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VECTOR VALUED DISTRIBUTIONS HAVING
A SMOOTH CONVOLUTION INVERSE

H. 0. FATTORINI

Let Ey X be complex Banach spaces, (E, X) the space of
linear operators from E into X equipped with its usual norm.
We denote by &'(E) the space of ^-valued distributions defined
in — oo<f<oo and by &Ό(E) the subspace thereof consisting of
distributions with support in t>0. A distribution Pe^((X;
E)) is said to have a convolution inverse (in symbols, Pe
&i((E\ X))-1 or simply P ε ^ " 1 ) if there exists Se&ί((E;
X)) such that

(1) P*S = 5(g)/, S*P = δ(g)J

where δ is the Dirac measure and / (resp. /) denotes the iden-
tity operator in E (resp. X). We examine the problem of char-
acterizing those P which possess a convolution inverse S=
P'1 being smooth in various senses: infinitely differentiable,
in a quasi-analytic class, analytic, etc.

1* Introduction* This paper continues the investigations in
[6] on convolution inverses of vector valued distributions: for the
necessary definitions and results see [14] or [15]. In particular, we
use the definition of convolution in [15] as follows: if E, F, G, are
Banach spaces and U e &',({F\G)), Ve&'0((E;F)) we understand by
U*V not the convolution in [15], which takes values in (F G)®
(E; F) but rather its "composition" (in the sense of [15]) with the
linear map from (F; G) ® (E; F) —• (E; G) induced by the (bilinear)
product map from (F, G) x (E; F) into (E; G); when U (resp. V) is,
say a continuous (F; G)-valued (resp. (E; F)-valued) function, this
definition coincides with the usual one. Necessary and sufficient
conditions for a distribution Pe&Ό((X;E)) to belong to Sf[~ι have
been given in [6]. When PeS^\X)E)) (the space of all tempered,
(X; £r)-valued distributions with support in t ^ 0) the Laplace trans-
form 5β(λ) = SfP(X) = P(exp(-λ( ))) exists in the right half-plane,
is analytic there, and grows no more than a polynomial as |λ|—>co.
Denote by π(P) the largest connected subset of the complex plane
(containing the right half-plane) to which ^β(λ)"1 can be extended as
an analytic function. It follows from analyticity of 5β(λ) that φ(λ)~;

exists in an open set p(P) £ π(P) (perhaps empty) called the resol-
vent set of P and is analytic there. We have

THEOREM 1.1. Let Pe.9^\{X\E)). Then P e ^ ' " 1 if and only
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if p(P) contains a logarithmic region

Λ{a, β, ώ) = {λ; Re λ ;> max (α log | λ | + β, ω)}

where a, /5 ̂  0, -co < α ) < c o ,

For a proof see [6], Theorem 2.5. The case where exp (—ωt)Pe
,9%' for sufficiently large ω can be reduced to the previous one
noticing that

ό'-1 if and only if exp (-ωt)Pe ^ ^ ,

the inverses connected by the equation exp ( —ωί)P~1 = (exp ( — ωt)P)~\
The problem of existence of P'1 can be localized, as the following
result shows; in it, ^O'((—°°, α); (E; X)) denotes the space of (E; X)-
valued distributions defined in — co < t < a (α > 0) with support in
t ^ 0.

THEOREM 1.2. Assume that, for every a > 0 there exists Sa e
^Γo'((~ o o;α); (JSr X)) satisfying (1) in t < a. Then

The rather obvious proof can be seen in [6], p. 349; here S =
P" 1 is defined locally by setting S ~ Sa in t < α. This allows us
to identify fully the class 3ίJ Π ̂ o ' " 1 (note that £f P(λ) may not
exist in this case). For this purpose and for future use we intro-
duce the class 3ίfa{a > 0) consisting of all test functions φe£& such
that φ(t) = l for t ^ α, ?>(£) = 0 for t ^ 2α and we set

THEOREM 1.3. Lβί Pe&0'((X;E)). Then P e S a

M i/
i/ ^ P G ^Ό'" 1 for all

The proof (an easy consequence of Theorem 1.2) can be found
in [6], p. 353. Note that, since φPe^J, whether or not φP be-
longs to ϋ^o'"1 can be checked by means of Theorem 1.1. An improve-
ment (of one half) of Theorem 1.3 will be seen in § 5.

We refer the reader to [6] for an account of the connections
of the present theory with differential and hereditary equations;
suffice it to say here that when P — bf ®I — δ (g) A (A a closed
operator with domain D(A) Q E) then P e 3fMM\ X))~\ X = D(A)
endowed with the graph norm, if and only if A generates a regular
distribution semigroup ([9]); generators of the classical semigroups
in [7] are encountered if diverse continuity or summability assump-
tions are imposed on S = P~\ Likewise, autonomous functional
differential equations are included in our treatment.
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2* The abstract parabolic case* For many applications, the
information that a distribution P belongs to ^Ό'" 1 is insufficient,
and smoothness conditions in t ^ 0 or t > 0 are required. Let J^
be a space of (E, X)-valued functions defined in t > 0. We write
P e ( J ί ' Π - ^ T 1 to indicate that P e ^ " " 1 and that S = P" 1 coincides
with a function in ^ * for t > 0. The most useful spaces in this
connection are r^+((E, X)) or simply c^™ (m a nonnegative integer)
consisting of all (E: X)-valued functions / defined and m times
continuously difFerentiable in t > 0 (infinitely differentiate if m =
oo). A distribution P e ^ ' n ^ + T 1 is called abstract parabolic. In
case P e gV, the subspace of i^0' consisting of distributions with
compact support, abstract parabolic distributions can be characteriz-
ed as follows: (note that we have here π(P) = C).

THEOREM 2.1. Let Pe gV Then P is abstract parabolic if and
only if for every a > 0 there exists β = β(a), 0) = a)(a) > 0 such
that p(P) contains the reversed logarithmic region

(2.1) Ω(a, β, ώ) = {λ; Re λ ^ min (β — a log | λ|, ω)}

and

(2.2) liφ(λΠUx) ^ C(l + |λ |Γ(λeβ(α, β, <*>))

where C, but not m, may depend on α.

The proof can be found in [6], p. 359. The following inverse
Laplace transform representation holds for S = P 1 and its deriva-
tives in t > 0: if n = 0, 1, 2, , a > 0, Γ is the boundary of the
region Ω(a, β, ώ) and t > (m + n + ΐ)/a then

(2.3) S{n\t) = - M
2ττi J

This formula will be of interest in § 3. One of its consequences is
the exponential growth of S and all its derivatives at oo; we can
find constants ωn > 0 such that, for every n = 0, 1, and every
ε > 0 there exists a constant Cn,ε such that

(2.4) \\S{*Xt)\\{EiZ)£C%9.e~*\t^6).

