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ON INTERPOLATION OF Lp[a, b] AND WEIGHTED
SOBOLEV SPACES

Z. DlTZIAN

The goal of this paper is to characterize the interpolation
spaces between Lp[a> b] or C[a> b] and the space of functions
for which W(x)f(r)(x) belongs to Lp[a, b] or C[a, b]. In order
to achieve this, for a class of weights W(x) the Peetre K
functional is characterized.

We recall that the Peetre K functional on f eB1 + B2 where Bt

are Banach spaces, both of which are contained in a linear Hausdorff
space, is given by

(1.1) *(τ,/) = inf (U/JU + τ||/2|U2) .

The Peetre interpolation spaces (Bu B2)θiq.κ for 0 <; 0 <Ξ 1 and
^ Q ̂  °° are given by their norms

(1.2)

and

(1.3) ||/lk,;r = {\y-θK(τ,f)y-^-}/Q for 1 £ q <oo .

It is therefore obvious that to find a characterization of the
space (Blf B2)θjq:κ it is enough to characterize the functional K{τ, f)
in terms of f(x). It can be noted that sometimes a natural condi-
tion can be given for a function to belong to a specific (Blf B2)θ,q κ

without going through the function (see [4]), but it is preferable
to attain a description of K(τ, / ) , since that will yield results for
all 1 ^ q ^ oo simultaneously. In this paper feB19 and therefore
K(τ, f) = inf, (||/ - g\\Bl + ||flf|U2). Moreover, for the sake of con-
venience, we shall substitute τ = tr.

The functional in which we are interested, K*(tr, f) and K(tr, f)
are given by:

(1.4) K*(t% f) - inf ( | |/ - g\\B + t'(\\g\\B + || TΓ( )V r )(
g

and

(1.5) K(t% f) = inf ( | | / - g\\B + r(\\ W(>)rg<'K )\\B)

where B is Lp[a, b] or C[α, b] and where g{r) exists except perhaps
at zeros of W(x)9 and g{r~1] is locally absolutely continuous for x e
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[α, b]\{x0; w(x0) = 0}. Using the K* and K functionals of (1.4) and
(1.5), in (1.2) and (1.3), we have the norm H/H^;*, and seminorm
\\f\\θ,q ,κ respectively. For θ > Q,\\f\\θ>q.,κ, is bounded, that is, /
belongs to the interpolation space, if and only if H/lkg,* is bounded.
This follows the simple observations that: (a) K{τ, f) ^ | | / | | and
K*(τ,f)ίi 11/II; a n ( i , since g in both (1.4) and (1.5) can be chosen
among | | f l f | |^2 | |/ | | (otherwise g — 0 would yield a smaller number),
then (b) K+{τ, f) ^ K(τ, f) ^ K*(τ, f) - 2 | |/ | | r . For θ > 0, in (1.2)
when the supremum is taken on τ > 3 and in (1.3) when the inte-

, the estimate (a) would imply boundedness. For θ > 0 (b)
δ

would imply, for τ S 3, that the difference between the expressions
with K and K* is bounded.

We shall solve the problem for W(x) having finitely many zeros
Xi for which Ax\x — Xi\aij ^ W(x) ^ A2\x — x^"*5 for x < xi or x > xt

when j — 1 or 2 respectively. Actually in § 2 we shall show how
to reduce the question to that of characterization of K{tr, f) when
the function is defined on [0,1] and its support is in [0, 3/4] and
where the weight function is W(x) = xa. We shall solve this main
problem in § 3 for continuous functions and in § 4 for Lp functions.
We shall later, in § 5, fully state the general result for the char-
acterization of K. We shall also state the actual interpolation
results as a corollary.

For C[0, 1], W(x) = xa and α>?(/, h) given by

(1.6) α)?(/,λ) = Sup Sup \J%af(x)\
K l ) 1 ~ a

where Δr

tf(x) = ΔlΔ\~'f{x)) and ΔJ{x) = f(x + ί/2) - f(x - ί/2) we
will have the relation

(1.7) (>?(/, t) ^ K(t% f) ^ C2ωϊ(f,t) for 0 < t < δ .

