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ON THE DECOMPOSITION OF STATES OF
SOME *-ALGEBRAS

FRANQOISE MATHOT

We study the direct integral decomposition of θ£*-algebras
defined on a metrizable, dense domain of a separable Hubert
space. Applications to the decomposition into irreducible re-
presentations and into extremal states of representations and
states of *-algebras with a countable dominating subset are
given.

()• Introduction* This paper is concerned with the extension

of the reduction theory for bounded operators [2] to algebras of
unbounded operators and, as an application, with the decomposition
of representations and states of *-algebras.

In a previous paper [3] we gave a meaning to the direct integral
decomposition of unbounded operators, by considering them as
bounded operators between several Hubert spaces. Considering then,
families J ^ of unbounded operators defined on a common dense
domain J Ό f a separable Hubert space &? (the so-called Op*-alge-
bras [8]) and considering the decomposition Sίf — \ <%*(X)dμ(X) of

J Λ

the Hubert space with respect to an Abelian von Neumann algebra
^t contained in the strong commutant of j y , we have been able
to define for almost every λ e A, a domain i^(λ) in Jg^(λ) such that
any A e ^/ can be written as A — 1 A(X)dμ(X) where A(X) is a con-

JΛ

tinuous operator from £^(λ) into itself. Then, to any countable
subalgebra jzfoaj%f corresponds for almost every xeA a countable
Op*-algebra J^0(λ) on ^ ( λ ) .

However, in order to be sure that the domain &(X) is nonzero
and even dense in ^^(λ), almost everywhere, we had to ask that
the j^-graph topology on £3? is metrizable and this assumption
characterizes the class of Op*-algebras we want to consider. For
examples of such Op*-algebras we refer to [13], [14].

In this paper, we extend the decomposition to uncountable
Op*-algebras. If we look in [2] how it is possible to get the re-
duction of a von Neumann algebra once one is able to decompose
a single operator or a countable set of operators, one sees that the
important things are the following:

(a) a von Neumann algebra is separable in the strong operator
topology.

(b) this strong operator topology is metrizable.
(c) If Aί —> A is this topology any if {A1} and A are decom-
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posed, then A*(λ)—>A(λ) almost everywhere.
In our case we shall assume that J^ is separable in some

topology (described in § II) related to the quasi-uniform topologies
of [9] and involving the strong topology of £έf. Then Jzf will be
also separable in another topology, weaker but metrizable and we
shall be able to use the result (c) above. For almost every λe^l
we shall construct Op*-algebras (J^(λ), ^(λ)) such that any A e

is decomposed in a direct integeral A = 1 A(X)dμ(X) with A(X) e

a.e. As we shall see, our choice of topology is also such that the
subset J^o which is dense in Jzf by assumption, will have the same
weak commutant and strong commutant as Jzf. This will be useful
when we prove that the decomposition of <$/ is irreducible.

In § III, we apply our result to the decomposition of represen-
tations of separable locally convex *-algebras into irreducible repre-
sentations. We consider *-algebras with a countable dominating
subset [12] in order that the domains of any of their representa-
tions fulfill our assumption of metrizability. The fact that the
algebras we consider are separable will imply that strongly conti-
nuous representations of them in a Hubert space are automatically
separable in the particular topology of § II so that we can apply
the previous result (Theorem 2.5).

We end this section with a few words about symmetric and
self-adjoint algebras for which the situation is simpler [12, 6, 4].
Finally in § IV we decompose into extremal states, states of bar-
relled, locally convex, separable *-algebras, dominated by a count-
able subset.

Let us notice that we do not know in general if the extremal
states obtained in that decomposition are continuous or not, contrary
to what occurs in [1], [5] where the case of nuclear *-algebras is
treated. In our case, as in the bounded case, there is no continu-
ous map between the initial structure (algebra, representation,
state) and the λ-component in the decomposition.

1* Definitions and preliminaries* In this section we define
the framework in which we are going to work and recall some of
the results of [3] which will be useful in the sequel.