We point out that the sufficiency part of Theorem 2.1, as well as
its consequences (2.3) and (2.4) hold under the sole assumption that

Section 3 of this paper is devoted to versions of Theorem 2.1
for the spaces JF* = c<^{^) of infinitely differentiate functions
introduced by Hadamard, defined by bounds on all derivatives of
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their elements. (Theorems 3.5 and 3.6) We follow here closely ideas
of Barbu [1] for the case P = δ'(g)I-δ(g)A. In particular,
analogues of Theorem 2.1 are obtained for the classes J ^ of real
analytic functions and J ^ (φ) of functions analytic in a sector, the
last ones generalizing results of Da Prato and Mosco in [2] and
[3]. We consider in §4 the question of whether a distribution
P having an inverse smooth in t > 0 must itself be smooth in
t > 0; under the assumption that P e £?0' (also used in § 3) we show
that the answer to this question is in the affirmative when E and
X are finite dimensional (Theorem 4.6) but not in general (see the
comments at the beginning of § 4). We examine in § 5 "continuable"
properties of S = P*1 (that is, properties whose validity for alH>0
are deduced from corresponding properties in certain finite intervals).
Finally, the possibility of extending the results in § 2, § 3 and § 4
to distributions in several variables is briefly examined in § 6.
Throughout the rest of this section we discuss (mostly with coun-
terexamples) the problem of extending the results pertaining to
the abstract parabolic case to distributions Pe«_9f and 2fi.

Distributions P which have compact support correspond, roughly
speaking, to systems having finite memory (see [6] for more details).
It is of great importance in applications to extend results like
Theorem 2.1 to general distributions P e ϋ % ' (some restriction at
infinity like, say, PeS^' is probably reasonable in view of the
principle of fading memory: see [16]). Unfortunately, many likely
extensions fail to work. Counterexamples may be constructed with
the help of the parametrix method. Assume we can find an
approximate inverse or parametrix for P, that is, a distribution
So e &f,\(E, X)) such that

(2.5) P*S0 = δ (x) I - Φ, S0*P = δ (x) J - ψ

where Φ e 3ί,\{E\ E)) and ψ e 3ϊ,\{X\ X)). Then we have, formally,

( {(δ (x) / - ψ)*-1*S0}*P = δ ® J ,

where the convolution inverses {δ (x) / — Φ)*-1 and (δ (x) J — ψ)*'1 are
defined by their Neumann series,

(δ (x) I - Φ)*"1 = <5(x)J+Φ + Φ*Φ+ .. ,

(δ(X)J- f)-1 = δ (X) J + ψ + ψ*α/r + - .

Accordingly, [if we can justify convergence of these two series in
3f* (or more generally, of
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S o + S0*Φ + S0*Φ*2 + . . . ,

we can construct a two-sided inverse of P and thus show that Pe
2$'~λ\ if So, Φ, ψ are smooth enough and convergence occurs in a
sufficiently strong topology for t > 0, the inverse thus constructed
will be smooth in t > 0.

In what follows, we shall write sometimes distributions in
"functional" notation; as in Schwartz [14] we indicate by f(t) the
function £->/(*) (or the distribution it defines) and we use the
same rule for distributions: for instance, δ(t — 2) indicates the Dirac
measure centered at t = 2. Derivatives with respect to t will be
indicated by D and its powers.

LEMMA 2.2. Let P 6 ^ 0 ' ( ( I ; £ ) ) , So a parametrix for P in
&o'((E;X)) Π ^+((E\X)) such that Φ and ψ are infinitely differen-
tiable in t ^ 0 (in the sense of the norms of (E; E) and (X; X)
respectively). Then P e ( S 0 ' Π ^T)- 1 .

Proof. Define, for a > 0

Ya(t) = t«-ηΓ{ά) ( ί > 0 ) , Ya(t) = 0 ( ί < 0 ) .

Then Ya defines a distribution in &%' that can be continued analy-
tically to all complex a (see Schwartz [13], especially p. 174) and
satisfies Ya*Yβ = Ya+β, Y'a = Ya-l9 Γ_m - δ™ for m = 0, 1, 2, . .
When a> —1, convolution by Ya is the classical Riemann-Liouville
operator; if m is a positive integer Ym is simply the operator of
integration from 0 to ί iterated m times. Keeping in mind that
any distribution in 3P is (locally) a derivative of sufficiently high
order of a continuous function, and that So is smooth in t > 0, Ym*S0

is continuous in — <χ> < t < oo for m large enough while remaining
infinitely differentiate in t > 0. Since ||Φ(ί)|| must be bounded in
bounded subsets of t ^ 0, the following estimate is rather obvious:

(2.9) \\Φ*n(t)\\ £ C tn (0 ̂  t^ a, n - 1, 2, •)
(n- 1)1

where a > 0 is arbitrary and the constant C may depend on a.
Also, Φ*Λ(0) = . . . = JD

Λ-1Φ*w(0) = 0. It is easy to see that each of
the terms after the first in the first series (2.7) is infinitely differen-
t i a t e in t ^ 0; moreover, if n ^ k + l we have DhΦ*n = Z)*(Φ*(—*-1}*
φ*(*+ii) = φ*(—*-i)*χ)*φ* (*+», thus the estimate (2.9) implies conver-
gence of Σ ^*w a n d of all its term-by-term differentiations, uniformly
on compacts of t ^ 0. It follows that (<5 (x) I-φ)*-1^ δ(g)I+ ^(t),
where ^f is an (E; JSr)-valued function infinitely differentiate in
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t ^ 0. Consider then S0*(δ (x) I — Φ)*"1 = So + S o *^^: by hypothesis,
the first term belongs to ^+°°. As for the second, we have

Σ
j=0

which is obviously infinitely differentiate in £ > 0. Entirely similar
manipulations with ψ produce a left inverse for P which must then
coincide with the right inverse just constructed thus closing the
argument. Note, incidentally, that smoothness assumptions on
both Φ and ψ are not actually necessary: if Φ is a assumed smooth
as above, we only need conditions on ψ assuring convergence of
the second series (2.7) in 3&'\ this suffices to produce a left inverse
in 3f£, which is all that is needed here.

Although Lemma 2.2 has some interest in its own right, we
shall use it only to produce a counterexample illustrating the failure
of Theorem 2.1 in the case Pe.5ί ; .

REMARK 2.3. Consider the distribution Po = Yλ e S^(E = X =
C). Then Po e &tγ and Pό'1 = Y^ = δ'. Let g be an infinitely
differentiate function in t ^ 0 such that g(Q) = 0. Then (Po - g)*
δ' = § — g' hence δ' is a parametrix for Po — g satisfying the
assumptions in Lemma 2.2 and / = Po — g e (f̂ Ό' ΓΊ ̂ -Γ)""1- It follows
that any function /, infinitely differentiate in t ^ 0 and such that
/(0) = 1 (in fact, such that /(0) Φ 0) belongs to (3fQ

9 Π ̂ Γ ) " 1 . Let
now

= Σ Σ 2"(Λ+m) exp I i (w + — )t \ .

It is easy to see that / is infinitely differentiate in t I> 0 and
/(0) = 1. Since / is bounded in t ^ 0 its Laplace transform exists
in Re λ > 0 and

= Σ ΣΣ Σ f (
= -oo n=-oo \ \ Ύϊl

n

If P = /(ί) e (^ό' Π ̂ r ) " 1 satisfies the conditions in Theorem 2.1,
1/J*ff(\) has an extension to some reversed logarithmic region
Ω(a, β, ω); since it must vanish at all points n -I- 1/m lying in this
region, it must vanish identically, which results in a contradiction.
Note that here ττ(P) coincides with the right half-plane.

