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THE SPECTRUM OF THE LAPLACIAN ON FORMS
OVER A LIE GROUP

H.D. FEGAN

Let G be a compact, semi-simple, connected and simply
connected Lie group. Then the bundle of p-forms, denoted by
Ωp has a Laplacian Δ: Ωp-+Ωp defined by the Riemannian
structure on G. Then the problem of finding the eigenforms
and corresponding eigenvalues is considered in this paper.
Our solution is given in terms of the representation theory of
G and is contained in the following.

THEOREM 1.1. By left translation identify Ωp = L\G) (x) ΛPQ*

where g is the Lie algebra ofG. Then the spectrum of the Laplacian
on p forms is given by

(a) the eigenvalues are

<\ μ) = ^(fi(\) + c{μ))
Δ

for c(λ) = ||λ + p\\2 — \\p\\29 λ the highest weight of an irreducible
representation, p is half the sum of the positive roots and μ is the
highest weight of an irreducible representations in the decomposition

πλ (x) Λp Ad* = Σ nλ(μ)πμ.

(b) the corresponding eigenforms are spanned by the matrix
coefficients of πμ. Here πμaπλ® Λp Ad* and by the Peter-Weyl theo-
rem we have Ωp = Σ Hλ ® H* (x) ΛPQ* SO the matrix coefficients are
identified with p-f orms.

(c) the multiplicity of c(X, μ) is

m(λ, μ) = nλ(μ)(άim Hμf .

This theorem can be interpreted in the following way. Let
Xlf , Xn be a basis for the left invariant vector fields and Yί9 , Yn

one for right invariant vector fields. Then we can define two Casimir
operators, CL using X* and CR using Yi. The Theorem 1.1 can then
be stated as follows.

THEOREM 1.2. The Laplacian on p-forms is given by Δ —
(CL + CB)/2.

It was in this form that the resnlt was first made known to
the author, see [1]. The advantage of our approach over that in [1]
is that we avoid long calculations in local coordinates.
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One should notice that in the case p = 0 everything reduces to
the well known situation on functions. In Theorem 1.1 we are forced
to take λ = μ9 then c(λ, μ) = c(λ) and nx(μ) — 1. Similarly in Theo-
rem 1.2 we have that for p = 0, CL = CR so Δ = C is the usual identi-
fication of the Laplacian with the Casimir operator. Secondly we
notice that the expression in Theorem 1.2 is symmetric between left
and right invariant parts. This symmetry has been hidden in Theo-
rem 1.1 by chosing a trivialization of T\G) by left invariant vector
fields. However, in return for this loss of symmetry we have more
explicit formulae.

The main Theorem 1.1 is proved in §6 of this paper. Before
we can prove this we need to establish some notation and some
standard results. In § 2 we review results on representation theory
for a Lie group. This is followed by § 3 on identifying G as a
homogeneous space and § 4 on the relationship between the group
theory and results from Differential Geometry of manifolds. Section
5 contains a partial result which is left in terms of homogeneous
spaces and then in § 6 this is strengthened to our result. Finally
§ 7 contains the example of spec^St/^)).

There are some more general results, see [6], concerning differ-
ential operators on homogeneous spaces. By working with more
specific cases, natmely Lie groups, we have been able to obtain more
detailed results. This provides explicit formulae to help with calcu-
lations as in the case of spec^SC/^)) and so our paper provides some
information complementary to that in [6],

Finally, I wish to acknowledge the useful discussions I have had
with other mathematicians, particularly Jiri Dadok and Richard S.
Millman, and to thank them for their help.

2* The representation theory of a Lie group* In this section
we shall review the results from representation theory which we
need. These are all well known and so the reader is referred to [2]
or [4] for details and proofs. However, since notations vary between
authors we need to describe the results in our context.

Let G be a compact, semi-simple simply connected Lie group.
Then all the irreducible representations of G are finite dimensional.
If G denotes the space of all irreducible representations then the
highest weight theorem gives us a description of G.