1.1. In this paper Sίf will always denote a separable Hubert
space and 3ί a dense domain in £ίf,

Let i ? + ( ^ ) denote the set of all linear operators A such that*
(a) the domain D(A) = 3f and A3ϊ Q &
(b) the adjoint operator A* satisfies D ( A * ) 2 ^ and A * ^ £ ^

is a *-algebra with the involution A->A+ = A* \ &. Any
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*-subalgebra ^f of j^+ί-S^) containing 1 \ , is called an Op*-algebra
[8] and will sometimes be denoted by ( j ^ , 22). Because ^f con-
sists of unbounded operators we must distinguish between the weak
and the strong commutant [1] both contained in the set B (3ίf) of
bounded operators on έ%f\

(a) the weak commutant

, CAg) = (A+f, Cg)

V/, g e

(b) the strong commutant

(2) j * ; ' = {CzB{£έf)\C&<^3f, CAf = ACf, vAejϊf, V/ e

We have J^/ £ JK/ and an Op*-algebra is called irreducible if its
weak commutant consists of scalar multiples of the identity operator
[12], [1]. (The commutants will sometimes be denoted by
and ( jy, 3^)\o when confusion is possible).

1.2. Let ( j ^ , £?0 be an Op*-algebra and assume that there
exists an Abelian von Neumann algebra ^ C c ,.£<', containing 1 and
maximal in the sense that ^£ — ̂ /ίf<C\.s>/w'. {^! denotes here the
usual commutant for bounded operators.) This assumption is justified
by the extension theory developed in [1]. Any (jy, £&) admits an
extension ( jy, 3ϊ) in a bigger Hubert space £%?, for which such a
^ exists.

By the reduction theory for von Neumann algebras [2] we know
that there exists a compact metrizable space A, a positive regular
Borel measure μ on Λ, and a /^-measurable field λ -> J%f(X) of Hubert
spaces such that

(3) ^T

and such that Λ£ consists of diagonalized operators in that decom-
position {^ ~ L°°(Λ, μ)). ^/έ' is then the set of bounded operators
in 34f which are decomposed in that direct integral.

1.3. If we equip the domain & with the topology defined by
the set of all graph-norms {||/||i = | | / | | 2 + || A/| | 2 | A e J^} and called
in short the j^-graph topology, we get that every B e Jϊf is a
continuous operator from 3ί into itself. The completion of 3P in
this topology coincide with f]Ae^D(A) (where A denotes the
operator-closure of A; D(A) provided with the graph-norm || | | i is a
Hubert space). In [3] §3.3.1 we had to impose an additional assump-
tion on 3f\ we asked 3f to be metrizable i.e., the j^-graph topology
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is actually given by a countable set of norms.
In other words, there exists a countable subset ^ 0 c j ^ such

that the J^-graph topology is equivalent to the ^-graph topology
(this happens for instance if we consider representations of abstract
*-algebras with a countable dominating subset as defined in [12]).
With this metrizability assumption on 3f9 we proved in [3] that
for almost every XeΛ t h e r e exists a domain £&(X) dense in §ίf(\)f

which is moreover a Frechet space and that each A e Jzf can be
written as:

( 4 ) A = \ A(X)dμ(X)
A

where A(λ) is a.e. a continuous operator from i^(λ) into itself.
(Without the metrizability assumption on & we should have been
able to defined £έ?(X) but not to assure that it is nonzero on a set
of measure one in A. For more details see [3] § 3.)

For two elements A, A' e j ^ , A + Af, AAf and A+ are also de-
composable in the above sense and the algebraic relations are pre-
served for almost every XeΛ i.e.,

(A + A')(λ) = A(λ) + A'(λ) a.e.

(AA')(λ) = A(λ)A'(λ) a.e.

and

A+(λ) = A(λ)+EE (A(λ))* [siλ) a.e.

Finally for any countable Op*-algebra J^Ό c *Szf there exists for
almost every λ e Λ, countable Op*-algebras J&Ό(X) on ^ ( λ ) such
that

( 5 )

If j y 0 is "big enough" in the sense that the chosen ^£ satisfies
^ c (jaOί a n ( i ^ = ^ ^ ' Π (J^o)» t i i e n t b e ^^o(λ) are irreducible
Op*-algebras.