It is interesting to note that, although P — f does not satisfy
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the assumptions of Theorem 2.1 the estimates (2.4) hold. In fact,
gί«) == (p-iy») = g(«+D*(g + g + g*g + . . . ) . Using the fact that all
derivatives of g = 1 — / are bounded in £ ̂  0 and a combination of
the ideas of Lemma 2.2 and Theorem 3.2 in [6] we can easily show
that (2.4) holds for all n, ε.

REMARK 2.4. The example above shows that the characteriza-
tion of the class (g^ Γ) ̂ -Γ)"1 in Theorem 2.1 does not extend to
{.9% Π ̂ .Γ)-1 (although the suflBciency condition obviously does). We
may then ask whether a local characterization of the type of
Theorem 1.3 will work in the <%?? case. Regrettably, the answer
is in the negative. On the one hand, it is easy to see that a
distribution P e ^ l ' such that φP e (gY n r^Γ)~ι for all <?>e<sr must
belong to (iS /̂ Π ̂ Γ)" 1 - On the other hand, however, the converse
is false even if P e gV To see this, we use an example already
exploited in [6] for a different purpose. Let {TOO; t ^ 0} be a
strongly continuous semigroup (or, more generally, a regular dis-
tribution semigroup) in the Banach space X with infinitesimal
generator A. Set E = D(A) with its graph norm. Then P =
T G {^ n ̂ .Γ)-1 with S = P- 1 = δ' (x) / - δ (x) A. If φ e , ^ we have
<pP*(<5' ®/-δ(g)A) = δ(g)/+ ^'T, (5' (x) / - o (x) A)*^P =3<g)J + φ'T.
We can then construct the inverse Sφ = {φP)~ι by the method out-
lined earlier:

So = (of (x) / - 8 ® A)*(δ (x) / - ^'T)*- 1

= δ'®I~δ(g)A- φ"T + ^

where & has support in ί ^ 2α (note that Φ = φ'T has support in
t ^> a, hence Φ*w has support in t ^ na and the first series (2.7) is
locally a finite sum, therefore converges in &'). It follows that
Sφ = <£>"T in α < ί < 2α, thus Ŝ  shall not be even {E\ X)-continuous
there if T is not, as will be the case, say, if T is a group or
distribution group with unbounded generator. The situation is not
improved if we require that P e gf0, since there exist semigroups T
which vanish outside of a finite interval (see [7], p. 537) and
exhibit no smoothness properties beyond strong continuity.

The present example is of interest also in that it produces a
distribution P having an inverse smooth in t > 0 but failing itself
to be smooth there. Note that the smoothness of S can be improv-
ed (and that of P worsened) by taking P m = F_W*P=P ( W ), in which
case Sw = P™1 - Ym^ (x) I - Ym (x) A. As we shall see in § 4), this
kind of situation may not arise when E and (or) X are finite dimen-
sional, at least when P has compact support.

3* Quasi-analytic classes* Let ^-/Z — {Mn} be a sequence of
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positive numbers, I an open interval in the real line, F a Banach
space. We denote by ^ ( / , ^ \ F) (or simply ^ ( / , ^)) the linear
space of all F-valued functions /defined and infinitely differentiable
in I and such that

(3.1) \\r\t)\\^C^M» (tel, n = 0, 1, •••)

where C may depend on /. Diverse assumptions will be imposed on
the sequence ^ in what follows; since not all these hypotheses
are used in all the results, we shall specify each time the ones
needed.

If ^£ satisfies

(3.2) Mo = 1, MliZ Mn^Mn+1 (n = 1, 2, •••)

(the second requirement simply means that the sequence {logMΛ} is
convex) we easily obtain that MjMn_3 <; M0Mn = Mn (n = 0,1, ,
0 ^ j ^ n), thus it follows from the formula of Leibniz that for
any / e i f (J, ^ F) and φ e ^ ( J , ^ T , C) we have φf e <έ?(I, ^ F) .
On the other hand, if

(3.3) Mn+1^K«Mn (n = 0,l, •••)

for some constant if, any class ^ ( J , ^ f θ is closed under (iterated)
differentiation.

The following result, valid for a general sequence ^£ is essen-
tially due to Mandelbrojt (see [10] and [12], p. 103).

LEMMA 3.1. Let ^ = {Mό} be an arbitrary sequence of positive
numbers with Mo = 1 and let

(3.4) Q. =
0=1

Finally, let n be a positive integer. Then there exists a function
ψn 6 £& with support in \ 11 ^ 1 and such that

ψn(t) ^ 0 , \ψn{t)dt = 1 ,

(3.5) \φi?(jt)\ ^ (2Qn + 4)i+1Λfy (-oo< t <oo, l ^ j ^ w ) .

Proof. Let λ, = Mύ_ι\Mύ for 1 ^ i ^ ^ for i > ^ select λy > 0
at will under the only condition that

(3.6) Σλy^Q. + l .
5=0

Define
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(3.7) Ψnk = V*Xι*- *X*

where η is a nonnegative continuous function in (— co? c o ) with
support in \t\ <; 1, integral 1 and such that η{t) <, 1 (say, η(t) ~
max (0, 1 - \t\)) and Xh(x) = (2Xk)-1 for | ί | ^ Xk, Xk(t) = 0 elsewhere.
It follows from well known properties of convolutions that each
τjrnk is nonnegative, does not surpass 1, has support in | ί | <; 2(1 +
λi + + λfc) ^ 2Q% + 4 and integral 1. Also, each ^ is k times
continuously differentiate, the successive derivatives given by the
formulas

Ϋnk(t) = - M ( ^ X * * ZΛ)(ί + λ.) - (η * Z2 * * Zfc)(ί - \)} ,

•ψ 'Λ(ί) = - T ^ — {(V * %,,*•••* X,)(ί + λ, + λ2)

- (η * χ3 * . . . * χΛ)(ί - λL + λ2)

- (23/ * Z3 * . . * Z4)(ί - λL + λ2)

+ (^ * χ3 * . . . * χfc)(ί - λx - λ2)},

etc. It results from these formulas that for every k > j ,

(3.8) I tίS(ί) ί ^ M, ( - 00 < t < co, 1 ^ i ^ n, k ^ 1) .

Finally, we observe that, if j < k < I, j <: ^, ^ S — ψ!5 can be
expressed as the sum of 2j terms; each of them, save by a constant
depending only on j , is of the form

(3.9) (ζjk * Xk+ί * * Xι)(t + v3) - ξ3k(t + v,)

where ξJk = 77 * %i+1 * . . . * Zfc and ^, = ± λ x ± ± λ̂  for some choice
of signs. Note that ξ'ik is uniformly bounded with respect to t
(independently of k) thus ξjk is uniformly Lipschitz continuous.
Write Xkϊ = Xk+1 * - * Zz. Then Ẑ i is nonnegative, has integral 1
and support in 11 \ <, 2(λfc+1 + + Xι) ~ μkι —> 0 as k, I —> co. Hence
we can estimate (3.9) in absolute value by

£ max{|f i4(8) - ξjk(t)\; \s - t\ ^ μkl}

£ Cμkl • 0 .