It is clear that away from the singularity 0 ft>?(/, t) behaves like a
modulus of continuity while near 0 much smaller differences are
taken, in other words, for ft)?(/, h) to be small the function has to
be much less smooth near 0 than away from 0. For example,
/(a?) = xm and a = 1/2 will yield (*)?(/, t) - ct2/\ The result in (1.7),
which will be proved in § 3, can be stated also as the following
interpolation theorem.

THEOREM. Let f(x) e C[0,1], Supp / c [0, 3/4] and Ar be given
by Ar = {/eC[0, 1]; xraf{r)(x) eC[0, 1], / ( r-1 ) is locally absolutely con-
tinuous} then f 6 (C, Ar)e,κ* for 0 ^ θ ^ 1 or fe(Cf Ar)β,q,κ* for 0 <
θ ^ 1 and 1 ^ q < °o i/ α^d ô Z?/ i/ t~rθa)?(f, t) is bounded for t<d

S δ

(t~rθω*{f, t))qdtlt is bounded, respectively where a)?(f, t) is given
0
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by (1.6).

For Lp the expression of ω*(ff t) is somewhat more complicated
and the exact characterization of K(tr, /) will be given in § 4 for
the above W(x).

The problem of interpolation between ||/|U[β,H and ||/(r)|Uα,&]
where B = Lp (or C) i.e., the case W(x) = 1 was solved and treated
extensively. (See for instance [3] and [5].)

The problem of interpolation between Lp(v) and Lp(μ) was solved
by Stein and Weiss [6] which covers in general the case where no
derivatives are involved.

For C[a, b] = C[0, 1] and W(x) = (x(l - x))m a characterization
of the class {/; K(t2r, f)/tβ = 0(1), t -> 0} was given by the author [4]
in order to characterize the class of functions for which Bernstein
polynomials of f(x) and their combinations converge to f(x) at a
certain rate.

For this particular case the present paper yields a different (but
equivalent) result and in addition here the K functional is charac-
terized and not only the class {/: K(t2r, f)/tβ = 0(1)}. It is clear that
the difference between K* and K is bounded by 2 | | / | |£ r and the
cases of interest would occur when V = o(K(tr

9 /)), ί —> 0 + .

2* Some simplifications* We first observe that if 0 < At ^
W(x) ^ A2

(2.1) KΛt% f) = in f (11/ - g\\B +
g

where B is Lp[a, b] or C[α, b] and

KAt% f) = i n f ( | | / - g\\ + t'(\\g\\

are equivalent norms independent of t and therefore the situation
in which a continuous W(x) has no zero does not interest us in this
paper since it has already been solved and discussed elsewhere.

One can mention here that if W(x) is equal to zero on a sub-
interval of [α, 6] the values of / in that subinterval will not affect
Kw(tr, / ) . In any case the treatment in this paper is for W(x)
having only isolated zeros xt satisfying Aλ\x — Xi\a ^ W(x) ^
A2\x — xt\

a for x either only on one side of xt for that or on both
sides.

We can define

lt\ f) = inf [||/ - flr|U[.<f,<+1] + n\\g{x)\\BiXί>H+ιl
9

+ \\W(x)Yr\x)\\B[H,Xi+l})]
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where xif xi+1 are consecutive zeros of W(x) or one of them may-
be an edge of [a, b] even in case a or b are not zeros of W(x). We
observe

That #*(£', /) ^ Σ i s c l e a r ϊ*0™- the definition of the K f unc-
tionals being infimums, and the inequality in the other direction
follows, since when g, chosen for [xit xi+1] it does not affect its
choice elsewhere. In fact there is no relation between Kt(tr

f f) and
Kj(tr

f f)(i Φ j) and all the information of f(x) can be derived
separately.

