 \leqq t \leqq b \tag{1} \end{equation*}
$$ (*) $M y_{0}+N y_{b}=\psi, \quad \dot{\psi} \in C(=C([-r, 0] ; B)$ by def. $)$. It is assumed that $T(t), t \geqq 0$, is a strongly continuous semigroup of bounded linear operators on the Banach space B and $T(t), t \geqq 0$, has infinitesimal generator A. The function F is continuous from C to B and M and N are bounded linear operators defined on C.

Denote by C the Banach space of continuous functions from $[-r, 0]$ into the Banach space B, where for each $\varphi \in C,\|\varphi\|_{C}=$ $\sup _{-r \leqq 0 \leq 0} \sup \|\varphi(\theta)\|$. Let A be the infinitesimal generator of a strongly continuous semigroup of linear operators $T(t), t \geqq 0$ mapping B into B and satisfying $|T(t)| \leqq e^{\omega t}$ for some real ω. We let F be a nonlinear continuous function from C into B. If $y(t)$ is a continuous function from $[0, T]$ to B for some $T>0$, define the element $y_{t} \in C$ by $y_{t}(\theta)=y(t+\theta)$. Throughout this paper the reference $y(t)$ is a solution of Equation (1) (*) will mean $y(t)$ satisfies Equation (1) and the boundary condition (*). The statement $y(\varphi)(t)$ is a solution of Equation (1) will mean $y(t)$ satisfies Equation (1) and the initial condition $y_{0}=\varphi$. The notation Equation (1) without (*) will always denote the initial value problem.

In a recent paper [8] C. Travis and G. Webb have considered initial value problems for Equation (1). With F satisfying

$$
\begin{equation*}
\|F(\varphi)-F(\bar{\varphi})\| \leqq L\|\varphi-\bar{\varphi}\|_{c} \tag{2}
\end{equation*}
$$

for some $L>0$ and $\varphi, \bar{\varphi} \in C$, Travis and Webb obtain the existence of unique solutions of Equation (1) for each $\varphi \in C$. In another paper W. E. Fitzgibbon [2] has shown that global solutions of Equation (1) exist if F satisfies for each $\varphi \in C$

$$
\begin{equation*}
\|F(\varphi)\| \leqq K_{1}\|\varphi\|_{C}+K_{2} \quad \text { for some } \quad K_{1}, K_{2} \in R \tag{3}
\end{equation*}
$$

and if $T(t), t>0$ is compact.
When Equation (1) has unique solutions for each $\varphi \in C$, the mapping $U(t) \varphi=y_{t}(\varphi)$ is well defined for each $t \geqq 0$ and $\varphi \in C$. Here $y_{t}(\varphi)$ represents the element of C such that $y(\varphi)(t)$ is a solution of

Equation (1). If F satisfies (2) the following estimate from [8] is true:

$$
\begin{equation*}
\|U(t) \varphi-U(t) \bar{\varphi}\|_{C} \leqq e^{(\omega+L) t}\|\varphi-\bar{\varphi}\|_{C} \quad \text { if } \quad \omega \geqq 0 \tag{4}
\end{equation*}
$$

for all $t \geqq 0$. Throughout this paper it will be assumed that $\omega \geqq 0$.
If F satisfies (3), then we have for each $\varphi \in C$ and $0 \leqq t \leqq b$

$$
\begin{aligned}
\|U(t) \varphi\|_{C} & =\left\|y_{t}(\varphi)\right\|_{C}=\sup _{-r \leq \theta \leq 0}\left\|T(t+\theta) \varphi(0)+\int_{0}^{t+\theta} T(t+\theta-s) F\left(y_{s}\right) d s\right\| \\
& \leqq e^{\omega t}\|\varphi\|_{C}+e^{\omega t} \int_{0}^{t} e^{-\omega s} K_{1}\left\|y_{s}(\varphi)\right\|_{C}+K_{2} d s
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left\|y_{t}(\mathscr{P})\right\|_{C} \leqq \bar{K}_{1}\|\mathscr{P}\|_{C}+\bar{K}_{2} \tag{5}
\end{equation*}
$$

where $\bar{K}_{1}=e^{\left(\omega+K_{1}\right) b}$ and $\bar{K}_{2}=e^{\left(\omega+K_{1}\right) b} K_{2} b$.
It is shown in [8] that if the semigroup $T(t), t \geqq 0$ is compact for $t>0$, then the solution mapping $U(t) \varphi=y_{t}(\varphi)$ is compact in φ for each fixed $t>r$.