In the next section we are going to extend this last result to
the decomposition of J ^ itself (assumed to be uncountable but
separable in a suitable topology).

A last remark about the topology on ^ ( λ ) that we have not
described so far: this topology is shown to be equivalent to the
^0(λ)-graph topology [3] (as the topology on ^ was the ^-graph
topology) and all A(λ)'s obtained by the decomposition of any A e
are continuous with respect to this topology.
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II* Decomposition of Op*-algebras into irreducible com-
ponents.

2.1. Topology on j&Λ Let ( j ^ , 3ί) and ^ be as above.
It is possible to consider various topologies on <S*f which are all

"natural" in the sense that they generalize the uniform topology
for bounded operators. These topologies have been studied in detail
by Lassner et al [9] and the topology we shall consider here is
related to the so-called "quasi-uniform" topologies of [9]. In most
cases, e.g., when Jzf by is barrelled all these natural topologies
coincide [9], [10].

Consider on *$zf the topology τ defined by the set of norms:

= max{||2?/|L0, \\B+f\\Ao} >

where / runs in @f and Ao in . ^ . We shall also have to use
another topology τ', weaker than τ, defined by the countable set of
norms:

where Ao e ^ as above and {βji=1,2 is a countable dense set in &
for the ^-graph topology, j ^ provided with this topology τf is
a metrizable (in general not complete) *-algebra. From now on, we
shall assume that j*/ is separable in the topology τ (hence also in
τ') i.e., there exists a countable set J*fQaj*f, τ-dense in J ^ . (This
set can be completed in a *-subalgebra of j ^ on the complex ra-
tional field.)

This assumption of separability of Szf in this particular topology
can seem a bit artificial at this point, but in fact when we shall
consider in § III, strongly continuous representations of abstract
*-algebras (assumed to be separable in their own topology, whatever
it is), this separability in the topology τ will be automatically
satisfied.

2.2. Decomposition of the dense subset

2.2.1. Since J^o is a countable Op*-algebra we can decompose
it in a direct integral, using the result of [3] recalled at the end
of § I. So there exists a direct integral decomposition of

Sίf = I J%f(X)dμ(X), there exist for almost every XeΛ, a dense

domain &(X) in £ίf(S) and a countable Op*-algebra (J^0(λ),
such that:
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We shall now prove that the J^Q(X) obtained in this way are ir-
reducible i.e., we need to prove:

^ T c(j*ΌX and ^t = Λ* Π (^<X .

In fact we shall see that the choice of the topology τ is just the
right one giving that result.

LEMMA 2.2.2. (Jzfo)'s = J K ' and

Proof, (a) X ' £ (j^0)J and j * ς ' £ ( J * X are obvious.
(b) Take Ce( j^ o χ. We have C&Q& by definition. For any

Be<Ssf, then exists a net ( 5 α } c j / 0 such that qftAo (Ba — I?) tends
to zero, for every / e £&, Ao e .^ 0 Particularizing to Ao = 1 we have
||(jBα - B)/| |->0, for every fe&. Since C is bounded we have
also \\CB*f - CBf\\ -» 0. On the other hand, f*3f implies Cfe&
and thus | | 5 e C / - 5 C / 1 | - * 0 . Finally CBf = limaCB«f = limaB

aCf =
BCf, V / G ^ and VBe^f which means Ce J ^ ' .

(c) Take C e ( J / o t For every Be^f, there exists {ΰ α }c j / 0

such that ||(jBα - B)f\\ -> 0 and \\{Ba+ - B+)f\\ -> 0 for every / e ^ .
So

| ( / , C(B" - B)f)\ ̂  H/ll IICII | | ( 5 α - B ) / | | > 0

and similarly \((B«+ - 5 + )/, C/)| ^ \\(Ba+ - 5 + )/ | | | |C | | | |/ | | - 0. We
have thus:

(/, CBf) = lim (/, CB«f) = lim (,Ba+/, C/) - (B +/, C/)

and by polarization (#, CJ5/) = (B+βr, C/), V/, ge&, VBessf which
means C e j ^ ' .

