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ON THE DECOMPOSITION OF STATES OF
SOME *-ALGEBRAS

FRANCOISE MATHOT

We study the direct integral decomposition of Op*-algebras
defined on a metrizable, dense domain of a separable Hilbert
space. Applications to the decomposition into irreducible re-
presentations and into extremal states of representations and
states of *-algebras with a countable dominating subset are
given.

0. Introduction. This paper is concerned with the extension
of the reduction theory for bounded operators [2] to algebras of
unbounded operators and, as an application, with the decomposition
of representations and states of *-algebras.

In a previous paper [3] we gave a meaning to the direct integral
decomposition of unbounded operators, by considering them as
bounded operators between several Hilbert spaces. Considering then,
families .~ of unbounded operators defined on a common dense
domain &7 of a separable Hilbert space 57 (the so-called Op*-alge-

bras [8]) and considering the decomposition 52 = S cZ (\)dp(n) of
4
the Hilbert space with respect to an Abelian von Neumann algebra

_# contained in the strong commutant of ., we have been able
to define for almost every A€ 4, a domain Z(\) in S#°(\) such that

any A€ . can be written as A = SAA(h)d,u(),) where A()\) is a con-

tinuous operator from <(\) into itself. Then, to any countable
subalgebra .&7,C.% corresponds for almost every A e 4 a countable
Op*-algebra &7 (\) on Z(\).

However, in order to be sure that the domain =(\) is nonzero
and even dense in S£°(\), almost everywhere, we had to ask that
the &7-graph topology on <& is metrizable and this assumption
characterizes the class of Op*-algebras we want to consider. For
examples of such Op*-algebras we refer to [13], [14].

In this paper, we extend the decomposition to uncountable
Op*-algebras. If we look in [2] how it is possible to get the re-
duction of a von Neumann algebra once one is able to decompose
a single operator or a countable set of operators, one sees that the
important things are the following:

(a) a von Neumann algebra is separable in the strong operator
topology.

(b) this strong operator topology is metrizable.

(¢) If A*— A is this topology any if {4} and A are decom-
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posed, then A*(\) — A(\) almost everywhere.

In our case we shall assume that .& is separable in some
topology (described in §II) related to the quasi-uniform topologies
of [9] and involving the strong topology of £#. Then & will be
also separable in another topology, weaker but metrizable and we
shall be able to use the result (¢) above. For almost every ne4
we shall construct Op*-algebras (.%7(\), 2 (\)) such that any Ac .7
is decomposed in a direct integeral A = SA(x)d;z(x) with AQ\) € 7(\)
a.e. As we shall see, our choice of topology is also such that the
subset ., which is dense in . by assumption, will have the same
weak commutant and strong commutant as .%7. This will be useful
when we prove that the decomposition of & is irreducible.

In §III, we apply our result to the decomposition of represen-
tations of separable locally convex *-algebras into irreducible repre-
sentations. We consider *-algebras with a countable dominating
subset [12] in order that the domains of any of their representa-
tions fulfill our assumption of metrizability. The fact that the
algebras we consider are separable will imply that strongly conti-
nuous representations of them in a Hilbert space are automatically
separable in the particular topology of §II so that we can apply
the previous result (Theorem 2.5).

We end this section with a few words about symmetric and
self-adjoint algebras for which the situation is simpler [12, 6, 4].
Finally in §IV we decompose into extremal states, states of bar-
relled, locally convex, separable *-algebras, dominated by a count-
able subset.

Let us notice that we do not know in general if the extremal
states obtained in that decomposition are continuous or not, contrary
to what occurs in [1], [5] where the case of nuclear *-algebras is
treated. In our case, as in the bounded case, there is no continu-
ous map between the initial structure (algebra, representation,
state) and the \-component in the decomposition.

1. Definitions and preliminaries. In this section we define
the framework in which we are going to work and recall some of
the results of [3] which will be useful in the sequel.

