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BOUNDARY VALUE PROBLEMS FOR PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

SAMUEL M. RANKIN, III

Sufficient conditions are given to ensure the existence
of solutions for the boundary value problem

(1) y(t) = T(t)φ(O) + Γ T(t - s)F(ys)ds O^tSb
•Jo

(*) Myo + Nyb^f , feC(=C([~r,0];B) by def.) .

It is assumed that T(t)y t ̂  0, is a strongly continuous semi-
group of bounded linear operators on the Banach space B
and T(t), t ̂  0, has infinitesimal generator A. The function
F is continuous from C to B and M and N are bounded
linear operators defined on C.

Denote by C the Banach space of continuous functions from
r, 0] into the Banach space B, where for each φeC, \\φ\\c ~

g0<rO sup 11̂ (0)11. Let A be the infinitesimal generator of a
strongly continuous semigroup of linear operators T(t), t ^ 0 mapping
B into B and satisfying | T(t)\ <̂  eωt for some real ω. We let F be
a nonlinear continuous function from C into B. If y(t) is a continu-
ous function from [0, T] to B for some Γ > 0, define the element
yteC by #t(0) — y(t + θ). Throughout this paper the reference y(t)
is a solution of Equation (1) (*) will mean y(t) satisfies Equation (1)
and the boundary condition (*). The statement y(φ)(t) is a solution
of Equation (1) will mean y(t) satisfies Equation (1) and the initial
condition yQ = φ. The notation Equation (1) without (*) will always
denote the initial value problem.

In a recent paper [8] C. Travis and G. Webb have considered
initial value problems for Equation (1). With F satisfying

(2) \\F(φ)-F{φ)\\i£L\\φ-φ\\a

for some L > 0 and φ, ψeC, Travis and Webb obtain the existence
of unique solutions of Equation (1) for each φeC. In another paper
W. E. Fitzgibbon [2] has shown that global solutions of Equation
(1) exist if F satisfies for each φeC

(3) 11^(9)11^X111911* + I ζ for some KuK2eR,

and if T(t), t > 0 is compact.
When Equation (1) has unique solutions for each φeC, the

mapping U(t)φ — yt(φ) is well defined for each t ^ 0 and φeC. Here
yt(φ) represents the element of C such that y(φ)(t) is a solution of
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Equation (1). If F satisfies (2) the following estimate from [8] is
true:

(4) \\U{t)φ-U(t)φ\\c^e*+L»\\φ-φ\\c if ^ 0

for alH ̂  0. Throughout this paper it will be assumed that ω ^ 0.

If F satisfies (3), then we have for each φeC and 0 <Ξ t <; b

\\U(t)φ\\0 = \\yt(φ)\\0 = SUP S t+Θ
T{t + Θ- s)F(ys)ds

0

^ er*\\φ\\0 + e»< [e~'"Kί\\y.(φ)\\0 + Kβs .
JO

This implies that

(5)

where K, = β<«+*i» and K2 = e φ
It is shown in [8] that if the semigroup T(t), t ^ 0 is compact

for t > 0, then the solution mapping U(t)φ = yt{ψ) is compact in φ
for each fixed t > r.

Equation (1) is the integrated form of the functional differential
equation

y\t) = Ay(t) + F(yt) O^t^b

Vo = Ψ

Our results then can be applied to partial functional differential
equations of the form

v(tx, t) = vxx{x, t) + f(v(x, t -r)) 0 Stt ^ 6 , 0 ^x ^l

v(0, t) = v(l, t) = 0 t ^ 0

;, t)v(x, t) + /3(α, ί)ι;(ίc, b + t) = f (», t) - r ^ ί ^ O , 0 ^ a : ^ ί .