COROLLARY 2.2.3. (J^0(λ), ^(λ)) is irreducible a.e.

2.3. Construction of (J^(λ), ^ ( λ ) ) . On the various Op*-alge-
bras (J#Ό(X), ^(λ)) we can consider a topology τ\ defined in analogy
with τ' by the set of semi-norms.

8 ) qλ,ei,Ao(B(X)) - max{ | |B(λK(λ) |U o U ) , \\B+(X)ei(X)\\Ao{λ)}

where {eτ) is as above and Ao e &0(&0 being a countable set can also
be decomposed); the set {β<(λ)} is a.e. dense in ^(X) for the ̂ J(λ)-
graph topology). J^0(λ) provided with the topology τ\ is a metric
algebra. What can be said about its completion? Consider a cauchy
sequence {B\X)} in J^0(λ). For every β<(λ), i = 1, 2 and for every
Ao 6 . ^ we have
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and

||CBfc+(λ) - #i+(λ)K(λ)ILou> ^ e for k, j big enough .

Since £^(λ) is complete in the ,^(λ)-graph topology [3], the follow-
ing limits:

.^>(λ) - \im B\X)et(\) = <f,(λ)

and

(λ) = &(λ) exist in

These two last relations define two operators B(X) and T(X) such
that

(λ) = ^4(λ) and T(X)et(X) = &(λ) , V i .

These operators are linear from K(λ)} into &(x) and moreover

We thus see that completing ^fQ{X) in the topology τ\ we get
out of ^f+(&(X)) and we get linear operators from {e^X)} into
i^(λ). In particular, an element of this completion will not neces-
sarily be continuous in the .^0(λ)-graph topology, but those which
are, can be extended to a linear continuous operator from £&(X)
into itself.

Since we are trying to define some Op*-algebras on £^(λ), we
shall restrict ourselves to those J5(λ) in the completion of
which are, as well as their "adjoint" Γ(λ), continuous in the .
graph topology. Then B(X) and T(λ) can both be extended to
elements adjoints to each other in ^f+(&(X)). By this procedure
we get a linear subset of <2f+{&{X)) and we shall call J^(λ) the
Op*-algebra on ^ ( λ ) generated by this subset.

Thus beginning from J^0(λ) we have been able to construct in
this way an Op*-algebra (j^(λ), ^(λ)) . A generic element of j^ (λ)
is obtained by algebraic operations from elements of *£?+(&(X))
which, on the dense subset K(λ)} are approximated by elements of

THEOREM 2.4. With the same notations and hypothesis as above,
let ΰ e j / be decomposed by the method of [3] i.e., B = \B(X)dμ(X)
where B(X) is a.e. a continuous operator on &(X) {with the &0(X)~
graph topology).
Then B(X) e Jzf(X) almost everywhere.

Proof. Let B e *$>/. Since Ssf is separable for the topology τf
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(which is metrizable) there exists a sequence {Bk}, k = 1, 2 in
such that Vε > 0 and for every norm qe.fAo, qHfAo(Bk — B) < ε for k
big enough, which means

| | ( B * - B ) e 4 | L 0 < e and ||CBfc+ - JB + KIU 0 < e .

But \\(Bk - B)et\\ = j \\(Bk(X) - B(X))ei(X)\\AoU)dμ(x) < ε implies that

there exists a subsequence {Bkj} (which might depend on Ao and et)
such that

||CBw(λ) - J5(λ)K(λ)|LoU) < ε for almost every X .

(See [2] Chapter II § 1 Prop. 5.)
In fact, because there is only a countable set of Ao e έ%?0 and ei9

we can extract, by a diagonal procedure, a subsequence independent
of Ao and et and suitable for B+ as well. So for every Ao

and every e*, i = 1, 2 and for almost every XβΛ, we have:

i.e., .B(λ) belongs to the completion of J^Q(X) with respect to τ\.
Since we already know that JS(λ) is continuous in the ^(λ)-graph
topology, we get J5(λ) 6 j^(λ) a.e.