1.1. In this paper &7 will always denote a separable Hilbert
space and & a dense domain in 57

Let <Z.(2) denote the set of all linear operators A such that:

(a) the domain D(A) = & and A C &

(b) the adjoint operator A* satisfies D(A*)2<Z and A*2 o
(Z) is a *-algebra with the involution A — A+t=A*|,. Any
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*-subalgebra &7 of 25 (<) containing 1| . is called an Op*-algebra
[8] and will sometimes be denoted by (.87, &). Because . con-
sists of unbounded operators we must distinguish between the weak
and the strong commutant [1] both contained in the set B (5#) of
bounded operators on 5#:

(a) the weak commutant

(1) &7, = {CeB(o2)|(f, CAg) = (A*f,Cy) VAe
vf, g€}

(b) the strong commutant
(2) w/={CeBeX)|Cz <2, CAf = ACf, YVAe .7, Vfe D} .

We have .97’ .97, and an Op*-algebra is called irreducible if its
weak commutant consists of scalar multiples of the identity operator
[12], [1]. (The commutants will sometimes be denoted by (., &),
and (.%, &), when confusion is possible).

1.2, Let (%, 2) be an Op*-algebra and assume that there
exists an Abelian von Neumann algebra .# <.%’, containing 1 and
maximal in the sense that .2 = _#Z'N.¥, . (_#"' denotes here the
usual commutant for bounded operators.) This assumption is justified
by the extension theory developed in [1]. Any (.97, &) admits an
extension (&/: @) in a bigger Hilbert space F , for which such a
A exists.

By the reduction theory for von Neumann algebras [2] we know
that there exists a compact metrizable space 4, a positive regular
Borel measure ¢ on 4, and a g-measurable field x — 22 (\) of Hilbert
spaces such that

(3) = Slyf(x)d;z(x)

and such that _# consists of diagonalized operators in that decom-
position (_# = L*(4, pt)). #" is then the set of bounded operators
in &% which are decomposed in that direct integral.

1.3. If we equip the domain & with the topology defined by
the set of all graph-norms {|| f|2 = || fI* + |Af|]*| A€ .27} and called
in short the .&7-graph topology, we get that every Be.w is a
continuous operator from <& into itself. The completion of & in
this topology coincide with ... D(A) (where A denotes the
operator-closure of A; D(A) provided with the graph-norm || || is a
Hilbert space). In[3]§8.3.1 we had to impose an additional assump-
tion on : we asked & to be metrizable i.e., the .97-graph topology
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is actually given by a countable set of norms.

In other words, there exists a countable subset &#,C .% such
that the .7 -graph topology is equivalent to the .<Zi-graph topology
(this happens for instance if we consider representations of abstract
*_algebras with a countable dominating subset as defined in [12]).
With this metrizability assumption on &, we proved in [3] that
for almost every ne A there exists a domain =(\) dense in ZZ(\),

which is moreover a Frechet space and that each Ae.% can be
written as:

(4) 4= aoduon

where A(\) is a.e. a continuous operator from <Z(\) into itself.
(Without the metrizability assumption on & we should have been
able to defined 27(\) but not to assure that it is nonzero on a set
of measure one in 4. For more details see [3] §3.)

For two elements A, A'e. &, A+ A’, AA’ and A* are also de-
composable in the above sense and the algebraic relations are pre-
served for almost every ne4 i.e.,

(A + A0 = AQ) + A0 ae.
(AANN) = AQVA'N)  ace.

and
AT(N) = AV = (AQ)* T2 a.e.

Finally for any countable Op*-algebra ., C . there exists for

almost every A e/, countable Op*-algebras .&,(\) on Z(\) such
that

(5) o= | a0

If .7, is “big enough” in the sense that the chosen _# satisfies
A (). and A = AZ'N(57,), then the ¥,(\) are irreducible
Op*-algebras.

In the next section we are going to extend this last result to
the decomposition of & itself (assumed to be uncountable but
separable in a suitable topology).

