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ON THE DEGENERACY OF A SPECTRAL SEQUENCE
ASSOCIATED TO NORMAL GROSSINGS

GERALD LEONARD GORDON

Let W be a complex analytic manifold and V' a divisor
with normal crossings, and consider the Leray spectral
sequence associated to the inclusion map of W — V into W.
We give two homological reformulations for any of the d?*¢
to be the zero map for r = 2. These conditions are shown
to be satisfied if W is compact Kihler, but it is easy to give
examples when it does not degenerate at E, if W is only
a differentiable manifold. The nondegeneracy at E, for
arbitrary V in a compact Kihler manifold is interpreted in
terms of reiterated residues.

1. Introduction.

1.1. Let 5:W —V C W be the inclusion. When W is a projective,
algebraic manifold and V is a divisor with normal crossings, then
Deligne [2] in the course of defining his mixed Hodge structure in
W — V shows that the Leray spectral sequence associated to j
degenerates at E,, i.e., E?* = E%? for all p, q. Griffiths-Schmid [7]
give another proof of the degeneracy at E,, when W is a compact
Kahler manifold and V again has normal crossings.

In this article, we let W be a complex analytic manifold and V
a divisor with normal crossings. In Theorem 2.8 we then give two
homological reformulations for any of the d»¢ to be the zero map.
It is easy to give differentiable examples where these topological
conditions are not satisfied. However, we know of no examples of
non-K#hler compact complex manifolds where these conditions fail.
The degeneracy at E, might be true for surfaces but we feel it is
not true in dimensions greater than two.

If W is compact Kahler, then these homological conditions are
satisfied for divisors with normal crossings. However, if one allows
arbitrary singularities on V, then one can give examples when the
homological conditions of (2.3) are not satisfied; so that the general
position is needed, although the abutment of the spectral sequence
is the same when one resolves the singularities to normal crossings.
This phenomenon is interpreted in terms of iterated residues in (3.2.1).

As far as notation goes, H*(X) or H,(X) will always mean
coefficients in some fixed field. If W is noncompact, the homology
or cohomology can either be with compact or closed support. By
closed support in W — V, we shall mean support closed in W —V and
closed in W, ef., Fotiadi, et. al [3, Part III].
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2. A homological reformulation for degeneracy.

2.1. Suppose W is a complex manifold of complex dimension =
and V is a divisor with normal crossings. We suppose V,, iel are
the nonsingular components of V and we set V.., =V, n---NV,,
which is a submanifold of complex dimension n — k or the empty
set. We let M, denote the k-tuple points of V (i.e., M, = U(V,,...;, —
Us,., Viiigirs,)) and M, denotes the closure of M,. Set M,=W —V.

Then in Gordon [4, p. 133] a subgroup of H,(M,) is defined,
called the tubular cycles, and denoted by H,(I,),, such that one
has the tube over cycle map z,: H,(M,),— H,+,(M,_,). One also has
the Gysin mapping 7,;: H,(M,) — H,..(M,_,), cf., [4, p. 134].

2.1.1. DEFINITION.
Hp( V)A = Hp(Ml)dg %2 st %q—lqup—q*Fl(Mq)d .

If we let = denote 7, on the first summand and 7, on the last
p summands of (2.1.1), then Gordon [4, p. 143] shows:

2.1.2. The following is exact:

Hyool( W) — Hy(V)y——> H, (W — V)

where I is transverse intersection with V.

2.2. We are now going to define the notion of absolutely relative
class of degree k.

Suppose V,;, 1€ I' are complex manifolds in general position and
suppose we have v,e H,(UV,). Let v,NV,="7,:€H,(V,, Uj,jer Vi)
and j:V,c(V;, U;,;errVi;) be the inclusion. (Recall, V,; =V, NV;.)
Finally, let Hom: H/(V,, U; Vi) = H2(V,, U; Vi;) be vector space
duality. The pairing can be thought of as being given by deRham’s
theorem via integration, where H*(V,, U;V;;) can be represented
by forms which vanish on U,;Vy;, cf., Leray [9, Chapter 3]. If the
V. are noncompact, then H(V,, U,-Vij)LH:f(V,-, U;V.;) where ¢
and F' denote compact and closed support respectively.