THEOREM 2.1. The set G = P Π D, where P is the lattice of
weights and D is the positive Weyl chamber.

We shall use the following notation. If λ e P Π U then the
corresponding representation is πλ on a space Hλ
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(2.1) πλ:G >AutJEΓ2>

and πλ has highest weight λ. The corresponding character is

(2.2) *x(g) = tτπλ(g)

which has the normalization

(2.3) Xx(ΐ) = dim Hλ

where 1 is the identity element of G.
Representations enter into the analysis on G by means of the

Peter-Weyl theorem.

THEOREM 2.2. Let L\G) denote the square integrable functions
on G then there is an isomorphism

L\G)= Σ H,®Hf.
λ ε i ' Π D

Furthermore if G acts on L\G) by left translation then this is realized
by the action X πλ on the left hand factor, and right translation
corresponds to the action Σ πt o n the right hand factor.

To study differential operators on G we introduce the Lie algebra
g of G. We can identify g with the left invariant vector fields on G.

REMARK. We could also have identified g with right invariant
vector fields. By making the choice of left invariant vector fields
we have introduced some asymmetry which will appear later.

Let U be the universal enveloping algebra of g and Z(U) be
the center of U. Then we can identify U with the set of all left
invariant differential operators on G and Z(U) with the bi-invariant
operators. Given a representation πλ of G we can differentiate this
to get a representation of g and then extend it to U. All of these
are denoted by πλ whenever no confusion arises:

(2.4) πλ:G >AutHλ

(2.5) πλ:Q >Endiϊ,

and

(2.6) πλ: U > End if, .

By the Peter-Weyl theorem we can relate the differential operators
on G with representations. Let D e U be a differential operator.
If π denotes the action of U on L\G) then the differential operator
D is realized as π(D). If DeZ(U), so D is bi-invariant, then we
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can describe this in more detail. There is a polynomial function pDf

where

(2.7) pD:P >C,

such that the following result is true.

THEOREM 2.3. If DeZ(U) then there is pD e C[P] such that π(D)
acts as the scalar pD(X) on the term Hλ (x) Hf in the decomposition

In this paper we are interested in the eigenvalues of a specific
operator, the Laplacian, and we can restate Theorem 2.3 as,

THEOREM 2.4. If DeZ(U) then the eigenvalues of D are pD(X)
with multiplicity (dim Hλ)

2 and a basis for the space of eigenfunc-
tions is the set of matrix coefficients of πλ.

If < , > denotes the positive definite inner product on g induced
from the Killing form by changing sign, then consider the following
sequence of maps:

(2.8) Hom(g, g) >g(x)g* >g(x)g > U .

Here the first map is the natural isomorphism, the middle comes
from the isomorphism g* —»g given by < , ) and the last map is
the inclution of the Poincare-Birkhoff-Witt theorem. Now Hom(g, g)
has a distinguished element, the identity map, so we take its image
under the sequence of maps which we denote by C eU. Then C is
called the Casimir element and it is easy to see that C corresponds
to the Laplacian defined by the Riemannian structure on G given
by <,>.

Let

(2.9) pc(X) = c(λ)

then we can describe c(λ) explicitly. Set

(2.10) ( 0 = i . Σ α ,

so p is half the sum of the positive roots, then

(2.11) c(λ) - ||λ + p| | 2

In this | |α| |2 = <α, a) is the norm on g* induced from the Killing
form. Thus we have a complete description of the eigenvalues and
eigenf unction of the Laplacian defined on L\G).
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THEOREM 2.5. For each λ e P n D c(λ) is an eigenvalue of Δ on
L\G) and the corresponding eίgenspace is spanned by the matrix
coefficients of πλ. Conversely if Δf — nf then n = c(λ) for some
xePf) D and f is a linear combination of matrix coefficients of
representations πλ with c(λ) = n.