A last remark about the topology on =(\) that we have not
described so far: this topology is shown to be equivalent to the
Z(\)-graph topology [3] (as the topology on & was the <Z-graph
topology) and all A(\)’s obtained by the decomposition of any4 € &7,
are continuous with respect to this topology.
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II. Decomposition of Op*-algebras into irreducible com-
ponents.

2.1. Topology on . Let (%, &) and <Z, be as above.

It is possible to consider various topologies on . which are all
“natural” in the sense that they generalize the uniform topology
for bounded operators. These topologies have been studied in detail
by Lassner et al [9] and the topology we shall consider here is
related to the so-called “quasi-uniform” topologies of [9]. In most
cases, e.g., when . by is barrelled all these natural topologies
coincide [9], [10].

Consider on . the topology t defined by the set of norms:

(6) 95,4(B) = max{|| Bf{lu, || B*f L.} »

where f runs in & and A4, in <%, We shall also have to use
another topology z’, weaker than 7z, defined by the countable set of
norms:

(1) Q. 4(B) = max{IlBeiHAo, ”B+eiHA0}

where A,€.%%, as above and {¢;};—,, is a countable dense set in =&
for the <Z-graph topology. .& provided with this topology 7’ is
a metrizable (in general not complete) *-algebra. From now on, we
shall assume that .o 4s separable in the topology 7 (hence also in
7') i.e., there exists a countable set .97, C.&7, 7-dense in .. (This
set can be completed in a *-subalgebra of .~ on the complex ra-
tional field.)

This assumption of separability of .97 in this particular topology
can seem a bit artificial at this point, but in fact when we shall
consider in §III, strongly continuous representations of abstract
*-algebras (assumed to be separable in their own topology, whatever
it is), this separability in the topology 7 will be automatically
satisfied.

2.2. Decomposition of the dense subset .&7.

2.2.1. Since .&, is a countable Op*-algebra we can decompose
it in a direct integral, using the result of [3] recalled at the end
of §I. So there exists a direct integral decomposition of

B ES S (N)Ap(N), there exist for almost every ned, a dense
A

domain 27()\) in 2#(\) and a countable Op*-algebra (.57,(\), Z(\))

such that:

S, = SAVQ/.,(x)dy(x) .
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We shall now prove that the .%7,(\) obtained in this way are ir-
reducible i.e., we need to prove:

M (), and A = A N(Y), .

In fact we shall see that the choice of the topology ¢ is just the
right one giving that result.

LEMMA 2.2.2. (), = ' and (), = 7, .

Proof. (a) '<(%,), and .7 < (.7,), are obvious.

(b) Take Ce(.57,).. We have C22C < by definition. For any
Be v, then exists a net {B*}C.%, such that ¢, ,, (B*— B) tends
to zero, for every fe &, A,c.<Z,. Particularizing to A, = 1 we have
(B* — B)f|| — 0, for every fe<. Since C is bounded we have
also ||CB*f — CBf||— 0. On the other hand, f € & implies Cf € &
and thus ||B*Cf—BCf|| — 0. Finally CBf=lim, CB*f=lim, B°Cf =
BCf,Vfe<Z and VBe . which means Ce .o .

(¢) Take Ce(&,),. For every Be.¥, there exists {B*} C .7,
such that ||(B* — B)f|| — 0 and [[(B** — B*)f|| — 0 for every fe <.
So

|(f, C(B* = B)A)l = [IfIIICIII(B* — B)fI|— 0

and similarly [(B** — B*)f, Cf)| = [[((B** — BH)f|[|IC]| If]| —0. We
have thus: :

(f, CBf) = lim (f, CB*f) = lim (B**f, Cf) = (B* [, Cf)

and by polarization (g, CBf) = (B*g, Cf), Vf,9€ <, VBe .% which
means Ce .87 .

COROLLARY 2.2.3. (.7 ,(\), Z(\)) is irreducible a.e.

2.3. Construction of (.&7(\), Z(\)). On the various Op*-alge-
bras (.%,(\), 2 (\)) we can consider a topology 7} defined in analogy
with ¢’ by the set of semi-norms.