It follows then that for each j the sequence'{^J is Cauchy in the
uniform norm, hence {ψnk} converges uniformly together with all
its derivatives to an infinitely differentiable nonnegative function
fn having support in 11 \ ̂  2(1 + λx. + λ2 + •) ̂  2Qn + 4 and (in
view of (3.8)) satisfying f{j\t) ^ Mjf 1 ^ j ^ n; therefore, the
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function ψn(t) = (2Qn + 4)fn((2Qn + 4)ί) possesses all the required
properties.

REMARK 3.2. Assume Λ€ is such that limζ>% = Q <oo (i.e.,

(3.10) ΣW

Then we can run the previous argument with Xn = Mn_JMn for all
w; we obtain in this fashion a nonnegative function ψe £& with
support in | ί | <£ 1, integral 1 and such that

(3.11) \ψ{j)(t)\ ^ (2Q + 4)'+1M, (-oo< t <oo, i = 0, 1, •••)

This construction is impossible if (3.10) fails: in fact, if Qn -> co a

function f in a class ^ ( / , ^ # ) that vanishes at a point ί0 6 / to-
gether with all its derivatives must vanish identically. A sequence
^ such that (3.10) does not hold is called quasi-analytic. For
instance, ^ = {n\} is quasi-analytic; for each I r^{I, ^£', F) —
J*f{Γ, F) consists exactly of all functions real analytic in the closure
of /. Under the logarithmic convexity assumption (3.2), quasi-
analyticity is equivalent to the condition

(3.12)
1 + ί2

where

(3.13) θ(t) = Σ

and also to the condition Σ M~1!n = ^ (for these and other results
see [10], [11] and especially [12]).

COROLLARY 3.3. Let ^ = {Mn}, {Qn} as in Lemma 3.1. Then,
given a positive integer n there exists a function φn e Sf with
support in \t\ <; 2, equal to 1 in \t\ ^ 1, not surpassing 1 anywhere
and such that

(3.14) \φι

n

S)(f) I ^ 3(2QH + 4)j+1Mj (-™ < t <<*>, 1 ^ j ^ n) .

If ^£ is not quasi-analytic and Q — lim Qn there exists φ e &
having support in \t\ ^ 2, equal to 1 in \t\ ^ 1, not surpassing 1
anywhere and such that

(3.15) \φ{ά\t)\ ^ 3(2Q + 4)j+1Mj ( - oo < t < oo, 1 ^ i ^ oo) .

P?*oo/. Let % be the characteristic function of \t\ & 3/2, α/rΛ
the function constructed in Lemma 3.1 (replaced by the function ψ
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in Remark 3.2 in case ^ is not quasi-analytic). Then φn = X*ψn

(φ = X * ψ) does the required job.
We shall consider in what follows the classes ^+(^t', F) consist-

ing of all F-valued functions infinitely often differentiable in t > 0
and belonging to ^ ( 1 , ~^C; F) for every open interval / whose
closure is contained in (0, oo). In the case ^£ = {nl} we write
^V(^^; F) = ^+(F); when confusion is not likely to occur we shall
omit F from these labels. A sequence ^ is called regular if
there exists another sequence ^ — {Mn} of positive numbers such
that if Qn is defined from {Mn} by (3.4) there exists a constant K
independent of n such that

(3.16) QiM3 Mn^ ^ KnMn (n = 0, 1, - , 0 £ j £ n) .

A non quasi-analytic sequence ^ is always regular if (3.2) holds,
as we see taking ^ = ^£ and K = Q. On the other hand some
quasi-analytic sequences are regular, in particular the all important

This follows from:

LEMMA 3.4. Let {Mn} = {(n\)σn} with {σn} positive and nonde-
creasing. Then {Mn} is regular.

Proof. We take Mn = 1 for all n. Then Qn = n and, by Stirl-
ing's formula,

S nnσn ^ en+\n\)σn

for n sufficiently large.
We note that condition (3.16) implies a brisk rate of increase

for ^\ at least if Mn J> m > 0; in fact, if ^ is not quasi-analytic
itself will not be quasi-analytic as M%n ̂  K-'Q^MoMJ1'", hence

M~lln < oo. On the other hand, if ^t is quasi-analytic, M~1!n =
#~ l f Λ) since Qw"->°°.

THEOREM 3.5. Lei - ^ ^ = {Mά} be regular and satisfy (3.3).
Assume Pe^{{X)E)) belongs to {&0'((E; X)) Π ̂ +(^; (E; X))}~\
Then, for every ε > 0 there exist positive constants a = α(ε), β —
β(ε) such that p(P) contains the region

(3.17) θ(a, β, 7) = {λ; Re λ ^ - 7 log Θ(a \ X |) + β}

and

(3.18)

(λ 6 β(α, β, 7))
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where C, but not m or 7, may depend on ε.

Proof. Let n Ξ> 0 be, for the moment, fixed. We make use of
the function φn in Corollary 3.3, this time constructed with respect
to the sequence {M5} in (3.16). Given ε > 0, set φε,n{t) = φn(2t/e):
We have

(3.19) P*9<t»S = δ®I-Φttn, φε,nS*P = d®J-ψε,n

where Φε,n = P * (1 - <pε,n)S = δ (x) / - P * <ρε,ΛS is an infinitely differ-
entiable (2£; £r)-valued function which vanishes for t <; ε/2 and for
t ^ α + ε if the support of P is contained in t ^ a; likewise, ψε>n =
(1 - φε>n)S*P=δ (x) J-φε,nS * P is an infinitely differentiate (X; up-
valued function enjoying the same properties as Φε>n. Take now m
so large that Ym * P = / is continuous and vanishes in ί ^ 0; since
φεn = p * (1 - 9>β(ΛS) = (Γw * P) • (F_w * ( l - y O S ) = f*Dm(l-<P<.*)S,
we have

(3.20) Φί i(ί)

Taking into account that Se^((s/2, α + e); ̂ ^ ) , and the inequalities
(3.14) for the derivatives of φn we obtain

(3.21) «*=̂  im + n\
£ Cx Σ . (2Q. + 4y

i=0 \ J j

where the constants Cx and C2 are independent of n (note that it
follows from (3.3) and (3.16) for j = 1 that ζ>* ̂  C3

W for some con-
stant C3). Making use of (3.3) we deduce the existence of a constant
C, depending on ε but not on n such that

(3.22) ||Φί:ί(*)ll ̂  C +1ΛfΛ (ί ̂  0, n = 0, 1, 2, •)

henceforth, C will denote diverse constants independent of n. We
compute next the Laplace transform of Φε,Λ. Repeated integration
by parts yields

hence

(3.23) | |j^Φε,n(λ)|| ̂  C + ^ l λ l — (Reλ ^ 0)

(3.24) \\SfΦε,n(X)\\ ̂  C + ^ l λ l - e - 6 1 1 0 2 (Reλ ^ 0)

for n = 0, 1, 2, , where 6 = α + ε. Choose now d, 0 < δ < 1, and



VECTOR VALUED DISTRIBUTIONS 359

assume that for Re λ ^ 0,

(3.25) Cn+ιMn\X\-ne-bliGλ > 3

for all n = 0, 1, . Then

e-bnoλ ^ s u p .