We must describe the representations of the group G = G x G.
This is done in terms of the representations of G. For λ, μ e P Π D
the pair (λ, μ) is the highest weight of a representation of G. More
precisely,

(2.12) πλy. G > Aut (Hλ <g) Hμ)

with the action on the element x®y eHλ(g) Hμ given by

(2.13) π2tμ(glf g2)(x (x) y) = (πλ(gλ)x) ® (πμ(g2)y) .

We must also know the action of the Laplacian on G. By Theo-
rem 2.5 since G is also a compact semi-simple simply connected group
we have only to give the polynomial c(λ, μ).

LEMMA 2.6. The polynomial c(λ, μ) = c(λ) + c{μ) where c(λ) =

l|λ» + P\\2 ~~ lli°IΓ is the polynomial associated to the Casimir of G.

Proof from Theorem 2.5 we have

(2.14) c(\,μ)

The result now follows since p — (p, p) and we are now working
with the product norm so

(2.15) \\{a,βW= Hall2 + H/3II2 .

3 The Lie group as a homogeneous space* In this section
we shall consider the Lie group G as a quotient space of the group
G = GxG. Let

(3.1) diagG - {(g, g)eG xGigeG}

- 1then diag G ~ G. Consider the map G-+G given by (x, y) —> xy
then this has kernel diag G and so we have a short exact sequence

(3.2) 0 > diag G > G > G > 0 .

Notice that the last map is not a homomorphism so that G = G/diag G
as manifolds, the group structure however has been lost. Essentially
we are studying how the Riemannian structures in the terms in the
sequence (3.2) are related.
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On the Lie group G we have a Riemannian structure induced by
the Killing form. Since G is compact and semi-simple the Killing form,

(3.3) B(X, Y) = tr ad Xad Y ,

is a negative definite bilinear form on g, the Lie algebra of G. We
identify the tangent space Tg(G) with g by left translation:

(3.4) Lβ:a >Γ,(G).

Then we can define an inner product on Tg(G) by

(3.5) <£, v) =

for ξ, η 6 Tg(G).
Now the group G has the product Riemannian structure induced

from G, since G = G x G. Let < , >̂  denote the Riemannian struc-
ture on G coming from the projection G —> G. Then one can check
that

(3.6) <£, ̂ >. = 2<f, >̂ .

If Δ denotes the Laplacian on functions on G and Δ the Laplacian
on G coming from that on G then one consequence of (3.6) is

(3.7) 2 =2zf .

In the next section we shall see that this result is also true on forms.
To finish this section we shall describe the connection between

representations of G and bundles over G. Let

(3.8) π: G > Aut E

be a representation of G, not necessarily irreducible, onto a finite
dimensional space E. Then we have a representation π: diag G —>
Aut E by

(3.9) π(g, g)v = π(g)v .

Now form the trivial bundle

(3.10) GxE >G

over G with fiber E. Then diagG acts on G x E by

(3.11) (g, g)(xf y, v) = ( w 1 , 2/βr1, π(

Let

(3.12) E = G x JSydiagG
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be the quotient under this action then it is immediate that E is a
bundle over G = G/diagG. We shall E by G Xτ E.

4* The deRham complex and the Laplacian* Let M be a
Riemannian manifold. Of course we shall be interested in the case
M = G. The cotangent bundle of M is T\M). Then we can form
the bundle TP(M)\ the pth exterior power of T\M). This is the
bundle with fibre at x e M given by

(4.1) Γϊ(Af) = Λp{Tl{M)) .

A section of the bundle TP(M) is called a p-form. We shall work
with C°° p-forms here and then extend these to L2 p-forms so that
we can use the Peter-Weyl theorem. The space of p-forms is denoted
by ΩP(M). Thus Ω\M) = C°°(M) and so there is a natural map

(4.2) d: Ω\M) > Ω\M)

which extends as a derivation to

(4.3) d: Ω%M) > Ω

This map d is the exterior derivative and has the property that
<f = 0.