(8) ‘Iz,ei,Ao(BO\')) = max{|| B(X)et()\')”%un ||B+()")ei(>")||Ao(l)}

where {e;} is as above and A, € <Z,(<Z, being a countable set can also
be decomposed); the set {e,(\)} is a.e. dense in Z(\) for the .Z(\)-
graph topology). .&7,(\) provided with the topology z; is a metric
algebra. What can be said about its completion? Consider a cauchy
sequence {B*(\)} in .97(\). For every e;(\), 1 = 1,2 --- and for every
A, e <Z, we have
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I(B*(\) — B"(k))et(k)ll,%(x) =e
and

IB**(\) — B+ (M)edM) |l = € for k, j big enough .

Since Z(\) is complete in the .<Z,(\)-graph topology [3], the follow-
ing limits:

By (N) — 1i,§n B*(\)e(N) = (V)
and
G (N) — lirkn B**(\)e, (M) = ¢;(\) exist in (V).

These two last relations define two operators B(\) and T(\) such
that

B(\e,(\) = 4(x) and  T(\)e,(\) = ¢(N), V.

These operators are linear from f{e;(\)} into = (\) and moreover
T(\) = BOLW)* r«eim)-

We thus see that completing .97,(\) in the topology 7} we get
out of L (Z(\)) and we get linear operators from f{e,(\)} into
Z(\). In particular, an element of this completion will not neces-
sarily be continuous in the .<Z(\)-graph topology, but those which
are, can be extended to a linear continuous operator from Z(\)
into itself.

Since we are trying to define some Op*-algebras on Z(\), we
shall restrict ourselves to those B()\) in the completion of .97 ,(\)
which are, as well as their “adjoint” T()\), continuous in the .<Z(\)-
graph topology. Then B(\) and T(\) can both be extended to
elements adjoints to each other in <~ (=Z(\)). By this procedure
we get a linear subset of <A (Z(\)) and we shall call .97(\) the
Op*-algebra on Z(\) generated by this subset.

Thus beginning from .57, (\) we have been able to construct in
this way an Op*-algebra (.o7(\), Z(\)). A generic element of .7 ()\)
is obtained by algebraic operations from elements of A (F(\))
which, on the dense subset {¢;(\)} are approximated by elements of
7,(N).

THEOREM 2.4. With the same notations and hypothesis as above,
let Be 7 be decomposed by the method of [3] i.e., B = §B(x)dp(>\,)
where B(\) 1s a.e. a continuous operator on Z(\) (with the ZB\)-

graph topology).
Then B(\) € .7 (\) almost everywhere.

Proof. Let Be.&. Since .o is separable for the topology 7’
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(which is metrizable) there exists a sequence {B*}, k=1, 2--- in &7,
such that Ve >0 and for every norm gq., ., ¢.,.(B*— B) <e¢ for k
big enough, which means

I[(B* — Ble,|l4, <& and [[(B** — B)e;|ls, <e.

But |[(B* — Blecl| = | I1(B*0) — BOYeWlayadp() < e implies that
there exists a subsequence {B*} (which might depend on A4, and ¢,)
such that

[|(B¥(\) — B(\)es(M) |layw < € for almost every .

(See [2] Chapter II §1 Prop. 5.)

In fact, because there is only a countable set of 4,¢ <%, and e,,
we can extract, by a diagonal procedure, a subsequence independent
of A, and e; and suitable for Bt as well. So for every A4,€ <z,
and every e, ¢ =1,2--- and for almost every \ € 4, we have:

Q,e,4(B¥(N) — B(\)) = max{|[(B¥(\) — B\))esN)llagar »
I(B**(\) — B*(\)eMllapw} <€

i.e., B(A) belongs to the completion of .o7,(\) with respect to 7).
Since we already know that B(\) is continuous in the <Z,(\)-graph
topology, we get B(\) e .&7(\) a.e.