Equation (1) is the integrated form of the functional differential equation

$$
\begin{align*}
& y^{\prime}(t)=A y(t)+F\left(y_{t}\right) \quad 0 \leqq t \leqq b \tag{6}\\
& y_{0}=\varphi
\end{align*}
$$

Our results then can be applied to partial functional differential equations of the form

$$
\begin{array}{ll}
v\left({ }_{t} x, t\right)=v_{x x}(x, t)+f(v(x, t-r)) & 0 \leqq t \leqq b, 0 \leqq x \leqq l \\
v(0, t)=v(l, t)=0 & t \leqq 0 \\
\alpha(x, t) v(x, t)+\beta(x, t) v(x, b+t)=\psi(x, t) & -r \leqq t \leqq 0,0 \leqq x \leqq l
\end{array}
$$

Boundary value problems of the type Equation (6) (*) have been studied recently by R. Fennell and P. Waltman [1], G. Reddien and G. Webb [7] and P. Waltman and J. S. W. Wong [9] when $B=R^{n}$. The work here extends results found in [7] and [9] to Equation (1) $\left(^{*}\right)$ when B is infinite dimensional. Certain technical difficulties arise when B is infinite dimensional. For example, the solution mapping $U(t) \varphi$ for Equation (1) is not compact as is the case when $B=R^{n}$, see J. Hale [4]; this is a problem when trying to apply standard fixed point theorems. This difficulty is overcome by assuming the semigroup $T(t), t \geqq 0$ is compact for $t>0$. It will become clear that our results depend on the operators M and N, the Lipschitz constant L, and the length of the interval b.

Define $S(b) \mathscr{P}=x_{b}(\mathscr{P}) ; x_{b}(\mathscr{P})$ is the element of C such that $x(\mathscr{P})(t)$ is the unique solution of the system

$$
\begin{array}{ll}
x(t)=T(t) \varphi(0) & t \geqq 0 \\
x_{0}=\varphi & \varphi \in C . \tag{7}
\end{array}
$$

Notice that $S(b)$ is a special case of $U(b) \varphi \equiv y_{b}(\varphi)$ where $y(\varphi)(t)$ is the solution of Equation (1) for the initial function $\phi \in C$. That is, the mapping $S(b)$ is $U(b)$ when $F \equiv 0$. Also, if the semigroup $T(t)$, $t \geqq 0$ is compact for $t>0$, we have that $U(b)$ is compact and therefore $S(b)$ is compact.

We also have need to consider the system

$$
\begin{array}{ll}
z(t)=\int_{0}^{t} T(t-s) F\left(y_{s}(\varphi)\right) d s & 0 \leqq t \leqq b \tag{8}\\
z \equiv 0 & \text { on }[-r, 0]
\end{array}
$$

where $y(\varphi)(t)$ is the solution of Equation (1) for the initial function $\varphi \in C$.

Proposition 1. Let F satisfy condition (2).
(a) Suppose $(M+N)^{-1}$ exists with the range $R((U(b)-I)$) of $U(b)-I$ contained in $D\left((M+N)^{-1}\right)$, that $\left\|(M+N)^{-1} N(U(b)-I)\right\|_{\text {Lip }}<1$ $(b>r)$ and $\psi \in D\left((M+N)^{-1}\right)$, then solutions of Equation (1) (*) exist and are unique.
(b) Suppose $(M+N S(b))^{-1}$ exists with $R(N(U(b)-S(b))) \subset$ $D\left((M+N S(b))^{-1}\right)$ and $\left\|(M+N S(b))^{-1} N(U(b)-S(b))\right\|_{\text {Lip }}<1 \quad(b>r)$, then solutions of Equation (1) (*) exist and are unique.