The Riemannian structure on M induces an inner product on each
fiber of TP(M) for all p. In particular there is a volume form on
M denoted by dV(x). Then we have a metric on ΩP{M) given in
local coordinates by

(4.4)

Using < , > on ΩP(M) we define d* as the adjoint of d, thus

(4.5) d*: Ω*+\M) > Ω*(M) ,

and

(4.6) (w, d*r> - (dw, τ> .

The Laplacian on p-forms is

(4.7) Δ = dd* + d*d: Ωp > Ωp .

This gives us a more general form of equation (3.7); that is if < ,
and < , >2 are two Riemannian metrics with < , X = k( , >2 and Δl9

are the corresponding Laplacians on p-forms then

(4.8) Λ = kJ2 .
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In our case we have < , \ = < , > ,̂ the metric induced from G =
G x G, and < , >2 = < , >, the Killing form metric. Hence

(4.9) I=2J

which holds not just for the Laplacian on functions but for the
Laplacian on p-forms.

5* The Laplacian on p-forms* So far we have surveyed some
standard material form Lie group theory and Riemannian Geometry.
This has been done in such a way as to ease the proof of the main
result of this paper. Before the main result comes we still need
some more material.

PROPOSITION 5.1. Let TP(G) be the pth exterior power of the
cotangent bundle and π = Λp Ad*: G —> Aut ΛPQ* be the pίh exterior
power of the dual of the adjoint representation, then identifying
G = G/diagG gives TP(G) ^ G χ : Λψ.

Proof This proposition follows from the following lemma, taking
duals and taking exterior powers.

LEMMA 5.2. Let T(G) be the tangent space ofG then T(G) = GχAά g.

Proof There are two maps Tg(G) —> g, left and right translation,
which we consider. These are denoted by

(5.1) L,:Q >Tg(G)

and

(5.2) R,:Q >Tβ(β).

The adjoint action is

(5.3)

Notice that we can extend Lg and Rg to the whole of T(G) and then
(Rg)~ι = R{g-i). Consider the bundle map

(5.4) / : G x g >T(G)

by

(5.5) /((a?, y), v) = LxRy-iv e Txy-i(G) .

Since /((xfc"1, yh'1), ad hv) = f((x, y)v) the map / induces a map
/ : £ χ A d 8 - > T ( G ) .

Clearly this restricts to a vector space isomorphism on each fiber.
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To complete the proof that / is a vector bundle isomorphism we much
check that / is smooth. This together with checking that / preserves
Lie brackets is left to the reader as an easy exercise.

THEOREM 5.3. (a) The eigenvalues of the Laplacian A on p-forms
are the numbers c(λ, μ) = (c(X) + c(μ))/2 where λ is the highest weight
of any representation and μ is the highest weight of a representation
in the decomposition π* ® Λp Ad = Σ nμπμ.

(b) The space of corresponding eigenforms is spanned by the
matrix coefficients of the representation τϋχ0πμ0 Λp Ad*.

Proof. Let s be a p-ίorm on G which is an eigenform for A.
That is 8 is a section of TP(G) and As == ns. Then there is a section
S of G x ΛPQ* which is a map

(5.6) S: G > Λψ

such that

(5.7) AS = 2nS

and S projects to s under the projection from the following diagram

G x ΛPQ* > TP(G)

(5.8) J J
G > G .

Now the bundle G x ΛPQ* is trivial so the Peter-Weyl theorem
gives a description of its sections:

(5.9) Γ(G x Λ'β*) = ΣHλ(g)Ht(g)Hμ(g) H* <g> ΛPQ* .
λ μ

Here we have used the fact that an irreducible representation is of
the form Hλ (x) Hμ for Hx and Hμ irreducible representations of G.
Now we can use the result giving the eigenvalues and eigenfunctions
of the Laplacian to describe S. That is S is a linear combination of
matrix coefficients in the representation Hλ ® Hμ 0 ΛPQ*, with the
trivial action on ΛPQ*. The eigenvalue, which we recall is 2n, is then

(5.10) 2n = c(X) + c(μ) = 2c(λ, /ί) .