THEOREM 2.5. Let (*Ssf, &) be an Op*-algebra in a separable
Hilbert space έ%f. Assume that the graph topology on & is given
by a countable set of graph-norms || ||^0, A0e&0 (countable subset of
<_&f). Assume that *Stf is separable in the topology τ (described in
2.1) and that there exists an Abelian von Neumann algebra

Then, there exists an integral decomposition £ίf = \<§έf(X)dμ(X),
there exist domains £&(X) dense in J%f(X) and Op*-algebras

such that for every Aejzf, fe&

Af - ί A(X)f(X)dμ(X)
JΛ

where f(X) 6 &(X) and A(X) e Jϊf(X) a.e. // moreover ^S is max-
imal in the sense that ^ — ̂ r Π ^sfj, then
(j%?(X), &(X)) is irreducible a.e.

Proof. Only the last point need to be proved. But
Cίti/oWi &(X))'W and we have seen that this last commutant

is trivial (Corollary 2.2.3).
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III* Representations of separable local convex *-algebras*

3.1. From now on j& will denote a separable locally convex
topological *-algebra with identity. By "topological" we mean that
the product of two elements is separately continuous and the involu-
tion is continuous. We shall consider ^representations π of jzf by
Op*-algebras (π(j^)f £&) of unbounded operators acting in a separ-
able Hilbert space. For every A e Ssf, we have π(A*) = π(A)+ =
(π(A))*\&. The representation π if said to be weakly continuous if
(/, π(A)g) is continuous in A, for every f9ge &. It is strongly
continuous if A—> \\π(A)f\\ is continuous, for every fe£&. A
strongly continuous representation is automatically weakly continu-
ous. On the other hand, if Ssf is either barrelled or if the multi-
plication is jointly continuous, then a weakly continuous representa-
tion is also strongly continuous [8] [1]. In order to exploit the re-
sults of the previous sections we shall assume that j ^ is dominated
by a countable subset ^ o c j / [12], i.e., for every A e j / and for
any representation (;r(jaθ, ϋ%) of J%f there exists B e . ^ such that
for any fe &π

\\π(A)f\\ ^ k \\π(B)f\\ (for some constant k) .

If we do not ask this condition for any representation π but only
for a particular one, we say that " ^ dominates *Stf in the repre-
sentation π".

If Jzf is separable (in its own topology) and if we consider
strongly continuous representations π, π{j%f) is automatically separ-
able in the topology defined by the norms:

0),
qf,Ao(π(B)) - max{||ττ(I?)/|

which corresponds to the topology τ of the § II. So applying our
previous result we get:

THEOREM 3.2. Let <s*f be a separable locally convex *-algebra,
with identity and dominated by a countable subset &0. Let π be a
strongly continuous *-representation of j y by unbounded operators
defined on a dense domain & of a separable Hilbert space έ%f'.
There exists a separable Hilbert space £$f containing £ίf as a closed
subspace and a] direct integral [decomposition £ί? — I <^(X)dμ(X)

where μ is a positive Borel measure on a compact space A. There
exist a.e. *-representations πλ of J%f by unbounded operators defined
on dense subspaces &(X) of £έf(X) such that:

(a) For every fe&, A
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π(A)f = \\

(b) (πx (*Sif))'w is trivial a.e.
(c) If A — limα A

a in J ^ , then there exists a sequence {A*}c{Aα}
and a subsequence {Aik} such that \\(πx(Aik) — πλ(A))β i(λ)||π;ιuo) tends
to zero a.e. when ik-+°°, for every eό belonging to any countable
dense subset of & for the π(^?0)-graph topology, and for every
A o 6 ^ 0 .

Proof. The existence of the bigger space έ%? comes from the

extension theory developed in [1]. If in our representation

3f) we cannot find a Λ in (π(j^)X such that Λ = ^

we have to use [1] in order to get another representation (π(j^),

in a bigger space S%? such that there exists ^£'a{ft{j^f))r

s satisfying

= ^£*{\(π(S/))f

w. The domain !2f of this new representation of

is related to ^ by: 3f = finite linear space of ^3? and ^ ^

is a closed subspace of <%̂  (we refer to [1] for the details). In order

to be able to apply our Theorem 2.5 to (π(j^), &) we must check

the two following points:

(1) 2? with the graph topology is a metrizable space. This
is the case because ^ is a dominating subset.