Proof. For an initial function $\varphi \in C$ and its corresponding unique solution of Equation (1) we have

$$
M y_{0}+M y_{b}=M \varphi+N U(b) \varphi=(M+N U(b)) \varphi
$$

Therefore, in order to solve the boundary value problem Equation (1) (*) we must solve the operator equation

$$
(M+N U(b)) \varphi=\psi
$$

In case (a) we can write Equation (6) in the form

$$
(M+N+N(U(b)-I)) \varphi=\psi
$$

and in case (b) in the form

$$
(M+N S(b)+N(U(b)-S(b))) \varphi=\psi .
$$

Since $(M+N)^{-1}$ exists in (a) and $(M+N S(b))^{-1}$ exists in (b) the above equations become

$$
\begin{equation*}
\left(I+(M+N)^{-1} N(U(b)-I)\right) \varphi=(M+N)^{-1} \psi, \tag{9}
\end{equation*}
$$

and

$$
\left(I+(M+N S(b))^{-1} N(U(b)-S(b))\right) \varphi=(M+N S(b))^{-} \psi
$$

when $\psi \in D\left((M+N)^{-1}\right)$ or $\psi \in D\left((M+N S(b))^{-1}\right)$. The equations (9) and (9^{\prime}) are in the form $x+S x=y$ with $\|S\|_{\text {Lip }}<1$ and so are uniquely solvable.

Given an initial function $\varphi \in C$ and the solution $y(\varphi)(t)$ of Equation (1) we can write

$$
\begin{array}{ll}
y(\varphi)(t)=x(\varphi)(t)+z(0)(t) \tag{10}\\
y_{t}(\varphi)=x_{t}(\varphi)+z_{t}(0) & 0 \leqq t \leqq b
\end{array}
$$

where $x(\varphi)(t)$ and $z(0)(t)$ are solutions of Equations (7) and (8), respectively. Using the identity (10) we have the following corollary to Proposition 1(b).

Corollary to Proposition 1(b). If operator $(M+N S(b))^{-1}$ exists on C and $\left\|(M+N S(b))^{-1} N\right\| e^{(L+\omega) b}<1(b>r)$, then the boundary value problem Equation (1) (*) has a unique solution.

Proof. We show that the mapping $(M+N S(b))^{-1} N(U(b)-S(b))$ is a strict contraction:

$$
\begin{aligned}
& \left\|(M+N S(b))^{-1} N(U(b)-S(b)) \varphi-(M+N S(b))^{-1}(U(b)-S(b)) \bar{\varphi}\right\|_{c} \\
& \quad \leqq\left\|(M+N S(b))^{-1} N\right\| \sup _{-r \leq \theta \leq 0}\left\|\int_{0}^{b+\theta} T(b+\theta-s)\left(F\left(y_{s}(\varphi)\right)-F\left(y_{s}(\bar{\varphi})\right)\right) d s\right\| \\
& \quad \leqq\left\|(M+N S(b))^{-1} N\right\| L e^{\omega b}\|\varphi-\bar{\varphi}\|_{C} \int_{0}^{b} e^{L s} d s \\
& \quad<\left\|(M+N S(b))^{-1} N\right\| e^{(\omega+L) b}\|\varphi-\bar{\varphi}\|_{c}<\|\varphi-\bar{\varphi}\|_{c}, \\
& \quad \text { for all } \varphi, \bar{\varphi} \in C .
\end{aligned}
$$

The result now follows by Proposition 1(b).
Proposition 2. Let F satisfy condition (2). If the mapping M^{-1} exists on C with $\left\|M^{-1} N\right\| e^{(L+\omega) b}<1(b>r)$, then Equation (1) (*) has a unique solution.

Proof. For an initial function $\varphi \in C$ and its corresponding solution $y(\varphi)(t)$ of Equation (1), we have $M y_{0}+N y_{b}=(M+N U(b)) \varphi$. Thus, for the equation $(M+N U(b)) \varphi=\psi$, $\psi \in C$, we can write ($\left.I+M^{-1} N U(b)\right) \varphi=M^{-1} \psi$. From (4) we have that

$$
\begin{aligned}
\left\|M^{-1} N U(b) \varphi-M^{-1} N U(b) \bar{\varphi}\right\|_{c} & \leqq\left\|M^{-1} N\right\|\|U(b) \varphi-U(b) \bar{\varphi}\|_{c} \\
& \leqq\left\|M^{-1} N\right\| e^{(L+\omega) b}\|\varphi-\bar{\varphi}\|_{c}<\|\varphi-\bar{\varphi}\|_{c}
\end{aligned}
$$

for all $\varphi, \bar{\varphi} \in C$. The mapping $M^{-1} N U(b)$ is a strict contraction and so the equation $\left(I+M^{-1} N U(b)\right) \varphi=M^{-1} \psi$ has a unique solution for each $\psi \in C$. The result easily follows.