The next step is to find which of these sections S project to a
section of TP(G). Let Adp* be the pth exterior power of the dual
of the adjoint action, then by equation (3.11) and Proposition 5.1 we
see that the condition that S projects to a section of TP(G) is

(5.11) S((</A gM = Ad'*(fc)S(Λ, g2) ,
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here we have regarded S as a map, as in equation (5.6). Thus if S
is a matrix coefficient of Hλ(x) Hμ® Λv§* and satisfies (5.11) then we
must have

(5.12) πμaπf(g)Adp

as a subrepresentation. From (5.10) we see that the corresponding
eigenvalue is n = c(λ, μ) which completes the proof of part (a) of
the theorem.

The proof of part (b) is completed by observing that the matrix
coefficients of the representation Hχ(><)Hμ<g)ΛpQ* for all λ, μ such that
2c(λ, μ) = 2n form a basis for the eigenspace corresponding to 2n on G.

6* The group structure on G/diag G. The projection G —>
G/diag G gives an isomorphism G/diag = G as manifolds. However,
since the map (x, y) —> xy~v is not a homomorphism the group struc-
ture is lost. In this section we remember that G has a group struc-
ture and use this to describe the Laplacian on p-forms on G. Let
us recall our diagram:

G x ΛPQ* > Tp{G)

(6.1) I

We define a splitting G —> G by g-+(g,ϊ).
Since a Lie group is parallelizable we can use left translation to

give a global trivialization of the bundle TP(G). Now from the Peter-
Weyl theorem we can describe p-forms in terms of representations:

By using the splitting of (6.1) we can now explicitly describe a section
SeΩp(G) which is obtained from a section S: G-* ΛPQ*. By our pre-
vious work it is sufficient to do this when § is a matrix coefficient
in a representation Hχ® Hμ® ΛPQ* with πμaπf (g) Λp Ad. That is it
is sufficient to consider

(6.3) §(x, y) = f(x)g(y)w

with / a matrix coefficient of Hx, g one for Hμ and w eΛpQ*. Then
under the identification (6.2)

(6.4) S(x) = f(x)w .

The main result of this paper can now be stated.

THEOREM 6.1. Let λ be the highest weight of an irreducible
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representation πλ: G —> Aut Hx and let π* ® Λp Ad = Σ ^ Λ be a de-
composition into irreducible representations, then

(a) the eigenvalues of the Laplacian on ΩP(G) are c(λ, μ) =
(c(λ) + c(μ))/2.

(6) the corresponding eigenforms are spanned by the matrix
coefficients of π* c πx (x) Λp Ad*.

(c) ίΛe multiplicity of the eigenvalue is m(λ, μ) — ̂ (dim Hμ)
2.

Proof. This result is a translation of Theorem 5.3 under the
splitting which we have defined. There is the additional part about
the multiplicities because we can now pick out which elements in
the spanning set are linearly independent.

We note that the techniques used in this paper can be used to
describe the Laplacian on vector bundles over homogeneous spaces
GjK. However, the results are not as detailed in the general case
as they are in our specific case of G/diagG.

7 The example of Speĉ SΣTζS))* In this section we calculate
Spec1 (S £7(3)). That is we use Theorem 6.1 to calculate the eigen-
values and eigenforms of the Laplacian on 1-forms for the group
SZ7(3). The basic facts about SU(β) are taken from [2] and so we
just recall these without proof. However, the reader is warned that
there are differences between the notation here and in [2].

The group SU(S) has ranki = 2, dimension dimS?7(3) = 8 and 3
positive roots, a, β and p, with the property

Thus p is half the sum of the positive roots as well as being a root.
We define weights σ and τ by

(7.2) σ = l a + λβ, r = | α + | / 3 .