THEOREM 2.5. Let (&, &) be an Op*-algebra in a separable
Hilbert space 5. Assume that the graph topology on Z is given
by a countable set of graph-norms || ||, A, B, (countable subset of
7). Assume that &7 is separable in the topology © (described in
2.1) and that there exists anm Abelian wvon Neumann algebra
A 7

Then, there exists an integral decomposition 57 = Sé‘// \)dpn),

there exist domains Z(\) dense in SZ(\) and Op*-algebras (7(N),
2(\) such that for every Ae ., fe &

ar = | A0roapo)

where f(N)e Z(N) and AN) € (\) a.e. If moreover # is max-
imal in the sense that # = #'N .7, then
(Z(\), Z(\) is irreducible a.e.

Proof. Only the last point need to be proved. But (.57(\),
(\),S( 7, (\), 2 (\)), and we have seen that this last commutant
is trivial (Corollary 2.2.3).
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I1I. Representations of separable local convex *-algebras.

3.1. From now on . will denote a separable locally convex
topological *-algebra with identity. By “topological” we mean that
the product of two elements is separately continuous and the involu-
tion is continuous. We shall consider *-representations 7= of .7 by
Op*-algebras (n(.%), &) of unbounded operators acting in a separ-
able Hilbert space. For every Ae.%, we have 7n(4*) = n(4A)* =
(m(A))*!>. The representation = if said to be weakly continuous if
(f, #(A)g) is continuous in A, for every f, ge . It is strongly
continuous if A — ||w(A)f|| is continuous, for every fe<=z. A
strongly continuous representation is automatically weakly continu-
ous. On the other hand, if &7 is either barrelled or if the multi-
plication is jointly continuous, then a weakly continuous representa-
tion is also strongly continuous [8] [1]. In order to exploit the re-
sults of the previous sections we shall assume that .o is dominated
by a countable subset <7, c .7 [12], i.e., for every A€ . and for
any representation (n(.&), &;) of .o there exists Be€ <%, such that
for any fe =

|lZz(A)fl| £ k ||n(B)f|| (for some constant k) .

If we do not ask this condition for any representation 7 but only
for a particular one, we say that “<Z, dominates .7 in the repre-
sentation z”.

If .o is separable (in its own topology) and if we consider
strongly continuous representations x, 7(.%7) is automatically separ-
able in the topology defined by the norms:

45,4, (7(B)) = max{l]n(B)f]l,,(Ao,, | (B)* flleap}
fez, Ae, (Bew),

which corresponds to the topology 7 of the §II. So applying our
previous result we get:

THEOREM 3.2. Let &7 be a separable locally convex *-algebra,
with identity and dominated by a countable subset <Z,. Let w be a
stromgly continuous *-representation of & by unbounded operators
defined om a demse domain & of a separable Hilbert space S7 .
There exists a separable Hilbert space 7 containing 52 as a closed

subspace and o direct integral ‘decomposition o7 = g 22 (\)dpe(n)
A4
where (t is a positive Borel measure on a compact space A. There

exist a.e. *-representations w; of 7 by unbounded operators defined
on dense subspaces Z(\) of S (\) such that:
(@) For every fe &, Ae ¥
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7(A)f = | mAFA) .

(b) (m; (&), is trivial a.e.

(¢) If A=1lim, A* in 7, then there exists a sequence {A}C{A"}
and a subsequence {A‘} such that ||(mw(A%) — m(A))e;(\)|lx,iap temds
to zero a.e. when i, — o, for every e; belonging to any countable
dense subset of Z for the w(<&)-graph topology, and for every
A, e &F,.

Proof. The existence of the bigger space 57 comes from the
extension theory developed in [1]. If in our representation (w(.&),
Z) we cannot find a _# in (z(.)), such that Z = Z'N(xw(.¥)),
we have to use [1] in order to get another representation (Z(.%), g )
in a bigger space 57 such that there exists _Z c(@(7)); satisfying
A = #Z'NE)),. The domain < of this new representation of
&7 is related to & by: < = finite linear space of #Z <7 and 5
is a closed subspace of 57 (we refer to [1] for the details). Inorder
to be able to apply our Theorem 2.5 to (7(.%7), .92) we must check
the two following points:

(1) < with the graph topology is a metrizable space. This
is the case because <Z, is a dominating subset.