Using the identity (10) we are able to extend a result found in [9].

Proposition 3. The two point boundary value problem Equation (1) (*) has a solution if and only if $N z_{b}(0) \in \psi+R(M+N S(b))$, $\psi \in C, b>r$.

Proof. Given an initial function $\varphi \in C$, and its corresponding solution $y(\varphi)(t)$ of Equation (1) we have by (10) that

$$
M y_{0}(\varphi)+N y_{b}(\varphi)=M \varphi+N\left(x_{b}(\varphi)+z_{b}(0)\right)=(M+N S(b)) \varphi+N z_{b}(0)
$$

If $\psi \in C$ and $M y_{0}(\varphi)+N y_{b}(\varphi)=\psi$, we obtain $\psi=(M+N S(b)) \varphi+$ $N z_{b}(0)$; this gives $N z_{b}(0)=\psi-(M+N S(b)) \varphi$ and so $N z_{b}(0) \in \psi+$ $R(M+N S(b))$.

If there exists a solution ϕ of $N z_{b}(0)=\varphi+R(M+N S(b)) \varphi$, define $v=-\varphi$. Then for the solution $y(v)(t)$ of Equation (1) we have

$$
\begin{aligned}
M y_{0}(v)+N y_{b}(v) & =M v+N x_{b}(v)+N z_{b}(0) \\
& =(M+N S(b)) v+N z_{b}(0) \\
& =-(M+N S(b)) \varphi+N z_{b}(0)=\psi .
\end{aligned}
$$

Therefore the boundary value problem is solved.
The following result is due to A. Granas [3].
Proposition 4. If T is a compact operator mapping the Banach space X into X and satisfying $\varlimsup_{\|x\| \rightarrow \infty}\|T x\| /\|x\|<1$, then $R(I-T)=X$.

Proposition 4. (i) Suppose the semigroup $T(t), t \geqq 0$ is compact, (ii) F takes closed bounded sets of C into bounded sets in B, and $\lim _{\|\varphi\|_{C \rightarrow \infty}}\|F(\varphi)\| /\|\varphi\|_{c}=0$, (iii) there exist unique solutions to the initial value problem Equation (1), $(M+N S(b))^{-1}(b>r)$ exists on C as a bounded operator. Then the boundary value problem Equation (1) (*) has a solution.

Proof. Condition (ii) implies that there exists K_{1} and K_{2} such that $\|F(\varphi)\| \leqq K_{1}\|\varphi\|_{c}+K_{2}$ for all $\varphi \in C$, so that global solutions for Equation (1) exist [2]. Furthermore, we can find constants \bar{K}_{1} and \bar{K}_{2} such that condition (5) is true. Let φ_{n} be a sequence of functions in C such that $\left\|\varphi_{n}\right\|_{0} \rightarrow \infty$ as $n \rightarrow \infty$ and define $\beta_{n}=$ $\sup _{0 \leq t \leq b}\left\|y_{t}\left(\varphi_{n}\right)\right\|_{c}$. Note that $\beta_{n} \leqq \bar{K}_{1}\left\|\varphi_{n}\right\|_{c}+\bar{K}_{2}$ for each n. Let ε
be such that $0<\varepsilon<1 / b \bar{K}_{1} e^{\omega b}\left\|(M+N S(b))^{-1} N\right\|$, then by (ii) there exists $h>0$ such that if $\|\varphi\|_{c}>h,\|F \varphi\| \leqq \varepsilon\|\varphi\|_{c}$. We define $R=$ $\max \left\{\|F(\mathcal{P})\|:\|\mathscr{P}\|_{c} \leqq h\right\}$ then

$$
\begin{aligned}
\|(M & +N S(b))^{-1} N(U(b)-S(b)) \varphi_{n} \| \\
& \leqq \sup _{--\leq \leq \leq \leq 0}\left\|(M+N S(b))^{-1} N\right\| \int_{0}^{b}\|T(b+\theta-s)\|\left\|F\left(y_{s}\left(\varphi_{n}\right)\right)\right\| d s \\
& \leqq\left\|(M+N S(b))^{-1} N\right\| e^{u 0} \int_{0}^{b}\left\|F\left(y_{s}\left(\varphi_{n}\right)\right)\right\| d s \\
& \leqq\left\|(M+N S(b))^{-1} N\right\| e^{\omega t} b \max \left\{R, \varepsilon\left(\bar{K}_{1}\left\|\varphi_{n}\right\|_{c}+\bar{K}_{2}\right)\right\} .
\end{aligned}
$$