n

sίv

Cn+1Mn

* = A e(f e(
C - i (3C) w M Λ C V3C

Accordingly, if we assume, as we may, that ε < l (so that 6<α + l),
and we take λ in θ(a, β, 7) with 7 = l/(α + 1), α = 1/3C, /3 =
— (α + I)" 1 log (δ/C) and R e λ ^ O at least one of the inequalities
(3.25) will hold and

(3.26) W&ΦMWiE'.B^δ

On the other hand, (3.21) (say, for the same n) implies (3.24) for
R e λ ^ O and |λ| sufficiently large, thus modifying β if necessary
we may assume that (3.24) holds in θ(a, βy 7). Operating with ψε,n

in an entirely similar way we deduce that, if necessary adjusting
the parameters a, β, 7,

(3.27). l l^ψ., ( λ ) | | ( x ; x ) ^ δ

in θ(a, βf 7). Returning to Φε>n we observe that (3.26) implies that
(I — S^ΦtiJS)Yx (given by its Neumann series) exists in (E; E) for
λ 6 θ(a, β, 7) and

there. Taking the Laplace transform of the first equation (3.19)

and postmultiplying by {I — ̂ fΦe,JS)Yι we obtain

(3.28)

for Xeθ(a, β, 7); working in a similar way with the second equation

(3.29) (J - ^^. f Λ(λ))-1^(9>., S)(λ)φ(λ) = J

thus ^W"1 indeed exists in Θ(α, β9 7). By virtue of (3.24), in order
to establish the estimate (3.18) we only need to bound Sf{φε,nS) in
the (E; X)-norm. This we do as follows. Let m be an integer
such that Ym*S is a (E; X)-valued continuous function g vanishing
in t <> 0. Then

(<pc,ng)im) = φe,«S + Σ L
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Since S is infinitely differentiable in t > 0, so is g and we can
write

φε>nS = (φε,ng){m) + h ,

where h is an infinitely differentiable (E; X)-valued function with
support in ε/2 ^ t ^ ε. Since <p£,%0 itself is a continuous function
with support in ε/2 <̂  t <£ ε, we obtain

everywhere in the complex plane. This completes the proof.
The converse of Theorem 3.5 holds under slightly different

assumptions on the sequence

THEOREM 3.6. Let P be as in Theorem 3.5 a distribution in
gY» ^ = {MJ a sequence of positive mumbers such that for any
two positive integers k and m there exists a constant K = K(k, m)
independent of n such that

(3.30) Mlΐ+m ^ K"Mn (n = 0, 1, •) -

Assume P satisfies the conclusions of Theorem 3.5, that is for every
ε > 0 there exist a, β such that ^β(λ)"1 exists in θ(a, β, 7) and
satisfies there (3.18) with m and 7 independent of ε. Then Pe

Proof. Let a > 0; pick ε in the range 0 < ε ^ I/a and select
a\ β' such that φ(λ)-1 exists in θ(a', β', 7) and satisfies (3.18) there.
Observing that αlog |λ| ^ 7log β(α'|λ|) + C for large |λ | we can
assume, after some slight adjustments of the parameters involved,
that the reversed logarithmic region Ω(a, β, ω) in (2.1) is contained
in θ(a\ β', 7). It follows that φ(λ)"1 satisfies (2.2) with m + 1
instead of m in Ω(a, β9 ω), thus it belongs to {&ό Π ̂ +)~ι and the
representation (2.3) holds. Our first task is to shift the domain of
integration in (2.3) to A, the boundary of the region Θ(α, β, 7); this
is easily seen to be possible taking t > ε. We proceed now to
estimate the integrals for t ^ 2ε:

^ C[ \X\n+mθ(a\X\)-'εd\X\

where here and afterwards C indicates diverse constants independent
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of n. We note next that Θ(a\X\)~rε ̂  Mp/(a\\\Yrt for all j . Taking
ε = 1/ky for some integer k, and selecting j — k{n + m + 2) we
have

||S< >(ί)|| ^ C^Ml'k
k

+k{m+2) £ C«+ίMn (n = 0, 1, •)

in t >̂ 2ε. Since ε is arbitrary, this ends the proof of Theorem 3.6.
The most important particular case of the previous theory is

no doubt ^ = {n\}. By Lemma 3.4 Λ % is regular, and it is easy
to see that (3.3) and (3.30) are satisfied (the last with the help of
Stirling's formula). Accordingly, distributions P e (£?0' Π ̂ sf+Y1 are
completely characterized by Theorems 3.5 and 3.6. Since Θ(t) = e\
|λ | and Im |λ| are comparable in the regions Θ(a, β, 7) and we may
assume these are defined in terms of two parameters a, β only (both
dependent on ε) by inequalities of the form

(3.31) Reλ ^ - α | I m λ | + β .

These regions are usually called sectors. It is no news of course
that S, being real analytic, can be extended to a region D in the
complex plane containing the positive half axis. However, the
previous remarks imply that D will contain a "cornet shaped" region
as precised below.

LEMMA 3.7. Let s, φ > 0. Denote by X (ε, <f) the open sector in
the complex plane defined by \ arg (ζ — ε) | < φ, ζ Φ ε and let P be a
distribution in (gy Π <S*f+)~ι. Then S = P" 1 can be extended as an
analytic (E; X)-valued function to a region of the form

(3.32) D=UΣ(^(β))
ε>0

where φ is a nondecreasing function in ε > 0.

Proof. Let ε > 0; choose a > 0 and β such that ^β(λ)"1 exists
in the region defined by (3.31). As essentially shown in the proof
of Thorem 3.6, the path of integration in 2.3 can be deformed into
A, consisting of the two half lines Reλ = — a\ Imλ| + β if we take
t > 2ε:

(3.33) S(t) = - M φ(λ)-VΉλ (ί > ε) .

It is now a simple matter to show, in the style of the theory of
analytic semigroups ([7], Chapter IV) that the upper half line can
be deformed to Reλ = — <5|Imλ| + β for δ < 0 thus making possible
the insertion of t = ζ complex in (3.33) as long as 0 < arg (ζ — ε) <
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arctg α—arctg <5 and the corresponding extension of S. A symmetric
argument shows then that S can be analytically extended to the
sector Σ(ε, φ) with φ = arctg α. We note, incidentally, that if 0 <
φ' < Φ < π/2 an estimate of the form

(3.34). \\S(ζ)\\^Ce^(ZeΣ(ε,φ'))

holds, with ω a function of ε. To obtain a dependence of φ on ε
having the desired properties, define ^(ε) as the largest φ such that
S can be analytically extended to Σ(ε, φ). Obviously, φ is nondecreas-
ing.

Of particular interest is the case where the cornet reduces to a
wedge. For 0 < φ < π denote by *S*f(φ; E) or simply *$/{<£) the
space of distributions U defined as follows:

(a) U coincides in t > 0 with a unvalued function / admitting
analytic extension to Σ(0, φ) and such that (3.34) holds for | ζ | ̂  ε
for some ω independent of ε.

(b) For each φ\ \φ'\^φ, UΦ,(t) = f(eίφ't) for t > 0, Ur(t) = 0 for
t <; 0 defines a distribution in ^\E).