Boundary value problems of the type Equation (6) (*) have been
studied recently by R. Fennell and P. Waltman [1], G. Reddien and
G. Webb [7] and P. Waltman and J. S. W. Wong [9] when B = Rn.
The work here extends results found in [7] and [9] to Equation (1)
(*) when B is infinite dimensional. Certain technical difficulties
arise when B is infinite dimensional. For example, the solution
mapping U(t)φ for Equation (1) is not compact as is the case when
B = Rn, see J. Hale [4]; this is a problem when trying to apply
standard fixed point theorems. This difficulty is overcome by
assuming the semigroup Γ(ί), t ^ 0 is compact for t > 0. It will
become clear that our results depend on the operators M and JV,
the Lipschitz constant L, and the length of the interval 6.
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Define Sφ)φ = xb(φ); xb(φ) is the element of C such that x(φ)(t)
is the unique solution of the system

7 x(fi) = T(t)φ(0) t ^ 0

Xo = φ φβC .

Notice that Sφ) is a special case of Uφ)φ = yb(φ) where y(φ)(t) is
the solution of Equation (1) for the initial function φeC. That is,
the mapping Sφ) is 17(6) when F == 0. Also, if the semigroup T(t),
t ^ 0 is compact for t > 0, we have that [7(6) is compact and there-
fore Sφ) is compact.

We also have need to consider the system

( 8 ) z(t) = ^ T(t - s)F(ys(φ))ds O^t^b

z == 0 on [—r, 0]

where y(φ)(t) is the solution of Equation (1) for the initial function

PROPOSITION 1. Let F satisfy condition (2).
(a) Suppose (M + iV)"1 exists with the range R(( Uφ) — /)) of

Uφ) - I contained in D((M+ ΛT1), that \\ (M + 2V)"W( 17(6)- I) | | L i p < 1
(6 > r) αwώ α/r 6 D((Λf + N)'1), then solutions of Equation (1) (*)
exist and are unique.

(b) Suppose (M + NSφ))'1 exists with R(N(Uφ) - Sφ))) c
D((M + NSφ))-1) and \\(M + NSφ^NiUφ) - S(6))||Llp < 1 (6 > r),

solutions of Equation (1) (*) β#ΐs£ αwd are unique.

Proof. For an initial function φ e C and its corresponding unique
solution of Equation (1) we have

My, + Myb = Mφ + NUφ)φ = (M + NUφ))φ .

Therefore, in order to solve the boundary value problem Equation
(1) (*) we must solve the operator equation

(M + NUφ))φ = ψ .

In case (a) we can write Equation (6) in the form

(M+N+ N(Uφ) - I))φ = ψ

and in case (b) in the form

(M + NSφ) + N(Uφ) - Sφ)))φ = ψ .

Since (M + N)'1 exists in (a) and (M + NSφ))"1 exists in (b) the
above equations become
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(9) (/ + (AT + N)'ιN(Uφ) - I))φ = (Af + iSΓ)"V ,

and

(9') (I + (M + NSφ))'ιN{Uφ) - S(δ)))9> = (Λf + NSφ))'ψ

when ψ e D((M + iSΓ)"1) or ψ e D((M + NSφ))"1). The equations (9)
and (9') are in the form x + Sx = y with | | S | | L i p < l and so are
uniquely solvable.

Given an initial function φeC and the solution y{φ){t) of Equa-
tion (1) we can write

(10) y ( P m X i P m + Z m ) 0 ^ t* 6
Vlψ) = a?f(9>) + 3,(0)

where x{φ)(t) and »(0)(ί) are solutions of Equations (7) and (8),
respectively. Using the identity (10) we have the following corollary
to Proposition l(b).

COROLLARY TO PROPOSITION l(b). // operator (Af + NSφ))~ι

exists on C and || (Af + iVS(6))"W|| e(L+ω)δ < 1 (6 > r), ίftew ίfee boundary
value problem Equation (1) (*) ftαs α unique solution.

Proof. We show that the mapping (M + 2SΓS(δ))"W( 17(6) - S(δ))
is a strict contraction:

||(Λf + NSφ))~ιN(Uφ) - S(6))9> - (AT + NSφ))-\Uφ)
VII

VII

<

The

ll(Af +

ll(Λf +

ll(Λf +

NS(b)Y

NS(b)Y

NS(b)Y

-ιN\\

•W||

result now follows

sup
-rSflSO

Γ 2X6 H
Jo

f'
Jc

e «»+£>δ| |φ _ φ^0

by Proposition

- « -

< 11̂

lib).