If $\beta_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have $\varlimsup_{n \rightarrow \infty} \|(M+N S(b))^{-1} N(U(b)-$ $S(b)) \varphi_{n}\left\|_{c} /\right\| \varphi_{n} \|_{c}<1$ and if β_{n} bounded as $n \rightarrow \infty$ then $\varlimsup_{\lim _{n \rightarrow \infty}} \|(M+$ $N S(b))^{-1} N(U(b)-S(b)) \varphi_{n}\|/ /\| \varphi_{n} \|_{c}=0$. Notice that $U(b)$ exists by (iii) and that by (i) $(M+N S(b)) N(U(b)-S(b))$ is compact. Thus by Proposition A there is a solution to $\left(I+(M+N S(b))^{-1} N(U(b)-S(b))\right) \varphi=$ $(M+N S(b))^{-1} \psi$ and the proposition is proved.

To prove Proposition 5 we need the following result of Z. Nashed and J. S. W. Wong [5].

Proposition B. If A_{1} is a strict contraction on a Banach space X, i.e., $\left\|A_{1} x-A_{1} y\right\| \leqq \gamma\|x-y\|(0<\gamma<1), x, y \in X$, and A_{2} is a compact mapping on X such that $\lim _{\|x\| \rightarrow \infty}\left\|A_{2} x\right\| /\|x\|=\beta<1-\gamma$, then $R\left(I-\left(A_{1}+A_{2}\right)\right)=X$.

Proposition 5. (i) If the semigroup $T(t), t \geqq 0$ is compact for $t>0$, (ii) F takes closed bounded sets of C into bounded sets in B, and $\lim _{\|\theta\|_{C \rightarrow \infty}}\|F(\varphi)\| /\|\varphi\|=0$, (iii) there exist unique solutions to the initial value problem Equation (1), (iv) M^{-1} exists on C as a bounded operator and $\left\|M^{-1} N\right\| e^{w b}<1(b>r)$. Then the boundary value problem Equation (1) (*) has a solution.

Proof. Given an initial function $\varphi \in C$, we can write

$$
y_{b}(\varphi)(\theta)=T(b+\theta) \varphi(0)+\int_{0}^{b+\theta} T(b+\theta-s) F\left(y_{s}(\varphi)\right) d s
$$

where $y(\varphi)(t)$ is the solution of Equation (1) corresponding to φ. Define the operators A_{1} and A_{2} on C as follows:

$$
\left(A_{1} \varphi\right)(\theta)=T(b+\theta) \varphi(0) \quad \text { and } \quad\left(A_{2} \mathcal{P}\right)(\theta)=\int_{0}^{b+\theta} T(b+\theta-s) F\left(y_{s}(\varphi)\right) d s
$$

The operator A_{2} is compact by (i) and for $\varphi, \bar{\varphi} \in C$ we have

$$
\left\|M^{-1} N A_{1} \varphi-M^{-1} N A_{1} \bar{\varphi}\right\|_{c} \leqq\left\|M^{-1} N\right\| e^{\omega b}\|\varphi-\bar{\varphi}\|_{c} .
$$

By (iv) the operator $M^{-1} N A_{1}$ is Lipschitz with Lipschitz constant $\gamma \leqq\left\|M^{-1} N\right\| e^{\omega b}<1$.