2.2.1. DEFINITION. We say v,€ H,(U:c,-V.) is an absolutely
relative class of Ui,V if

(i) 0=#1,:€H,(V;, U;Vy;) for all 1eI'.

(ii) (4)* Hom(7,,:) = 0 for all ¢e I

Thus, suppose V =V, UV, are two Riemann surfaces with two
double points P and @ in common. Then a real line joining P to
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Q in V, for ¢+ =1 and 2 would represent an absolutely relative class
if it did not wrap around a handle of V; in going from P to Q.

Suppose 7, is an absolutely relative class of U;e; V. Then we
have,

O _+L a*7p,i = .1;"71,_1’1;_7‘ e Hp~l(U:i Vij) .

2.2.2. DEFINITION. 7, is an absolutely relative class of degree
one of UV, if v, is an absolutely relative class such that 6,7, .:; =
0 for all 4, jeI’. An absolutely relative class is of degree k if
Viel', > Vp,; is an absolutely relative class of degree ¥ — 1 in

U; Vi

2.2.3. DEFINITION. 7, is an absolutely relative class of degree
zero of U, V, if

(i) 0=#1,.cH,(V, U,V for all iel'.

(ii) 047,:=0 for all <el'

Essentially, to say a class is absolutely relative of degree k&
means if one takes the Maier-Vietoris sequence of U;.;V; and breaks
it up into a diagram of horizontal and vertical maps, as e.g., for
|I'| = 3 in Diagram 1, then v is of degree k if one can take k& non-
zero boundary operators on v before it is zero.

H, (V) H, (V)

lo I

H(V)@ H (V.U V) — H(V, UV, UV)) BN H, (V.UVy)

I I

H,(V,) @ H)(Vy) H, (V)@ H, (V)

DIAGRAM 1

Suppose v is a p-dimensional absolutely relative class of degree
k. Then after tracing % boundary operators, we have

Vo 1, €D H, (V; - i) -

1y <eee <7
Then if P denotes Poincaré duality followed by Hom, we can form
P(v;,....) € Hyp_y1p(Vyy -+ - ;) Where n — 1 = dim. V..

2.2.4. DEFINITION. 7, an absolutely relative class of degree #,
is called tubular if

@ i P<7111k> € -H2n~k+p(Mk>A .

1y <eee <ty

By definition, H/(M,), < H(M,), but in fact one easily shows
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that H,(M,), C @®;,<...<i H(V;,...;,). The mapping is given by send-
ing v, onto v,N V.., which is of dimension ¢ by (a) of the de-
finition of tubular ecycles in [4, p. 133]. It is an injection by
arguments similar to those on [4, p. 135]. Hence Definition 2.2.4 is
well-defined.

2.3. THEOREM. Suppose W is a complex manifold of dimension
n and V= U.;V; is a divisor with normal crossings. Let j:W —
VW be the inclusion. The then following are equivalent:

2.3.1. In compact (respectively, closed) support, the Leray spectral
sequence of 5 has d}% acting as the zero map.

2.8.2. Ty Fypy e T H(M), — Hyppo(M,_,_,) is an injection in
compact (respectively closed) support. For £k =0,%7, =17, and by
definition, for s £ 0, 7, is always an injection.

2.3.2. Suppose v is an absolutely relative tubular class of degree
k of M, ,(=UVi..;_) of real dimension 2n — 29 — p + k in closed
(respectively compact) support. Let f,_,: M,_, < M,_,_, be the inclusion
map. Then (f,_»)«Y =0. By deﬁmtlon for s <0, f, is always the
Zero map.

Proof of Theorem 2.3. The proof that (2.8.1) is equivalent to
(2.8.2) follows because d* is the Gysin mapping, cf., Gordon [6, Pro-
position 3.3.2]. But since we are working with coefficients in a field,
the vector space dual to d?'? acting on homology is just the transverse
intersection mapping I. But by (2.1.2), Image I = Ker <.

The equivalence of (2.8.2) and (2.8.8) is just Poincaré-Lefschetz
duality, where we change supports, since if V,..; is noncompact,
then Hy(Vi..ipp Mpr, NV, ,,)—»Hz,,_,, w(Vigoy — Miss 0 Vi), Where
by closed support in V;..; — M,:, N V;...;, we mean closed in V...,
M,..NV,.., and closed in V,..,,, cf., Fotiadi, et. al. [3, Part III]

For example, suppose |I| = 2, then we have the following diagram
of exact rows:

(31)* ,
H{'n-—p 2( Vz) — H2n p— 2( Vu Vl2) an—p—a( VI?)