(c) The set {UΦΊ \φ'\ ^φ} is bounded in &*\E).
we have the following result, where it is interesting to note that,
unlike for the others in this section, we do not require that P have
compact support.

THEOREM 3.8. Let Pe.9*0'((X; E)). Assume Pe (&((E\ X)) Π
\ (E; X)))-1 with 0 < ψ < π/2. Then p(P) contains the half-

plane Reλ > a), ̂ β(λ)"1 can be extended from there to a sector (3.31)
with a = tgφ and

(3.35) l |φ(λ)-ΊI^C(l + | λ | r

there. Conversely, if ^S(λ)"1 can be extended to a region of the form
(3.31) and the estimate (3.35) holds there then P e ^ ' Π J^iΦ))'1 for
0 < φ < arctg a.

The proof is straightforward and thus left to the reader. We
note that Theorem 3.8 essentially generalizes Theorem 3.2.1 in [2]
(see also [3]).

4* Inverse theorems* Let P be a distribution in «̂ r/~1 such
that S = P~ι is smooth off the origin. It seems natural to surmise
that this should imply that P must be correspondingly smooth for
t > 0. Surprisingly enough, this is true when E and X are finite
dimensional but false in general (a treatment for the case S e ί f ~
was indicated in [6], the proof little more than barely sketched).
The infinite dimensional counterexample is in Remark 2.4 above;
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the distributions P therein have inverses S arbitrarily smooth in
t > 0 (in fact, analytic in the entire complex plane minus the origin)
but fail to have any smoothness property themselves (we may
arrange P to have compact support and to be arbitrarily rough
everywhere).

Inverse theorems of the type considered in this section were
given by Ehrenpreis [4] in the scalar case, in the rather more
general situation where t is -^-dimensional. We follow here closely
the treatment of Hδrmander [8] for the space &™y which we
extend to the spaces ^+(^). Its basis is the following result.

LEMMA 4.1. Let ε0, S, σ denote positive constants. Then there
exists a constant p, 0 < p < 1 depending only on ε0, d, σ such that
if u — u(x, y) is a harmonic function in x2 + y2 < R2 and

u{x, y) <: 0, u(x, y)^e\y\~ or
( ' } (x2 + y2< R2)

for some e, r such that 0 ^ ε <^ ε0, 0 <Ξ r <, pR then

(4.2) u(x9 y) ^ ε\y\ + or (x2 + y2 ^ r) .

For a proof see [8], p. 179. Throughout this section ξ — 0{η)
will denote a positive function defined in η ^ a ;> 1 with θ{a) = 0.
For p, K > 0 we denote by Ξ(p, K) the region of the (ξ, ̂ )-plane
defined by

(4.3) \ \ ̂ pθ(tcη) ( 7 7 ^ a/fc)

(in particular, 5"(1, 1) is the region between the curves ξ = O(rj) and
ξ =z —o{ή)). The symbol Π(p, ic) denotes the union of all (closed)
disks with center at (0, η){η :> a/κ) and radius pθ(κη).

LEMMA 4.2. Let θ be differentiate and nondecreasing in η^a.
Assume, moreover, that

(4.4) θ\η) S c < 1 {η ^ a)

and let 0 <1 p ^ 1. Then there exists fc, 0 < tc < 1 (depending only
on c) such that

(4.5) Ξ(p, tc) Q Π(p, tc) S 7/(1, tc) Q 5(1, 1) .

Proof. Let rj ^ a. Some elementary analysis shows that the
distance d{rj) from (0, rj) to the region to the left of the positive.
57-axis and the curve ς = 0(η) is attained for the point (θ(η')9 η

r)
satisfying
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We take now it satisfying 0 < K <; 1 — c2 but otherwise arbitrary.
Observing that (4.4) implies that θ(η) <L c{η — a) <> cη we obtain

eη ^ V - c2η ^ η - θ{j}f)θ(rf)

SV- θ{η')θ(η') = )?' .

Accordingly (̂Λ:57) <̂  θ(τ)') ^ dφ) and the disk with radius θ{κη)
centered at (0, rf) is entirely contained in Ξ(l, 1), proving the right-
most inclusion in (4.5). The center inclusion is evident, and the
remaining one follows from the obvious fact that the vertical
segment defined by | ξ | ^ pθ(tcη) is contained in (is a diameter of)
the disk with center at (0, η) and radius pθ(tc, r)). This ends the
proof.

REMARK 4.3. Lemma 4.2 remains valid even if the constant c
in (4.4) surpasses 1; we only have to replace θ(j]) by θ(εη) with
ε < 1/c and notice that ΞQ, e) S Ξ(l, 1).

LEMMA 4.4. Let θ be a function satisfying the assumptions of
Lemma 4.1 and such that for every /c, 0 < tc < 1

(4.6) log? = O(0(jc?)) (V > ~ ) .

Let f(λ) = f(£ + iη) be a complex valued function defined and analytic
in the region Ξ(l, 1) of Lemma 4.2. Assume, moreover, that f has
no zeros there and that

(4.7) lf(λ)| ^ CAM**1**11 (λ6S(l, 1))

and

(4.8) IfCi^l^Qliyl-* (η ̂  α)

where m, p are nonnegative integers and 0 ^ ε ^ ε0, ε0, Cx, C2 > 0.
Finally, let tc be the constant in Lemma 4.2. 27&e% ίfeβrβ exists p,
0 < p <1 independent of ε such that

(4.9) | l / f ( λ ) | ^ C | λ | V ™ (\eΞ(β,κ)).

Proof. Let λ belong to the disk of center η ^ a/ic and radius
ρθ(/cη) for some ^ ^ 1. Then

V
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We define a harmonic function u = u(x, y) in t h e circle \z\^ θ(tcη)
(z = x + iy) by t h e formula

(4.11) u{z) - log „ , ^ C\f. , . x ΐ .

It follows from (4.8) and (4.10) that u(x, 0) ^ 0(|a?| < ΘQcή)). On
the other hand, making use of (4.7) we obtain

(4.12) u(x, y) ^ - e I y \ - (p + m) log η - C3

where C3 = log ( C i C ^ l + c)p+m). We apply now Lemma 4.1 for the
constants ε0 = ε, 8 = 1, σ = ε in the particular case r = pR. By
virtue of (4.6), if tc is the constant in Lemma 4.2 there exists ηQ ^
a/tc such that

(\z\ < θ(κη\ V ^ Vo)

Therefore

tt(a?, y) ^ ε I y \ +

Taking exponents and keeping (4.10) in mind, we obtain

in λeΞ(p, /c), I m λ ^ % for g = 1/f clearly the inequality will
hold as well in Ξ(p, /c), if necessary with a different constant C.
We consider now the function

in the intersection of Ξ(p9 /c) with the left half-plane. By virtue
of (4.8), ί) is bounded on the imaginary axis: on the other hand, in
the curve Re λ = ρθ{κ Im λ),

lΐ>(λ)| ^ c\X\-pe2εp{κlπίX)-2εpulΊnλ)

hence ί) is also bounded there. By one of the Phragmen-Lindelδf
theorems, I) must be bounded in λ e Ξ(p, K), Re λ ^ 0 whence (4.9)
results there. A symmetric argument takes care of the intersection
of Ξ(p, K) with the right half-plane.