(2) π{szf) is separable in the topology π defined by the set of
norms

qβtAjji{B)) = max{||ίr(B)flr||iUo)f o

where ge£& and 4 0 e ^ 0 ( B e j / ) .
But this follows from the separability of ,S*f which implies the

separability of 7r(.jaO in the topology τ. If ,jyo is a countable dense
set in j y , π(J^Ό) will be a countable dense set in π(.$f) (for r).
Then for every ΰ e j / , 3{5α}c,j^0 such that

α - B)f\\πUo) > 0 and \\π(B*+ - B+)f\\πUo) > 0 for any

/ in Sf and any Ao e &Q.

Consider now g e Sf (it suffices to consider g of the form g =Mf
with Me^e, fe&). We have:

\\ίt(B - B)g\\2UΛ, - \\π(Ba - 5)ikf/||2 + ||ί?(i4o)ί(Bβ - B)Mf\\*

and similarly for the adjoints.
It follows that π(,j^0) is a countable dense set π(j^) for r.
As a conclusion of this we can apply Theorem 2.5 to
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and get a decomposition of ττ(jy) which will induce a decom-
position of ττ(jy). Part (a) and (b) of Theorem 3.2 follows immedi-
ately.

(c) We do not know in general if the πλ obtained in the integral
decomposition are strongly continuous representations of Jzf. Never-
theless they satisfy a weaker condition mentioned in (c).
If A = limα A

a in j#% we have that V f e 2f and V Aoe &0:

\\(π(A«)-π(A))f\\
iAo)

If we restrict ourselves to the /'s contained in a π(^)-dense sub-
set {βy}yβi,2... of 3f we get a metrizable topology on π(J^) and so
there exists a sequence {A*} c {Aa} such that

\\{π(A?)-π(A))eό\\πUQ) >0 for any ehj = l,2... and A o e ^ o .

But this means that there exists a subsequence {Aik} (independent
of eά and Ao by a diagonal procedure) such that for almost every
XβΛ;

3.3. Symmetric and self-adjoint algebras* There is a class of
*-algebras for which we do not need to use the extension theory of
[1] because it is easy to find a ^/έ satisfying our conditions: the
symmetric and the self-adjoint algebras.

DEFINITION. A *-algebra J ^ with identity 1 is called sym-
metric if for each A e Jzf, the element (1 + A*A)~i exists in jaΛ

Any representation of a symmetric *-algebra is a symmetric
Op*-algebra i.e., for every Aej^f, (1 + πiAyπiA))-1 exists and be-
longs to the bounded part (ττ(jy))6 of π(<Ssf). (π(j*f)h) = {π(A) e

π(J^) I π(A) G B(<§έf)} where the bar denotes the operator closure).
If moreover ττ(jy)6 is a C*-algebra or a von Neumann algebra then
τr(J&0 is called an M7*-algebra or a EW*-algebra. This kind of
algebra has been studied in detail in [6] [7].

DEFINITION. An Op*-algebra (π(j^)f &) is called self-adjoint if

& - ^ * ΞΞ Π D{{π{A)T) .

If τr(J^) is a symmetric O^*-algebra, its "closure"

π( j*O Ξ {π(A) f ̂  I A e J^} is self-adjoint [6] .

Self-adjoint representations of *-algebras have been studied by [12]
and [4]. The authors of [4] characterize the states on *-algebras
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which give rise to representations by self-adjoint Op*-algebras, by
the GNS construction [12]. Those states are the so-called Riesz
states [4]. In the same paper, they exhibit a necessary and suffici-
ent condition for an Op*-algebra to be self-adjoint namely:

is self-adjoint iff (π

(denoted therefore by π(*$f)f) and

The important property for us is that if π(,Ssf) is self-ad joint, the
strong and the weak commutant coincide and is a von Neumann
algebra. In that case it is easy to find a maximal Abelian von
Neumann algebra ^ ^ C T Γ ( J ^ ) ' for instance the one generated by 1
and a simple hermitian element in π(J*f)'.