The lattice of weights is generated by σ and τ and the dominant
weights are

(7.3) P Π D = {aσ + bτ: a, b e Z, α, b ^ 0} .

These facts are summarized in the following diagram. In this dia-
gram the heavy lines represent the walls of the Weyl chambers. One
can identify these chambers with the Weyl group and denoting these
by wQ, wl9 - - , wδ the action of the Weyl group is
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(7.5)
w0 w1 w2 wz w4 wδ

σ σ σ —τ τ — σ τ — σ —τ

τ τ σ — τ σ — τ τ —σ — σ

where the entry in row 7, 7 = o or τ, and column Wj is wά(y).
The inner product induced by the Killing form is given in the

following table:

(7.6) (σ, σ) = <r, τ } = f

Thus if λ = aσ + &τ then

(7.7)

and

(7.8)

c(λ) = —(α2 + b2 + α& + 3α + 36)
y

dim Hi = — (o + 1)(6 + l)(α + & + 2) .

To decompose 7Γ ® Ad we use the following result, see [5] or
[3]. Firstly let FJji) = Σ*weW (-l) w δ£,, then if π (g) Ad = Σ ^ π , , the
numbers %„ are given by

(7.9) nμ = Σ mfrWe+x-rip + μ) ,

where m(γ) is the multiplicity of the weight 7 in the representation
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Ad. Notice that if μ and v are both in the dominant chamber and
not both in the walls of the chamber then

(7.10) FXμ) \l .
(0 otherwise

To carry out our decomposition we need to have the values for
m(γ), which are

(7.11) m(γ) = j l 7 = ±a, ±/3, ±p

0̂ otherwise .

The results of the calculation S^ec\SU(Z)) are now given in the fol-
lowing table. For each λ, a dominant weight we give the dominant
weights μ in the decomposition πλ (x) Ad, the values of the Casimir
c(X) = c(X*) and c(μ), where λ* is the highest weight to π*. Then
we give the eigenvalue of the Laplacian, c(λ, μ), and its multiplicity,
m(λ, μ) — ̂ (dim Hμ)

2.

TABLE 1

χ = o, c(λ) = 0

μ

σ

2r

2σ + τ

, C(μ) = l,

C(μ)

4
9

10
9
16
9

TABLE 2

= *. c(λ) = |-

cW, μ)

4
9

_7
9
10
9

>(K μ) = 16

9

36

225

TABLE 3

μ

τ

2σ

a
 +
 2r

C(μ)

4
9
10
9
16
9

c{λ
t
 μ)

4

9

7

9

10

9

m(λ, μ)

9

36

225
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(α
(α

(a

μ
(a - l)σ

- 2)σ 4- 2r
4- l)σ 4- 2r
(α 4- 2)<7
— l)σ 4- 3r
2(7 4- τ

μ

0

2σ + 2r

3(7

3r

(7 + Γ

H.

c(μ)

0

8

2

2

1

i = ασ + r, α Ξ>

c(
(α 24- α
(α2 + α

(α2 4- 7α
(α2 4- la
(a2 4- 4α
(α2 4- 4α

[μ)
-2)19
+ 4)/9
4-16)/9
4-10)/9
4-13)/9

: + 4)/9

D. FEGAN

TABLE 4

r 4- r, c(λ) = 1

c(λ, μ)
1
2

2
_3̂
2

3
2
1

TABLE 5

2, c « - (92 -

c(λ, i

(2α2 + 5a
(2α2 4- 5α

(2α2 + l l α
(2α2 4- l l α
(2α2 + 8α

(α2 + 4α

m(λ, μ)