-ψ\\c,

for

- F(ys(φ)))ds

all φ,φeC.

PROPOSITION 2. Lei F satisfy condition (2). 1/ the mapping
Mr1 exists on G with ||M"W||e(Z+ΰ>)& < 1 (6 > r), then Equation (1) (*)

a unique solution.

Proof. For an initial function φeC and its corresponding solu-
tion y(φ)(t) of Equation (1), we have My0 + Nyb = (Af + NUφ))φ.
Thus, for the equation (Λf + NUφ))φ = ψ9 f eC, we can write
(I + M-'NUφ^φ = Λf-ty From (4) we have that

- Uφ)φ\\a



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 463

for all φ, φ 6 C. The mapping M~ιNU(b) is a strict contraction and
so the equation (I + M~ιNU(b))φ — M~xψ has a unique solution for
each ψeC. The result easily follows.

Using the identity (10) we are able to extend a result found in
[9].

PROPOSITION 3. The two point boundary value problem Equa-
tion (1) (*) has a solution if and only if Nzb(Q) e ψ + R(M + NS(b)),
^eC, b> r.

Proof. Given an initial function φeC, and its corresponding
solution y(φ)(t) of Equation (1) we have by (10) that

Mylφ) + Nyb(φ) = Mφ + N(xb(φ) + *6(0)) = (AT + NS(b))φ + Nzb(0) .

If feC and Myo(φ) + Nyb(φ) = f, we obtain f = (M + NS(b))φ +
iSfeδ(0); this gives Nzh(0) = ̂  - (Af + NS(b))φ and so Afe6(0)eψ +
Λ(Af + 2VS(6)).

If there exists a solution φ of Nzb(0) = φ + R(M + NS(b))<p, define
v = —φ. Then for the solution y{y)(t) of Equation (1) we have

Afi/oM + iV2/6(v) = Mv + Nxb(v) + iSfe6(0)

= (Λf + iVS(6))t; + Nzb(0)

= -(M+ NS(b))φ + Nzb(0) = ψ .

Therefore the boundary value problem is solved.
The following result is due to A. Granas [3].

PROPOSITION 4. If T is a compact operator mapping the Banach

space X into X and satisfying limn.n^ || Γa?||/||αs|| < 1, then
R(I - T) = X.

PROPOSITION 4. (i) Suppose the semigroup T(t), t ^ 0 is com-
pact, (ii) F takes closed bounded sets of C into bounded sets in B,
and limî iî oo IIJP^II/II^IIC = 0, (iii) there exist unique solutions to
the initial value problem Equation (1), (M + NSφ))"1 (b > r) exists
on G as a bounded operator. Then the boundary value problem
Equation (1) (*) has a solution.

Proof. Condition (ii) implies that there exists Kx and K2 such
that IIF^II ^ £ 1 | | 9 | | ( 7 +JBL2 for all φeC, so that global solutions
for Equation (1) exist [2]. Furthermore, we can find constants Kx

and K2 such that condition (5) is true. Let φn be a sequence of
functions in C such that H^JIc-* °° as n-+°o and define βn —

|| #*(?>») 11*?. Note that βn ^ KA\<Pn\\c + K2 for each n. Let ε
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be such that 0 < ε < l/bK^WiM + NS(b))-ιN\\, then by (ii) there
exists h > 0 such that if || φ\\0 > h, \\Fφ\\ ̂  &\\φ\\0. We define R =
max {\\F(φ)\\: \\<?\\0^h) then

\\(M + NS(b)rιN(U(b) - S(b))φn

5ί sup

^ 11 (M + NSφ))-ιN\ \e"Λ"\\ F(yM) |1 da
J

^ || (M + JVS(δ))-W|| ^ 6 6 max £β, ε(Kλ \\ <P
n \\c

If /3Λ -^ co as n -> oo, we have l i m ^ || (Λf + NSψ)YιN(U{b) -
|c < 1 and if βn bounded as n-> ^ then ί ^ Z Γ

NS(b))-ιN(U(]b) - S(b))φn\\/\\<P*\\o = 0. Notice that 17(6) exists by (iii)
and that by (i) (Λf + NS(b))N(U(b) - S(6)) is compact. Thus by
Proposition A there is a solution to (/+ (M+NS(b))-1N(U(b)-S(b)))φ =
(M + NSib))'1^ and the proposition is proved.