Let $\varphi_{n} \in C$ such that $\left\|\varphi_{n}\right\|_{C} \rightarrow \infty$ [as $n \rightarrow \infty$ and define $\beta_{n}=$ $\sup _{0 \leq t \leq b}\left\|y_{t}\left(\varphi_{n}\right)\right\|_{c} . \quad$ As in the proof of Proposition 4 we have constants $K_{1}, \quad K_{2}, \quad \bar{K}_{1}, \quad \bar{K}_{2}$ such that $\|F(\varphi)\| \leqq K_{1}\|\varphi\|_{C}+K_{2}$ and $\left\|y_{t}(\varphi)\right\|_{C} \leqq$ $\bar{K}_{1}\|\varphi\|_{C}+\bar{K}_{2}$; therefore, we have $\beta_{n} \leqq \bar{K}_{1}\left\|\varphi_{n}\right\|_{C}+\bar{K}_{2}$. If the sequence β_{n} has limit infinity as n approaches infinity, then by (ii)

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty}\left\|M^{-1} N A_{2} \varphi_{n}\right\|_{c} /\left\|\varphi_{n}\right\|_{c} & \leqq \varlimsup_{n \rightarrow \infty}\left\|M^{-1} N\right\| e^{\omega b} \varepsilon \int_{0}^{b}\left(\bar{K}_{1}\left\|\varphi_{n}\right\|_{c}+\bar{K}_{2}\right) d s /\left\|\varphi_{n}\right\|_{c} \\
& \leqq\left\|M^{-1} N\right\| e^{\omega b} \varepsilon b \in \bar{K}_{1}
\end{aligned}
$$

where $\varepsilon>0$ is arbitrary. Thus if we choose $\varepsilon<1-\gamma /\left\|M^{-1} N\right\| e^{\prime \prime \prime} b \bar{K}_{1}$, then $\overline{\lim }_{n \rightarrow \infty}\left\|M^{-1} N A_{2} \varphi_{n}\right\|_{c} /\left\|\varphi_{n}\right\|_{c}<1-\gamma$. If the sequence β_{n} is bounded, then $\varlimsup_{n \rightarrow \infty}\left\|M^{-1} N A_{2} \varphi_{n}\right\|_{c} /\left\|\varphi_{n}\right\|_{C}=0<1-\gamma$. Applying Proposition B, we see that for each $\psi \in C$ there exists a solution φ of

$$
\left(I+M^{-1} N\left(A_{1}+A_{2}\right)\right) \varphi=M^{-1} \psi .
$$

From the above equation we can solve the boundary value problem Equation (1) (*).

To illustrate our results we consider the partial functional differential equation

$$
\begin{array}{ll}
w_{t}(x, t)=w_{x x}(x, t)+f(w(x, t-r)) & 0 \leqq t \leqq b \\
w(0, t)=w(l, t)=0 & t \leqq 0
\end{array}
$$

Here f is a real-valued, Lipschitz continuous and continuously differentiable function. We let $B=L_{2}[0, l]$, and define A and F respectively as:
$A: D(A) \rightarrow B$ by $A u=\ddot{u}, D(A)=\{u \in B \mid u$ and \dot{u} are absolutely continuous, $\ddot{u} \in B$ and $u(0)=u(l)=0\}$ and $F: C \rightarrow B$ by $F(\varphi)(x)=$ $f(\varphi(-r)(x)) \varphi \in C$ and $x \in[0, l]$. It is known that A generates a strongly continuous semigroup $T(t), t \geqq 0$ such that $T(t)$ is compact for $t>0$ and $w=0$, see A. Pazy [6, pages 9 and 47]. The function F is Lipschitz continuous and continuously differentiable.

If we let $M=I, N=1 / 4 I$, then $(M+N)^{-1}=4 / 5 I$ and

$$
\begin{aligned}
& \left\|(M+N)^{-1} N(U(b)-I) \varphi-(M+N)^{-1} N(U(b)-I) \bar{\varphi}\right\|_{c} \\
& \quad \leqq\left\|(M+N)^{-1} N\right\|\left(\|U(b) \varphi-U(b) \bar{\varphi}\|_{C}+\|\varphi-\bar{\varphi}\|_{C}\right) \\
& \quad \leqq 1 / 5\left(\left\|y_{b}(\varphi)-y_{b}(\bar{\varphi})\right\|_{c}+\|\varphi-\varphi\|_{c}\right) \leqq 1 / 5\left(e^{L b}\|\varphi-\bar{\varphi}\|_{c}+\|\varphi-\varphi\|_{C}\right) \\
& \quad \leqq 1 / 5\left(e^{L b}+1\right)\|\phi-\bar{\varphi}\|_{c} .
\end{aligned}
$$

Part (a) of Proposition 1 is applicable if $1 / 5\left(e^{L b}+1\right)<1$. This is true if $L b<\ln 4$.