Moreover, if (a, b) is infinite, that is a = — <>o or b — °° or
both, and xt are infinitely many zeros of W(x) that do not have an
accumulation point, we still have K*(tr, f) = Σ?=o K^F, / ) .

For a single Ki a linear transformation can bring [xif xi+ί] to
[0, 1].

To simplify even further we would like to separate the problem
into two symmetric problems near 0 and near 1.

For that we shall define the C°° function ψλ(x) 0 <; ψ^x) ̂  1,
ψλ(x) = 1 on [0, 1/4] and ψλ(x) = 0 on [3/4, 1]. Recalling

KJF, f) = inf (||/ - 0|| + ί'dlflrll + || W'g*\-)\\))
9

we have

κ*(r, f) £ κ*(r, fψ,) + Kjp, /(l - ψj).

We shall show

(2.2) KJF, f fx) ^ MK+&, / ) , K*(t% /(I - ψλ)) ̂  MK*(t% f) .

Therefore characterization of K*(tr, fψλ) and K*(tr, /(I — ψ )̂) separ-
ately will suffice. This is the only point where K* (rather than K)
is used since when f = g and g{r) = 0 {gψ^{r) is not necessarily equal
to zero.

To prove (2.3) we shall need the following lemma.

L E M M A 2.1. / / /, fir) e Lp[a, b] l^p<oo or C[a,b], (f{r~ι) is

locally absolutely continuous), then for 0 < k < r

(2.4) ||/(*)||,^j

where M does not depend on p nor on [a, &].

The lemma is well-known (see Adams [2, p. 81]) if M can
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depend on p and [α, 6], which would suffice for this section but not
for the following sections. With M not depending on p or [a, b] I
was not able to find a reference, so a simple proof is enclosed. For
the space C[a, b] the validity of Lemma 2.1 was mentioned to me
by S. Riemenschneider who has a different proof (just for C[a, &])
using J3-splines.

Using Lemma 2.1 we now prove (2.3). There exists gt satisfy-
ing | | / - flr*!! + *r(llΛll + IITΓ'flrίΊI) ̂  2K*(t', / ) . Therefore

«', fψd ^ Wfti - ίfctill + *r(llΛtill + \\Wr(gtψyr)\\) ̂  11/ - 0,11
ίr)|U[0.1/4j + tr\\gt\\B[0>ύ + V 11^(^^)^11^/4,3/4] ^ 2K*(t% f)

V max^ WixY-Σ* ( [ ) I I^ΊU^s^ l l tΓ^ IL £ 2K*(t% f)

trM(\\gP\\BlmM*

In fact we have shown a little more, that is

K*(r,fd ^ M2inί (||/ - g\UMύ + n\\g\\B[0,m, + \\W(xyglr\')\\Λo,ml))

and a similar estimate for K*(tr, /(I — fj) and the interval [1/4, 1].
In this section we show the equivalence treating different

KJF, / ) . In what follows K(tr, f) will be used rather than K*,
but the difference is at most O(V) so that our result will relate to
K* only if tr = O(K(tr, /)) (in which case V = O(K*(tr, /)) too).

Proof of Lemma 2.1. We first observe that instead of proving
f or 0 < k < n

(2.5) \\fn\\B £ M(n, k){(b - α)-*||/|U + (6 - a

it is enough to show

(2.6) 11/<*>!!* ̂  M{k){{b - α)-*||/|U + (6 - α

that is (2.5) with n = k + 1 since (2.5) follows (2.6) by induction.
For a <*x ̂  (α + 6)/2 and h = (6 — α)/2fc we use the Taylor formula
with integral remainder that for locally integrable f[k+ι) with /(fc)

locally absolutely continuous is given by

fix + jh) = fix) + -f^fix) + +
(2.7)

Ϊ + %) du

to obtain
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Σ ( * ) ( -
3=0 \ 1 /

(2.8) 1 * ίk\ cih

+ -Γ7- Σ . (-I)*"' O'Λ - u)krk+1\x + it) du .
«! i=i \ J / Jo

Therefore /, /*+ 1 16L,[α, 6] (or C[a, b]) implies /<*> eL,[o, (o + 6)/2]
(or C[α, (α + δ)/2]) and

This can be written as

Using h——{b — a)l2k we obtain a similar estimate for ||/(*}|Lp[α+6/2,6]
or ||/<fc)|lc7[α+6/2,6]> and combining both we obtain (2.6) with the con-
stants in (2.9) for C[a, b] and with twice those constants for Lp.
(The exact constants which we arrived at are not important since
they are not the best possible.)