(2) #(.57) is separable in the topology 7 defined by the set of
norms

Q5,4(%(B)) = max{||T(B)gl|z sy, | T(B)*Gll% 04y}

where ge@ and A,€ .7, (Be.%7).

But this follows from the separability of .o~ which implies the
separability of 7(.87) in the topology . If .o, is a countable dense
set in .97, 7(.%7,) will be a countable dense set in #(.o7) (for 7).
Then for every Be.%, 3{B*} C .9, such that

w(B* — B)f llsup — 0 and ||7(B*" — B*)fllzuy — 0 for any

fin & and any A, e <7,
Consider now g e =7 (it suffices to consider g of the form g =Mf
with Me #, fe =Z). We have:

[|Z(B* — B)gl|*ssy = [|R(B* — B)MfI|* + ||Z(A)R(B* — B)YMf|]’
= ||Mr(B* — B)f||* + || Mra(A)=(B* — B)f|’
< |M|}||m(B* — B)f“?—.(AO) —0
and similarly for the adjoints.

It follows that 7(.97,) is a countable dense set #(.27) for 7.
As a conclusion of this we can apply Theorem 2.5 to (T(.%),
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g ) and get a decomposition of 7(.%) which will induce a decom-
position of #(.97). Part (a) and (b) of Theorem 8.2 follows immedi-
ately.

(¢) We do not know in general if the x, obtained in the integral
decomposition are strongly continuous representations of .&~. Never-
theless they satisfy a weaker condition mentioned in (c).

If A=1im, A% in .%, we have that Vfe = and V A4,¢c <Z:

(@(A%) — 2(ANS llzug — 0 .

If we restrict ourselves to the f’s contained in a n(<Z))-dense sub-
set {e;};=1,... of & we get a metrizable topology on 7(.%) and so
there exists a sequence {A‘} C {4*} such that

||(m(A%) — w(A))e;llzay — O for any e;,j=1,2... and A,e.7.

But this means that there exists a subsequence {A4‘} (independent
of ¢; and A, by a diagonal procedure) such that for almost every
€ 4;

|| (m(A%) — 7 A))es(M) [l2jap — 0 .

3.3. Symmetric and self-adjoint algebras. There is a class of
*_algebras for which we do not need to use the extension theory of
[1] because it is easy to find a .# satisfying our conditions: the
symmetric and the self-adjoint algebras.

DEFINITION. A *-algebra . with identity 1 is called sym-
metric if for each A€.9”, the element (1 + A*A)* exists in ..

Any representation of a symmetric *-algebra is a symmetric
Op*-algebra i.e., for every Ae. ., (1 + nw(A)*w(4))~* exists and be-
longs to the bounded part (n(.7)), of #(.87). (w(.57),) = {w(A)e
7(.7)|7(A) € B(5#)} where the bar denotes the operator closure).
If moreover w(.%7), is a C*-algebra or a von Neumann algebra then
7(.%7) is called an KEC*-algebra or a EW *-algebra. This kind of
algebra has been studied in detail in [6] [7].

DEFINITION. An Op*-algebra (n(.57), &) is called self-adjoint if
D =g* EAD,VD((“(A»*) .
If 7(.%) is a symmetric Op*-algebra, its “closure”
() = ((A)], | Ae .7} is self-adjoint [6] .

Self-adjoint representations of *-algebras have been studied by [12]
and [4]. The authors of [4] characterize the states on *-algebras
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which give rise to representations by self-adjoint Op*-algebras, by
the GNS construction [12]. Those states are the so-called Riesz
states [4]. In the same paper, they exhibit a necessary and suffici-
ent condition for an Op*-algebra to be self-adjoint namely:

w(.87) is self-adjoint iff (w(.)), = (w(.&7)),,
(denoted therefore by zn(.%7)") and
*=U{Cf|fez, Cer(w)).