If the operators $M=I$ and $N=-1 / 4 I$ then

$$
\begin{aligned}
\| M & +N S(b) \varphi\left\|_{C}=\sup _{-r \leq v \leq 0}\right\|(M+N S(b) \varphi)(\theta) \| \\
& =\sup _{-r \leq 0 \leq 0}\|\varphi(\theta)-1 / 4 T(b+\theta) \varphi(0)\| \\
& \geqq \sup _{-r \leq v \leq 0}\|\varphi(\theta)\|-1 / 4\|\varphi(0)\| \geqq\|\varphi\|_{C}-1 / 4\|\varphi\|_{C}=3 / 4\|\varphi\|_{C} .
\end{aligned}
$$

The above estimate implies that $(M+N S(b))^{-1}$ exists on C and $\left\|(M+N S(b))^{-1}\right\| \leqq 4 / 3$, furthermore

$$
\begin{aligned}
\|(M & +N S(b))^{-1} N(U(b)-S(b)) \varphi-(M+N S(b))^{-1} N(U(b)-S(b)) \bar{\varphi} \|_{c} \\
& \leqq\left\|(M+N S(b))^{-1} N\right\|\|(U(b)-S(b)) \varphi-(U(b)-S(b)) \bar{\varphi}\|_{c} \\
& \leqq\left\|(M+N S(b))^{-1} N\right\| e^{L b}\|\varphi-\bar{\varphi}\|_{c} \leqq 4 / 3 \cdot 1 / 4 e^{L b}\|\varphi-\bar{\varphi}\|_{c} \\
& =1 / 3 e^{L b}\|\varphi-\bar{\varphi}\|_{c} .
\end{aligned}
$$

Here if $L b<\ln 3$ then $1 / 3 e^{L b}<1$, and the corollary to Proposition 1(b) applies.

If $M=I$ and $N=-1 / 2 I$ Proposition 1 is not readily applicable since we can obtain only the following estimate:

$$
\left\|(M+N)^{-1} N(U(b)-I)\right\|_{\text {Lip }} \leqq\left\|(M+N)^{-1} N\right\|\left(e^{L b}+1\right) \leqq e^{L b}+1
$$

The term $e^{L b}+1$ cannot be less than 1 for any positive numbers L and b. Similarly we have

$$
\left\|(M+N S(b))^{-1} N(U(b)-S(b))\right\|_{\text {Lip }} \leqq\left\|(M+N S(b))^{-1} N\right\| e^{L b} \leqq e^{L b}
$$

and $e^{L b}$ cannot be less than 1 and positive for any L and b. Proposition 2, however, is easily applied since $\left\|M^{-1} N\right\| e^{L b}=1 / 2 e^{L b}<1$ if $0<L b<\ln 2$.

If we define $F(\varphi)(x)=f(\varphi(-r)(x))=\varphi^{1 / 4}(-r)(x)$, then

$$
\begin{aligned}
\|F(\varphi)\| /\|\varphi\|_{c} & =\left(\int_{0}^{l}\left|\varphi^{1 / 2}(-r)(x)\right| d x\right)^{1 / 2} / \sup _{-r \leq \theta \leq 0} \int_{0}^{l} \varphi^{2}(\theta)(x) \mid d x \\
& \leqq l^{3 / 8}\left(\int_{0}^{l}\left|\varphi^{2}(-r)(x)\right| d x\right)^{1 / 8} / \sup _{-r \leqq \theta \leq 0} \int_{0}^{l}\left|\varphi^{2}(\theta)(x)\right| d x \\
& \leqq l^{3 / 8}\left(\sup _{-r \leqq 0 \leq 0} \int_{0}^{l}\left|\varphi^{2}(\theta)(x)\right| d x\right)^{1 / 8} / \sup _{-r \leqq 0 \leq 0} \int_{0}^{l}\left|\varphi^{2}(\theta)(x)\right| d x
\end{aligned}
$$

and $\lim _{\|\varphi\|_{c \rightarrow \infty}}\|F(\varphi)\| /\|\varphi\|=0$. Furthermore, F takes closed bounded sets of C into bounded sets of $B=L_{2}[0, l]$. Letting $M=I$ and $N=-1 / 4 I$, both $(M+N S(b))^{-1}$ and M^{-1} exist, and Propositions 4 and 5 can be applied to obtain solutions of

$$
\begin{align*}
& y(t)=T(t) \varphi(0)+\int_{0}^{t} T(t+\theta-s) y_{s}^{1 / 4}(-r)(\cdot) d s \tag{11}\\
& M y_{0}+N y_{b}=\psi \quad b>r \tag{*}
\end{align*}
$$

Notice that the length of the interval b does not enter into the discussion for the above example, other than b is required to be greater than r.