R It R
HyV) ————— Hy(V: — Vo) —— H; (Vy)

DIAGRAM 2

where the first row is the exact sequence of the pair (V,, V,,) and
the second row follows from the Gysin sequence of the same pair.
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The vertical isomorphisms are Poincaré-Lefschetz duality followed
by Hom.

Hence ker 7, = coker (3,),, so that a basis of H,_,(V,) can be
chosen such that 7,(v) #0 in V, -V, iff P~(v) = (3,),7: for i1 =1
and 2.

Then by a similar argument, if we set v, — v, =v' € H,,_,_,(V),
then 7,7,y = 0in W — V iff v’ € Image {0,: Hy,_,_ (W, V) — H,,_,_(V)}.
But 7' is a tubular absolutely relative class of degree one.

A similar argument works for arbitrary I.

2.4. COROLLARY. Suppose W is a compact Kdhler manifold
and V is a divisor with mormal crossings. If v is an absolutely
relative class of degree k=1 in V, then 1,v = 0 in W where ©:V C
W is the inclusion. Thus, (2.3) gives that the spectral sequence
collapses at E,.

Corollary 2.4 follows immediately from the discussion in Griffiiths-
Schmid [7, Chapter 4]. The key step is the principle of the two
types. If we have a form w of type (¢, » — ¢) which is exact, then
® = dn, = dn, where 7, is of type (¢ — 1, »p — q) and 7, is of type
(@, p—q—1) [7, Lemma 2.13].

Using the principle of the two types, the idea of the proof of
(2.4) is as follows: Suppose V=V, U V,. If v is an absolutely relative
class of V, then v =7, + v, for v,€e H(V;) and 0 # 0,7, = —0.7, =
Yo € H, (V). If i,y # 0 for ¢:V C W, then there is a harmonic form
@ which represents Hom ¢,7. We can assume ® is of pure type
(g, » — q) by looking at each component one by one. Then if i:V,C
W, then (4,)"® is exact, thus by the principle of the two types,
(1)@ = dn, = d1,. But then by Leray [9, Chapter 3], ,| V. represents
Hom(v,). Thus Hom(v,,) can be represented by two different types,
(q—1, p—q) and (¢, p — q — 1), which is impossible on compact
Kahler manifolds. This is also what happens in the lemma of the
two filtrations of Deligne [2, 1.3].

2.5. We note that (2.3) is a topological and not an analytic fact.
That is, suppose ® is a orientable, C* manifold and V = J,V, is a
collection of C* submanifolds in general position. Then (2.1) can be
modified so that (2.1.2) is still true, cf., Gordon [5], and (2.2) still
makes sense. Then (2.8) will still be true with appropriate modifica-
tion in the indices of (2.8.2) and (2.8.3) which will only depend on
the codimension of the V..

In particular, suppose W is a compact Kahler manifold and V =
U.V. are complex submanifolds in general position. Let N = max;n;
where n, is the complex codimension of V,. Then (2.4) actually shows
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that the Leray spectral sequence of j: W — VC W collapses at
E2N+1-

However, it is easy to give topological examples where the
spectral sequence does not degenerate at the approprimate codimension.
E.g., let S, and S, be two 2-dimensional spheres in R* which intersect
transversely in two points P and Q. Let T(S) be a regular tubular
neighborhood of S=S,US, in R* and form DT(S), the double of
T(S), by glueing T(S) to itself along its boundary. Then DT(S) is
a compact 4-dimemsional manifold and S is two submanifolds in
general position of real codimension two.

Let <, be the one cycle formed by tracing a line from P to @
in each of the S;. Then 0 = [v,] € H(S). If ¢: Sc DT(S), then it is
easy to see that 7,[v]# 0 in DT(S). Hence by (2.3.3), the Leray
sequence of j: DT(S) — Sc DT(S) does not degenerate at EY* == E?
but at EP? = E%".