To prove Proposition 5 we need the following result of Z.
Nashed and J. S. W. Wong [5].

PROPOSITION B. IfA1isαstrict contraction on a Banach space
X, i.e., WA& — A&W 2* 71|a — 2/|| (0 < 7 < 1), x,yeX, and A2 is a
compact mapping on X such that limM£ci|_>0O || A 2 # | | / | | # | | = β < 1 — 7,
then R(I - (A, + A2)) = X.

PROPOSITION 5. (i) If the semigroup T(t), t ^ 0 is compact for
t > 0, (ii) F takes closed bounded sets of C into bounded sets in B,
and limι^M(7_>oo I I J P ^ I I / I I ^ H = 0, (iii) there exist unique solutions to
the initial value problem Equation (1), (iv) M"1 exists on C as a
bounded operator and ||Λf~\N'||eίϋ6 < 1 (6 > r). Then the boundary
value problem Equation (1) (*) has a solution.

Proof. Given an initial function φeC, we can write

S b+θ
2X6 + 0 - s)F{ys{φ))ds

0

where y(φ)(t) is the solution of Equation (1) corresponding to φ.
Define the operators A± and A2 on C as follows:

S b+θ
T(b + Θ- s)F(ys(φ))ds .

0

The operator A2 is compact by (i) and for φ, φ e C we have

^ H ^ - φ\\a .
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By (iv) the operator M~1NA1 is Lipschitz with Lipschitz constant
7 ^ IIAf'WHβ^6 < 1 .

Let <pneC such that ||9>Λ||σ—> °° [as n—> co and define βn =
supô t̂ 6 Hl/ίC ĴIIc As in the proof of Proposition 4 we have constants
K19 K2, K1± K2 such t h a t \\F(φ)\\ ^ K.WΨWC + K_2 and \\yt(<P)\\c ̂

Ki\\<P\\c + K2; therefore, we have βn ^ K^lφ^Wc + K2. If the sequence
βn has limit infinity as n approaches infinity, then by (ii)

where ε > 0 is arbitrary. Thus if we choose ε < 1 — y/WM
then Hmn^oo\\M''1NA2φn\\c/\\φn\\c < 1 - 7. If the sequence /3Λ is
bounded, then ϊ ϊ ΐ n ^ 11 M~1NA2φn \ \c/\\ φn \\c = 0 < 1 - 7. Applying
Proposition B, we see that for each ψeC there exists a solution φ
of

AT" V
From the above equation we can solve the boundary value problem
Equation (1) (*).

To illustrate our results we consider the partial functional
differential equation

wt(x, t) = wxx(x, t) + f(w(x, t - r)) 0 St ^b 0 ^x ^l

w(0, t) = w(l, t) = 0 t ^ 0 .

Here / is a real-valued, Lipschitz continuous and continuously
differentiate function. We let B = L2[0, I], and define A and F
respectively as:

A: D(A) —> B by A^ = ά', D(A) = {u e B \ u and ύ are absolutely
continuous, ίί 6 B and %(0) = u(l) = 0} and ί7: C-> B by F(φ)(x) =
f(φ( — r)(x))φeC and ίce[0, Z]. It is known that A generates a
strongly continuous semigroup T(t), t ^ 0 such that T(£) is compact
for t > 0 and w = 0, see A. Pazy [6, pages 9 and 47]. The function
F is Lipschitz continuous and continuously differentiable.