The next theorem handles periodic boundary conditions, i.e., the boundary condition $y_{0}=y_{b}$.

Proposition 6. Suppose F satisfies condition (2). If the operator $M+N S(b)$ has a bounded inverse defined on C such that $\left\|(M+N S(b))^{-1}\right\|<d$ for some $d>0$ and for all (r, γ) where γ satisfies $\gamma>r$ and $d\|N\| e^{(L+\omega) r}=1$, then the boundary value problem Equation (1) (*) has a unique solution.

Proof. For a function $\psi \in C$ define the mapping $H: C \rightarrow C$ by

$$
H \varphi=(M+N S(b))^{-1} \psi-(M+N S(b))^{-1} N(U(b)-S(b)) \varphi
$$

We have for $\varphi, \bar{\varphi} \in C$

$$
\begin{aligned}
& \| H \varphi- H \bar{\varphi}\left\|_{C}=\right\|(M+N S(b))^{-1} N(U(b)-S(b)) \varphi \\
&-(M+N S(b))^{-1} N(U(b)-S(b)) \bar{\varphi} \|_{C} \\
& \leqq\left\|(M+N S(b))^{-1} N\right\|\left\|z_{b}(\varphi)-\bar{z}_{b}(\bar{\varphi})\right\|_{C} \\
& \leqq d\|N\| \sup _{-r \leq 0 \leqq 0}\|z(\varphi)(b+\theta)-\bar{z}(\bar{\varphi})(b+\theta)\| \\
& \leqq d\|N\| \int_{0}^{b} e^{w(b-s)}\left\|F\left(y_{s}(\varphi)\right)-F\left(y_{s}(\bar{\varphi})\right)\right\| d s \\
& \leqq d\|N\| e^{(\omega b} L \int_{0}^{b} e^{-\omega_{s}}\left\|y_{s}(\varphi)-y_{s}(\bar{\varphi})\right\|_{C} d s \\
& \leqq d\|N\| e^{(L+\omega) b} L b\|\varphi-\bar{\varphi}\|_{C} .
\end{aligned}
$$

The operator H is a contraction if b is sufficiently small and the boundary value problem is uniquely solvable.

Remark. Proposition 4 also handles periodic boundary conditions since again the only requirement on M and N is the existence of $(M+N S(b))^{-1}$. The inverse of $M+N S(b)$ exists with domain C if and only if the boundary value problem Equation (7)(*) has a unique solution for each $\psi \in C$.

Acknowledgment. The author would like to thank Professor Glenn F. Webb for several helpful conversations.

References

1. R. Fennell and P. Waltman, A boundary value problem for a system of nonlinear functional differential equations, J. Math. Anal., 26 (1969), 447-453.
2. W. E. Fitzgibbon, Semilinear Functional Differential Equations in Banach Space, J. Differential Equations, 29 (1978), 1-14.
3. A. Granas, The theory of compact vector fields and some of its applications to topology and functional spaces, I. Rozprowy Mat., 30 (1962), 93.
4. J. K. Hale, Functional Differential Equations, Springer-Verlag, New York, 1971.
5. M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech., 18 (1969), 767-777.
6. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Lecture Notes \#10, University of Maryland, College Park, Maryland, 1974.
7. G. W. Reddien and G. F. Webb, Boundary value problems for functional differential equations with L^{2} initial functions, to appear.
8. C. Travis and G. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200 (1974), 395-418.
9. P. Waltman ann J. S. W. Wong, Two point boundary value problems for nonlinear functional differential equations, Trans. Amer. Math. Soc., 164 (1972), 39-54.

Received June 8, 1977 and in revised form October 18, 1978.
West Virginia University
Morgantown, WV 26505