3. The C[0, 1] case* In this section functions /eC[0, 1] for
which Supp / 6 [0, 3/4] are investigated but, as discussed in § 2, it
is clear that /eC[0, 1] in general is actually being treated and the
condition Supp / c [0, 3/4] is just for convenience.

THEOREM 3.1. Suppose f(x)eC[09 1], Supp/c[0, 3/4] and let

(3.1) K(t\ f) EΞ inf (||/ - g\\cίOtύ + ίr||a?rβflr(r)( )IUi])
9

and

(3.2) ω?(/, h) = Sup Sup | Δ%af{x) |, AJ(x) = f(x+^) - f(*~) ,

η<h r/25<»1~α V 2 / \ 2 /

then for a > 0

(3.3) ikf^CΛ ί) ^ iί(Γ, /) ^ ilf2α>?(/, ί)
where Mx and M2 depend on r and a but not on f and t.
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Proof. First we will show Mxωΐ{f, t) <; K(tr, / ) . There exists
gt satisfying \\f - gt\\ + tr\\xraglr)(x)\\ £ 2K(tr, / ) . We have

ωΐ(f, h) ^ α>*(/ - gt9 h) + ω*(gtf h)

and clearly ω*(f - gt9 h) ^ 2r\\f - gt\\ ^ 2r+1K(tr, / ) . To es t imate

ft>?(^i, h) we note that r^/2 < x1-" always and therefore we can
estimate Δr

ηxaf for rr] ^ xx~a and for rηj2 < x1"" ^ r)7 separately.
We observe also that for a >̂ 1 h can be chosen so small that the
first case (rrj <* x1"") always applies.

For xι~a ^ rη and rj ^ h = t we write

\ζraglr)(ζ)\^2ra-2K(tr,f)

since α; - (r/2)^ < ξ < x + (r/2)^ and |a?/f | < 2.
Estimating Q)?(gt, h) for r^/2 < x1-" < r57 (in which case only

a < 1 has to be considered), we have using Taylor's formula

r I r

1=0

max -du

For I > r/2

is;
= Λ _ r_V r

V 2/ '

For Z = r/2 the above is zero. For I < r/2, we have, since x + (l —
r/2)ηχ" > 0,

ISΓ""""- du

r(l - a) - α)

Therefore using 27 ^

max ((r - i ) ' f - ^

^ MK{t\ f) .

To prove now K(tr, f) ^ Mίωξ(f, t) we construct flrt(a;) such that

11/ - Λlkwί + tΊ|χαrfifίr) II ^ M2α)?(/, t ) .
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To accomplish the construction of gt we have to define the
functions ψι(x) = ψ(4ιx) where ψ(x) e C°°, 0 ^ ψ(x) ̂  1, ψ(x) is
decreasing, ψ(x) = 1 x <; 1 and τK&)'= 0 x ^ 3 .

We also construct

(3.4) fk(v) = (γ)\^ £ Σ(-l) fc+1 (^ W + fcfai +ur))du1.

and

χ\ •• \ Σ ( - i
jΛ/2r JΛ/2r fc=l

For a < 1 and ί satisfying 4-«+D(I-«) < j <; 4-1 u-«) w e w r i t e

(3.6) 0t(αO = Σ / ί 4-^fe-iW(l — Ψtfa)) + f**-i«MYi(x)

where ilί will be chosen later and for a ^ 1 we write

00

(3.7) gt(x) = Σ/M-*α/^fc-i(a0(l — ̂ W ) .