Lemma 4.4 does not apply to the functions θ(j]) — alogη — β,
essential in the abstract parabolic case. (See Theorem 2.1.) Since
we only need the case ε = 0 here, the argument is considerably
simpler.
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LEMMA 4.5. Let θ = a log rj — β, where β is so large that the
assumptions of Lemma 4.2 are satisfied in 7) ̂  a = e^/α, f α complex
valued function defined and analytic in Ξ(l, 1). Assume that (4.7)
(with ε — 0) cmcZ (4.8) ftoίci. Tftew, if K is the constant in Lemma
4.2

(4.14) |l/f(λ)|2SC|λ|*' (λ,eff(l/2,*))

where p' = 4p + 3m.

The proof is elementary: by (4.12) v = u + (p + m)log |)?| + C 3 ^
0 in | s | 5* (̂Λ:>7) whereas v(0, 0) <^ (p + m) log η + C3. By Harnack's
inequality,

u(x, y) ^ 3(p + m) log97 + 3C 3 (\z\ ^ θ(κη)/2) .

We obtain (4.14) from (4.11) and (4.10).

THEOREM 4.6. Lei 2?, X be finite dimensional, P a (X, E)-
valued distribution with compact support contained in t ^ 0 such
that Pe(^ 'n^-Γ)- 1 (resp. P e ( ^ Π ίf+C^f))-1 wiίΛ ^ ^ = {Λf,} α
sequence satisfying the assumptions in both Theorem 3.5 and
Theorem 3.6, plus

(4.15) fa + ΐ)Mn £ CMn+1 (n = 0, 1, - 0

P coincides for t > 0 wiίfc αTt infinitely differentiate (X\ E)-
valued function (resp. with a function in ^+(^^)). In particular,
if ^ is quasi-analytic, P is zero in t > 0, hence it reduces to a
differential polynomial

(4.16) P = Σ ^ ( i ) (X) Ay, A, 6 (£?; X) .

Proo/. Assume that P e ( ^ ; Π ̂ Γ ) " 1 . Since Sβ(λ) must be an
invertible operator for some λ it follows that dim X = dim £7; we
may then assume that X — E and, introducing coordinates, work
with matrices instead of linear operators. We use the characteriza-
tion of the class (£^' Π ̂ +)~ι in Theorem 1.3; according to it, given
a > 0 arbitrary, ^β(λ)-1 exists in a reversed logarithmic region Ω =
Ω(a, β, (o) as defined in (2.1) and satisfies there an estimate of the
form (2.2). Since log)? <: η for η ^ 1, |λ | and | Imλ | are comparable
in the intersection of Ω with the left half-plane and we may assume
our reversed logarithmic regions are defined by inequalities of the
form

(4.17) Reλ ^ min(/3 — αlog |Imλ|, ω) .
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We consider now the region £χi.l) of Lemma 4.2 relative to the
function θ{rf) = a log 7) — β in rj — a = eβ/"; if necessary inflating β
we may assume that (4.4) holds. We apply Lemma 4.4 to the
function

(4.18) f(λ) = det φ(λ)-1 = 1/det Sβ(λ)

in Ξ(l, 1). Plainly f(λ) has no zeros in Ξ(l, 1). Since ^β(λ)-1 satisfies
(2.2) in, say, the matrix norm corresponding to the ordinary
Euclidean norm in E, each of its entries ajk(X) satisfy an inequality
of the same type:

,,1ON I
(4 19) fr.su,«)
with r = dim E. We observe next that, since Sβ(λ) is the Laplace
transform of the tempered distribution P it must grow polynomially
in the right half-plane; hence the same is true of its determinant

(4.20) \Kiy)\^C2\η\> (η^a).

We are then in condition to apply Lemma 4.5 and deduce the ex-
istence of a parameter, Λ:, 0 < K < 1 such that

(4.21) | l/f(λ) |^C|λ |* ' (λe 2(1/2,/c))

where tc does not depend on a. We point out finally that each
entry of 5β(λ) = (Φ(λ)"1)"1 is a sum of products of r — 1 entries of
φ(λ) 1 divided by f(λ), the determinant of φ(λ)~\ Hence we obtain
from the first inequality (4.17) and from (4.19) an estimate of the
form

in 2(1/2, tc), thus in reversed logarithmic regions Ω(a/2f β, co) where
a can be taken arbitrarily large and m' does not depend on α. It
follows then that a representation of the type of (2.3) (n = 0) holds
for ψ itself and an argument very similar to that in [6], Theorem
6.1 yields the desired conclusion. Details are omitted.

We consider next the case where P e (3P Π <g%(^ί"))~1, making
use of Theorem 3.5. Let α, y > 0, θ the function in (3.17),

θ(η) = 7 log θ(aη) - β .

Under assumption (4.15), θ\η) ^ CΘ(η) so that θ satisfies (4.4) for
ot ̂  aQ < 1/c; if necessary increasing β (or decreasing y) we may
assume that β — τlogΘ(αα) for some a ^ 1 and consider θ in η ̂ α .
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It is obvious that (4.6) holds. Since θ(η) ̂  cη, again |λ | and |Imλ|
are comparable in the intersection of any region θ(a, β, 7) with the
left half-plane and we may assume that these regions are defined
by inequalities of the type

Re λ ^ - 7 log θ(a | Im λ |) + β

= -0( | lmλ|) + 2/3 .

Given e > 0, φ(λ)"1 exists in one of them, thus in Ξ(l, 1), its entries
and determinant satisfying there

( 4 2 3 ) I
|f(λ)| ^CJλl V1*6"

obviously, f has no zeros in ί?(l.l) and (4.20) holds. We deduce
from Lemma 4.3 that there exist two constants p, K independent of
a <J a0 and of ε if ε ^ ε0 such that

* } (\eB(p,κ)).

Arguing as before on the basis of this estimate and of the first
inequality (4.20) we obtain

(4.25) ||§β(λ)|| ^ C |λrV ' B β λ | ( λ e % K))

where m' = m(r — 1) + p and ε' = 2(2r + l)ε. Since θ(fl) ^ ψ/Mn

for all 7] the present hypotheses imply that the Pe(^''n^ : 7-Γ)~ 1 and
we know that P admits a representation of the form (2.3); we next
show that the contour of integration there can be deformed to Δ,
the curve consisting of the two infinite arcs ζ — pθ(—tc7])(yj ^—a//c)
joined by an arc lying in the region Θ{a, β, 7). This follows easily
from (4.25). We can then estimate P in the same way S was
estimated at the end of Theorem 3.6. The representation (4.16) in
the quasi-analytic case follows from the fact that a distribution
with support {0} must be a polynomial in δ and its derivatives.
This ends the proof.

We note that the sequence ^ — {n\} satisfies all the hypotheses
adopted in this section, thus the results apply to the class jzf of
real analytic functions. The following result handles the distribu-
tions considered in Theorem 4.8: since these do not necessarily have
compact support, Theorem 4.7 is not a particular case of Theorem
4.6, although the proof is totally similar.