The obvious examples one would consider for W a compact non-
Kahler surface do not yield examples where the spectral sequence
collapses at E,. For example, if W is an elliptic surface with singular
fibre of type ,I, with b > 1, cf. Kodaira [10], then the spectral
sequence associated to this singular fibre always degenerates at E,,
i.e., the cycle formed by joining all the double points always bounds
in W. If such an example exists for surfaces, it would probably
have to be of type VII, with b, = 1(2) and b, > 0.

3. Arbitrary singularities in the compact Kdhler case.

3.1. If Vc W is a variety of complex codimension N and W is
a complex manifold, then one can resolve the singularities of V by
a finite number of monoidal transforms with nonsingular centers, cf.,
Hironaka [8]. That is, one has another complex manifold W’ and a
holomorphic map 7w: W’ —W such that if #-%(V)=V’, then V' is a
union of complex submanifolds in general position with codim,V’ =
N. Furthemore, by a theorem of Blanchard [1], if W is compact
Kahler, then so is W".

Then one has two spectral sequences with regards to the two
maps J:W—-VCW,j7 "W —V'cW with E}*= H**"*(W —V) and
'E? "= H**Y(W' —V'). Now, by the general theory of monoidal
transforms one has that z= is a bianalytic homeomorphism of W —V
onto W' —V’. Furthermore, by [5, p. 56] and by [4, Proposition
3.1], we have the following:

3.1.1. PROPOSITION. Im EZ%? > ker{H,,(W — V) — H,,, (W)} and
Im E% = Im 'E%* under the identification w: W — viw —v.
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3.2. Of course, if V is a variety of complex codimension N
whose singular locus is of sufficiently high codimension in V, then
then spectral sequence will not collapse at E,y.,, even if W is compact
Kahler.

For example, if in CP?, we let C(T) be the cone over the torus
in CP? i.e., C(T) = {[x, ¥, 2, w]|2® + ¥* + 2°* = 0}, then E}* = HYC(T))
and Ej* = HL), where L is the intersection of C(T') and a sufficiently
small 5-sphere about the singular point of C(T). This follows because
£ = H*(W,; R%, where R‘ is the sheaf associated to the presheaf
which sends the open set U —-HYU —V nU),ecf., Swan [11, p. 129].
Hence, di*: E}* = EY* — Ei* = Ey'is dual to the intersection mapping
of H(C(T)) onto Hy(L), which is nonzero, i.e., E¥* = 0.

But, when we do not have normal crossings, even in the compact
Kahler case, we can have counterexamples to (2.3.2). For example,
let 7 be the torus in C(T) as above, and let W be the projective,
algebraic manifold gotten by a monoidal transform 7 in CP? with
center T. Let Vc W be the strict transform of C(T) by z. Then
V = C(T), since T is of codimension one in C(T). Hence V has one
singular point, which we shall call P_; and a Whitney stratification
of Vis given by M, =V —- P, M,=P,.

Consider [y]e H(T), TcV. Then v ~ 0 in V; in fact v = 7,(P,)
where 7,: H.(M,) — H,(M,) is the tube over cycle map, [4, p. 158].
Hence, 0 = [v] € £%*. But 7,7,P, = 0 in W — V, since there is a [v,] €
Hy(W) such that v,V = ~v. Topologically, v, = 7~*(v). Here E{*=
E2.

Similarly, taking V,, = Kj.: e XVCcWX -+ xW=W,, we can

—

m times m times

form a Whitney stratification of V, by letting M, be the smooth
points of V,, M, be the smooth points of V,, — M,, M, be the smooth
points of V, — M, U M,, ete., so that M,., = P, X -+ X P, = P.
Then 7, - - - Tpi,(P) # 0 in M, (topologically, it isy X --- X ), where
7, are the iterated tubes maps defined in Gordon [4, p. 158]. But
TTy+* T(P) ~ 0 in W,, =V, i.e., di™* is not the zero map.

What happens that we have a product of circle each of which
bounds a disk in V, but when one resolves the singularities, this
product of circle defines a nonzero homology class in V’. What (2.3.2)
states is that when the ambient space is compact Kahler this always
happens:

3.2.1. PROPOSITION. Let W be a compact Kahler manifold and V
an arbitrary variety. If an iterated tube map is not injective, then
when ome resolves the singularties via nonsingular centers, those
cycles (in the Lermel of the iterated tube map) represent momzero
homology classes im the proper transform.
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