1

729

100

100

256

f 4α 4- 4)/9

«)
4- 2)/18
4- 8)/18
+ 20)/18
4-14)/18
4-17)/18
+ 4)/9

m(λ, μ)
α2(α 4-1)2/4

9(α - l)2(α + 2)2/4
9(α 4- 2)2(α 4- 5)2/4
(α 4- 3)2(α 4- 4)2/4

4α 2 (α+4) 2

2(α+l) 2 (α+3) 2

χ = σ 4- iTi

TABLE 6

> ^ 2, c(λ) = (δ2 4- 46 4- 4)/9

(δ
2(7 4-
2σ 4-

(6
3σ4-

σ -

μ
- l)r
(6 - 2)τ
(6 4- l)r
+ 2)r
(δ - l)r

f δ r

(62

(6s

(δ2

(δ2

(δ2

(δ2

:4-
! 4 -
4-

4-
4-
4-

c(μ)
b - 2)19
6 4- 4)/9

76 4-16)/9
76 4-10)/9
46 4-13)/9
46 + 4)/9

(2δ2

(2δ2

(262

(2δ2

(2δ2

(δΣ

C{λ, μ)

+ 56 +
+ 56 +

+ 116 +
+ 116 +
+ 86 +

1 + 46 +

2)/18
8)/18
20)/18
14)/18

17)/18
4)/9

m(λ, μ)
62(δ + l)2/4

9(6 - l)2(δ + 2)2/4
9(6 + 2)2(6 + 5)2/4
(δ + 3)2(δ + 4)2/4

462(δ + 4)2

2(6 + l)2(δ + 3)2

TABLE 7

• + δr, α ̂  2, 6 ^ 2 , c(λ) = (a2 + δ2 + αδ + 3α + 3δ)/9

(α-2)<7+(δ+l)r

(α-l)σ+(δ+2)r

(α2+δ2+αδ+6α+66+9)/9

(α2 + δ2+α6-3)/9

(α2+δ2+α6+6α+36+6)/9

(α2+δ2+α6+36)/9

(α2+δ2+α6+3α)/9

(α2+δ2+αδ+3α+66+6)/9

(α2+62+αδ+3α+36)/9

c(λ, μ)
(2α2+2δ2+2αδ+9α

+9δ+9)/18
(2α2+262+2αδ+3α

+36-3)/18
(2α2+262+2αδ+9α

+6δ+6)/18
(2α2+2δ2+2αδ+3α

+66)/18
(2α2+262+2αδ+6α

+3δ)/18
(2α2+2δ2+2αδ+6a

+9δ+6)/18
(α2+δ2+α6+3α+36)/9

m(λ, μ)
(α+2)2(ό+2)2

x(α+δ+4)2/4
α2δ2(α+δ)2/4

(α+3)2δ2

x(α+δ+3)2/4
(α-l) 2(δ+2) 2

X(α+6+1)74
(α+2) 2(6-l) 2

x(α+δ+l) 2 /4
α2(δ+3)2

X(α+6+3)74
(α+l) 2(6+l) 2

X(α+δ+2)72



THE SPECTRUM OF THE LAPLACIAN ON FORMS OVER A LIE GROUP 387

REFERENCES

1. Brian Lee Beers and Richard S. Millman, The spectra of the Laplace-Beltrami Oper-
ator on compact semisimple Lie groups, Amer. J. Math., 99 (1977), 801-807.
2. N. Bourbaki, Groupes et Algebres de Lie, Chapters 4, 5 & 6, Hermann, Paris, 1968.
3. H. D. Fegan, Conformally invariant first order differential operators, Quart. J. Math.
Oxford (2), 27 (1976), 371-378.
4. N. Jacobson, Lie Algebras, Interscience Publishers, New Yαrk, 1962.
5. B. Kostant, A formula for the Multiplicity of a Weight, Trans. Amer. Math. Soc,
93 (1959), 53-73.
6. N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, M. Dekker, New York,
1973.

Received February 6, 1979.

RICE UNIVERSITY

HOUSTON, TX 77001

Current address: University of New Mexico Albuquerque, NM 87131