THEOREM 4.7. Let E, X be finite dimensional, PeSi'((E;X))
such that Pe(&o'((E; X)) Π J^(Φ; (E; X)))'1 for some φ > 0. Then
P is of the form (4.16).
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Proof. An examination of the proof of Theorem 4.6 reveals
that only the properties of Sβ(λ)-1 in the regions Θ(a, β, 7) were
essential; since these properties are the same as those used in
Theorem 4.6 (with the added advantage that ε = 0) the result
follows.

We close this section with a comment on the infinite dimensional
case. Although the example in Remark 2.4 sweeps away all hopes
of deducing smoothness of P from smoothness of P~x it is interest-
ing to note that distributions in ( ^ ' Π ̂ ( ^ C ) ) - 1 behave in some
respects as smooth functions off the origin, at least when ^ is
quasi-analytic. One example is the following unique continuation
property, where E and X are general Banach spaces.

LEMMA 4.8. Let ^£ be a quasi-analytic sequence and let Plf P2

be distributions in (&0'(E; X) Γ) <af+(^; (E X)))-1 such that Px = P2

in t < a (a > 0). Then Px = P2 in — °° < t < co.

Proof. Since Pλ = P2 in t < a we have Sλ = P^1 = Pf1 = S2 in
t < a so that Sλ — S2 vanishes in t < α. Since Sl9 S2 belong to ^ ,
Sλ - S2 and P1 = Si"1 = Sf1 = P2.

On the other hand, it is easy to see that this continuation pro-
perty does not extend to intervals other than (0, a).

5. Continuation properties* We call a subspace
local if it is defined by local conditions, i.e., by conditions that can
be verified in arbitrarily small neighborhoods. For instance 3f*
itself, ^+°°, ^+(^€0 (for any sequence ^/έ, not necessarily quasi-
analytic), in particular j y , are local, while £S and g* are not.

The following natural question arises. Let P e ^ ' and assume
P has a convolution inverse S which belongs to ^ in t < a. Can
we conclude (a) that P has an inverse S in — oo < £ < oo and that
(b) S belongs to ά?" in — oo < t < °o ? As we shall see in the next
Lemma 5.1 the answer to (a) is always affirmative. Since the ex-
istence of inverse of P in ά?" for t < a does not bring into play
the restriction of P to t>a it is natural to surmise that the answer
to (b) must be in the negative if the support of P is not contained
in t < α, except possibly in the case &~ = 3P. That the answer
is actually affirmative here is a consequence of the following result.

LEMMA 5.1. Let Pe&0'((X;E)). Assume there exists Sae
^o'((-oo; a); (E; X)) such that (1) holds in t < a. Then there exists
Se &o((E; X)) such that (1) holds in - ^ < t <<oo

Proof Let φ e Sίfb with 0 < 6 < α/2. Then it is plain that
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φS can be thought of as a distribution in ^QX(E; X)) and that (2.5)
holds with Φ = P*(l - φ)Se&'((E; E)) and ψ = (l-<p)S*Pe&'((X;
X)). Since Φ has support in t ^ α, Φ*w has support in t^na and
this assures convergence in ^ ' of both series (2.7) and thus ex-
istence of S (details may be found in § 2).

Lemma 5.1 has the somewhat curious consequence that the
restriction of P to t > α, where a > 0 is arbitrarily small is of no
consequence in deciding whether P e ^ Ό ' " 1 or not.

Consider now the case of a general local space ^~, and let P β
3t' have support in an interval 0 <; t ^ a. The space &~ is said
to be continuable with respect to P if the fact that P has an
inverse in t ^ 6 (6 > a) implies that P 6 (&0' n ^ l " 1 . If ^ is con-
tinuable with respect to P for every P we simply say that J^ is
continuable.

The next result follows from a cursory examination of the
proofs of Theorems 3.5 and 3.6.

LEMMA 5.2. The spaces ά?~ = ^+°°, ^ + ( ^ # ) (/or αŵ / sequence
^// satisfying the assumptions of Theorems 3.5 and 3.6), m pαr-
ticular, ^ = J ^ α r e continuable.

In fact, the functions Φ and ^ in Theorem 3.5 only take into
account the restriction of S to 0 ^ ί ^ α + s for ε arbitrarily small.

On the other hand, the spaces ^ +

( Λ ) are not continuable (see,
however, the end of the section) as the present example (used in
[5] in a different way) shows:

EXAMPLE 5.3. Let E = H be a separable Hubert space, {en;
an orthonormal basis of E, A the normal operator defined by
Au = ΣXn(u\en)en with

(5.3) Xn = — log n + —(n2 - (log n)ψ2

a a

where a > 0. Finally, let X = D(A) = {u e H; Σ \ λΛ |2 \(u \ en)\2 < oo}
endowed with its graph norm. It is not difficult to see that P =
δ" ® / — δ' (g) A 6 ^ ' , the inverse S being described as follows. Let
r ^ 1 be an integer. For 0 <; t ^ α(r + 1) define

Sr(t)u = Σ λ ; ( r + 1 1 ( ^ - ^
Λ = l

where ί>»,r(t) = 1 + λβί + + (Xat)
r/r\. Since

% r + 1 ~ |λ a |
r + 1 ~ nr
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and \\Sr(t)\\{E;x) == mvlXnl-'le-1*' - pn>r(t)\ it follows [that Sr(t) is a
continuous (E; X)-valued function in — oo < t :g ar (but not in t >
ar) and it is not difficult to check that

So = P-1 = DrSr ( - oo < t < ar) .

If t < a(r - m) we have £>mSr = Sr_w in (E; X), therefore each Sr

is m times continuously differentiate in — co < £ < α(r — m), but
not in t>a(r — m). We define then Pm = Γ_(W+1)*P = p(TO+1), so
that Sm = Γm+1*S0 = Sm+1 in t < α(m + 1), which belongs to ^m\(E;
X)) in — oo < t ίg α but loses differentiability step by step in each
interval (a, 2a], , ((m — l)a, ma] until it ceases altogether to be
a (E; X)-valued function for t > m.

On the other hand, since, say, a semigroup or distribution semi-
group S belongs to <̂ f+

(m) in ί > 0 if it belongs to ^ +

( m ) in 0<t<a,
a arbitrarily small, the spaces ^ +

( w ) are continuable with respect
to P = d' 01 — δ 0 A. Similar results hold for distributions of the
form S" <g) I - δ 0 A and others.

6* Several variables* Many of the results in the previous
sections and in [6] can be extended to distributions in several
variables; in these extensions, the role of the half-line t <5 0 con-
taining the supports of distributions in *gro'f S^f, gV, is taken over
by a sufficiently regular cone Kζ=Rn having the property that
K Π ({ί} — K) is compact for all t e Rn (for instance, the positive
quadrant R%) such as to make possible the convolution of arbitrary
distributions with support in K. As seen in [6], the theory of the
convolution inverse in one variable is related to initial value (or
Cauchy) problems in t >̂ 0; in the ^-dimensional case the relation is
to problems of Goursat type where the aim is to solve differential
(or convolution) equations in a suitable cone with values prescribed
outside (on the surface, when the equation is purely differential).
The point of view taken in [4], [8] and other works on convolution
equations in the scalar case is different: here P is assumed to have
compact support, so that convolution by an arbitrary distribution
is possible. Roughly speaking, this corresponds to studying differ-
ential or convolution equations in the whole space in the absence
of boundary or initial conditions.
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