We can then immediately apply Theorem 2.5 to decompose π(J&)
without need to build an extension π. From this it follows that if
j y is symmetric *-algebra, Theorem 3.2 applies to it without the
assumption that &0 is a dominating subset of Jtf but with the hy-
pothesis that . ^ dominates ,jy in the considered representation π
only.

IV* Decomposition of states*

THEOREM 4.1. Let Sv? be a separable topological *-algebra with
identity either barrelled or such that the multiplication is jointly
continuous, and with a countable dominating subset &ύ. Then
every positive continuous linear functional ω on J^f admits the
decomposition

ω = \ ωλdμ(X) {in the weak sense)
JΛ

where dμ is a regular Borel measure on a compact space A and
where ωλ is an extremal state almost everywhere. (If J^ is a sym-
metric *-algebra, we just ask that &0 dominates J^ in the GNS
representation associated to α>).

Proof. A positive continuous linear functional ω on Jzf defines
by the GNS construction [12] a weakly continuous cyclic represen-
tation π of J^ on a dense domian Ξf = π{^s^f)Ω of a separable
Hubert space (Ω = cyclic vector). But if j ^ is either barrelled or
such that the multiplication is jointly continuous, this representa-
tion π is also strongly continuous so that we can apply Theorem
3.2 to it. We get V A e j*f:
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ω{A) = φ, π(A)Ω) = \ (Ω(x) , π,(A)Ω(x))dμ(X) .

Defining a)λ(A) = (i2(λ), πλ(A)Ω(X)), we get a positive linear functional
ft); on J / . By Theorem 3.2, πλ is irreducible a.e., i.e., (πλ (,Stf))'w is
trivial a.e. which means that ωλ is extremal a.e.

(4.2). Here again, we do not know if the states a)λ obtained in
the above decomposition are continuous or not. All we know is
that if A = limα A

a in ,s&f there exists a sequence {A*}c{Aα} and a
subsequence {Aik} such that ωλ(A*k*A*k) —»ω̂  (A*A) almost every-
where, which implies ωλ(Aik)-+a>χ(A) almost everywhere.

Although this last properly is weaker than the continuity, this
is sufficient to insure that ωλ (A) is positive for all A belonging to
the closed positive cone .st/+ of jy\

Then we can check in each individual case if we are not dealing
with an algebra such that every state on it is automatically conti-
nuous (as for C*-algebras). Several sufficient conditions for that
are given in [15] p. 228 namely:

(a) The set J^+ of positive elements of .sx? has a nonempty
interior.

(b) S^ is metrizable and complete and J^J = j^+ — κ$f+ (where
j^fh = set of hermitian elements of J ^ ) .

(c) J^J is bornological and ,Ĵ + is a sequentially complete strict
^-cone ( ^ denotes the set of bounded sets of .$/h. >Ssf+ is a
strict .^-cone if {(S Π J#+) — (S Π J^+) | S e &} is a fundamental
family of &).

As noticed in [11], condition (b) is not applicable to locally con-
vex *-algebras in general. Condition (a) has at least one important
counterexample: the field algebra. But this algebra satisfies condition
(c) as shown in [16] so that every state on it is continuous. The
author of [11] proved also that any locally convex *-algebra satis-
fies part of (c): j ^ is always a strict ^-cone in J ^ .

If we are in a case where the a)λ are continuous we can prove
further results: defining: L(ω) = { i e j y | ω(A*A) — 0} and L(ωλ) —
( i e , i / | ^ ( i * 4 ) = 0} we have L(ω)dL(ωχ) a.e. and for the associ-
ated GNS representation: kerτrckerτr; a.e.

The proof comes from the fact that:

0 - ω(A*A) = \ωz(A*A)dμ(\)

implies ύ)z(A*A) — 0, for every λ outside a null set depending on
A. We get a common null set by considering the union of the null
sets associated to all A6.i/ 0 (This is still a null set since >S>/Q is
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countable). For A e J^\J^09 a>x (A*A) = 0 outside the same null
set since coλ is continuous.

The proof is similar for the kernel of the representations.
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