If we let M = I, N = 1/4 J, then (M + N)'1 = 4/5 / and

11 (AT + NΓNiUφ) - I)φ - (M + NΓNiUφ) - I)φ\\a

<, \\{M + N)-*N\\(\\UQ>)φ - C/Cδ̂ H, + ||?> - ^| |σ)

>) - yb(φ)\\c + ||9> - ψ\\c) ^ V^{eLh\\φ - ^Hc + \\<P - <P\\c)

Part (a) of Proposition 1 is applicable if l/5(βLό + 1) < 1. This is
true if Lb <
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If the operators M = / and N = —1/4 I then

+ NS(b)φ\\c= sup \\(M + NS(b)φ)(β)\\

= sup \\φ(θ) - l/4T(b + θ)<p(0)\\

2g sup

The above estimate implies that (M + NSφ))'1 exists on C and
|| (Λf + NSφ^-'W ^4/3, furthermore

||(*Γ + NS(f>)riN(U(b) - S(6))9> - (Jf + NS{b))'ιN(U{b) -

^ ||(AΓ+ iSΓS(δ))-W||||(C7(δ) - S(6))?> - (17(6) - Sφ))φ\\c

£ \\(M+NS(b)ΓN\\eLb\\φ - φ\\a £ 4β l/4eLb\\φ - φ\\Ό

Here if Lb < In 3 then l/3eL6 < 1, and the corollary to Proposition
l(b) applies.

If M = I and N = —1/2/ Proposition 1 is not readily applicable
since we can obtain only the following estimate:

\\(M + Nr'NiUφ) - 7 ) | | L l p ^ \\(M + Nr'NWie" + 1) ̂  eLδ + 1 .

The term eLb + 1 cannot be less than 1 for any positive numbers L
and b. Similarly we have

\\(M + NS{b)Y'N(U(b) - S(δ)) | | L l p ^ \\(M + NS{b))-'N\\eLb ^ eLb

and eLb cannot be less than 1 and positive for any L and b. Proposi-
tion 2, however, is easily applied since ||M~1iV||βI'δ = l/2βLδ < 1 if
0 < Lb < In 2.

If we define F(φ)(x) = f{φ{-r)(x)) - φγ/\-r){x), then

\\F{φ)\\l\\φ\\c = (T |^1/2(-r)(α;)|dα;y7 sup
\Jθ / / -r^ϋύ

r)(x)\dxYΊ sup Γ
/ / -r:£ό^0 JO

\φ\θ)(x)\dx)UΊ SUV \
/ / -rSΘ^O Jo

O

and limii^n^^ ||-F(9>)||/||9>|| = 0. Furthermore, F takes closed bounded
sets of C into bounded sets of B = L2[0,l]. Letting M—I and
JV= -1/4 /, both (M+NSψ))-1 and ilί"1 exist, and Propositions 4
and 5 can be applied to obtain solutions of

(11) y(t) = T(t)φ(0)
o

Myo + Nyb=ir b>



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 467

Notice that the length of the interval b does not enter into the
discussion for the above example, other than b is required to be
greater than r.

The next theorem handles periodic boundary conditions, i.e., the
boundary condition y0 = yb.

PROPOSITION 6. Suppose F satisfies condition (2). // the
operator M + NS(b) has a bounded inverse defined on C such that
\\(M + NSφ))'1]] <d for some d>0 and for all (r, 7) where 7
satisfies 7 > r and d\\N\\e{L+ω)r = 1, then the boundary value problem
Equation (1) (*) has a unique solution.

Proof For a function f e C define the mapping H:C —> C by

Hφ = (M+ NSφ))'ιir - (AT + NSφ))~ιN(U(b) - S(b))φ .

We have for φ, φ e G

\\Hφ - Hφ\\a = \\{M + NS(b)ΓN(Uφ) - S(b))Ψ
~(M+ NS(b)ΓN(U(b) - S(b))φ\\c

£ MM + NS(b)rιN\\\\*>(<P) - Πφ)\\a
SUP

£d\\N\\ \"e^\\F(ys(<p)) - F(ys(φ))\\ds
Jo

^ d\\N\\er*L \"e-'\\\ys(ψ) - y,(φ)\\cds
Jo

^d\\N\WL^hLb\\φ - φ\\c .

The operator H is a contraction if b is sufficiently small and the
boundary value problem is uniquely solvable.

REMARK. Proposition 4 also handles periodic boundary conditions
since again the only requirement on M and N is the existence of
(M + NS(b))-\ The inverse of M + NS(b) exists with domain C if
and only if the boundary value problem Equation (7)(*) has a unique
solution for each ψeC.
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