The important property for us is that if z(.&) is self-adjoint, the
strong and the weak commutant coincide and is a von Neumann
algebra. In that case it is easy to find a maximal Abelian von
Neumann algebra .#Z C n(.%7)" for instance the one generated by 1
and a simple hermitian element in #(.%7)".

We can then immediately apply Theorem 2.5 to decompose (. %)
without need to build an extension #. From this it follows that if
.57 is symmetric *-algebra, Theorem 3.2 applies to it without the
assumption that <%, is a dominating subset of .® but with the hy-
pothesis that <#, dominates .o in the considered representation =
only.

IV. Decomposition of states.

THEOREM 4.1. Let .57 be a separable topological *-algebra with
identity either barrelled or such that the multiplication is jointly
continuous, and with a countable dominating swbset <&, Then
every positive continuous linear functional @ on & admits the
decomposition

® = Swadp(x) (in the weak sense)

where dp is a regular Borel measure on a compact space A and
where ®; 18 an extremal state almost everywhere. (If .S is a sym-
metric *-algebra, we just ask that <&, dominates .o in the GNS
representation associated to w).

Proof. A positive continuous linear functional w on . defines
by the GNS construction [12] a weakly continuous cyclic represen-
tation 7 of .7 on a dense domian & = n(.27)2 of a separable
Hilbert space (2 = eyclic vector). But if .97 is either barrelled or
such that the multiplication is jointly continuous, this representa-
tion 7w is also strongly continuous so that we can apply Theorem
3.2 to it. We get VAec.o:
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w(4) = (2, n(A)Q) = SA(Q(N) y T(A)LMN)de(N) .

Defining w;(A4) = (2(\), 7,(A)2(\)), we get a positive linear functional
w;on .. By Theorem 3.2, 7, is irreducible a.e., i.e., (m; (%)), is
trivial a.e. which means that w, is extremal a.e.

(4.2). Here again, we do not know if the states w; obtained in
the above decomposition are continuous or not. All we know is
that if A =lim, A* in .57, there exists a sequence {A}C{4°} and a
subsequence {A*} such that w;(A%*A%)— w; (A*A) almost every-
where, which implies w;(A%*)— ®;(A) almost everywhere.

Although this last properly is weaker than the continuity, this
is sufficient to insure that w, (4) is positive for all 4 belonging to
the closed positive cone .27, of .&7.

Then we can check in each individual case if we are not dealing
with an algebra such that every state on it is automatically conti-
nuous (as for C*-algebras). Several sufficient conditions for that
are given in [15] p. 228 namely:

(a) The set .94 of positive elements of .o~ has a nonempty
interior.

(b) & is metrizable and complete and .o = .97 — .97 (where

" = set of hermitian elements of .%7).

(e) .97 is bornological and .97 is a sequentially complete strict
B -cone (< denotes the set of bounded sets of .o4. .97 is a
strict F-cone if {(SN.o%)— (SN.»%4)|Se.&#} is a fundamental
family of <&).

As noticed in [11], condition (b) is not applicable to locally con-
vex *-algebras in general. Condition (a) has at least one important
counterexample: the field algebra. But this algebra satisfies condition
(e) as shown in [16] so that every state on it is continuous. The
author of [11] proved also that any locally convex *-algebra satis-
fies part of (¢): .94 is always a strict <Z-cone in .97.

If we are in a case where the w, are continuous we can prove
further results: defining: L(w) = {Ae€.&7 |w(A*A) = 0} and L(w,) =
{Ae.o7 |w,(A*A) = 0} we have L(w)CL(w,) a.e. and for the associ-
ated GNS representation: ker xCker 7, a.e.

The proof comes from the fact that:
0 = w(A*A) = Sa);(A*A)d‘u(x)
implies @;(A*A) = 0, for every A outside a null set depending on

A. We get a common null set by considering the union of the null
sets associated to all Ae.o7,. (This is still a null set since .97, is
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countable). For Ae . \.o7,, ®; (A*A) = 0 outside the same null
set since ®; is continuous.
The proof is similar for the kernel of the representations.
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