We now have to show

(3.8) \\f-9t\\cio.n£K1ω*(f,t)

and

(3.9) tr\\xraglr)\\c

We recall that

I
•f(γ\ V f(rγ\Jr

J\X) 2-A J\X)ψk-l
k=l

or

(Both expressions are correct independently of a but will be used
respectively for a < 1 and α *> 1.)

Since in (3.6) and (3.7) at most two terms of the sum differ
from zero for any x we will prove (3.8) when we show for A~k <

(3.10) I f(x) - f«-k«(x) I ̂  α>*(/, t)
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for all k when a ̂  1 and for k £ I, I given by 4r{l+')(ι~a)<t^±-Ul-a)

only for a < 1; but in the latter case for x < 3 4~~* we have to
show also

(3.11)

To prove

We derive (3.

\f-ftϊ-ι*\ύ

<

1/0*0 -
(3.10) we have

11) as follows

SUP Δr

w-laMf

\ Sup 1 Aτ

ηι-ioc

fu-i" t

Sup

Sup

(*+*••

Mf(ζ)\ =

— CO γ, ί /

ΔΪγ jA — kθ

2

Sup
vst

( l 2 )

^ <»,*(/, ί)

for Af=min(l,(r/8)βf/1-α),since for such M, v(rJ2)A-laM^(r/2)A-la(t/2)M^
α4-I(1-α)4-(1-β) ^ 4-ιr/8-M ̂  4-|(r/8)1/1-β, (or ^4~ ι if Λf = 1).

We shall prove (3.9) now. First let us observe

(3.14) ^ S υ jh/2)

which can be proved following Achieser [1, p. 174] where the case
in which fh is translated to be centered at zero and r = 2 is treated.
Therefore, for A~k ̂  x ̂  3 4~fc+1 (and A; < I for α < 1)

Sup
/ /I

^ Zrarr'2r max | Jr

u-ka(jlr) fl x + jH~ka( —
j \ V 2

<J Jkfα>*(/, ί) .

For /ft* (#) we have

(3.15)
X h±) - Δr

ihϊ2rf{x + jh/4)

For /2, = ί 4-ZαM, ί ̂  4"α+1)α and ^<3-4-3 we derive tr\\xraf?,Pι«M(x)\\£
Mxωt{f, t) similar to our earlier calculation. To complete the proof
one has to check g{

t

r)(x) at points x for which gt(x) is equal to the
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sum of two terms or in other words, {x: A~h<x<SΆ~k+1}Γ\{x: 4~fc+1<
x < 3 4~fc+2} = {x: 4-fc+1 < x < 3 4"fc+1} on which gt(x) = φk-ί(x)ft.A-ka(x) +

(1 - ĵfc-.i(a?)/t.4-*«+«(«) = /^4-*«+«(») + ̂ fc-i(»)[/ί.-*«(«)--/ί.4-*«+«(«)I Since
|ψίyΛ(«)I^Af4w we have to estimate only f£z£(x) - f£s£+a(x) and
we will use on this function Lemma 2.1 where b — a = 2 4~fc+1.
Using (3.14) (for r = w in the lemma) and using (3.10) for k and
k - 1, we obtain in 4~fe+1 < x < 3 4"fc+1

+ ^4*^-4-wα)*(/ f ί) .

Recalling trxrHkr ^ I2rαίr4fcr(1-β) which is bounded f or a ^ 1 or other-
wise k < I and t ^ 4-m-α) which still implies that trxraAkr is bounded,
we have trxra\ψiflM(f!^&(x) - //;-£+«(«))! ^ Jlfo>r*(/f *). Similarly
we can treat 0t(cc) in 4~z < x < 3 4"̂ (α < 1), (using (3.15) instead of
(3.14)).

4* The Lp case* The expression for ω* for the Lp case is
more complicated. Possible different expressions for ω* will be
discussed in § 5 but a complete result will be obtained here with
ωΐ given by

o)*(/, ί) = Sup

+ Sup

where Δμf in this section is a forward difference given by Δf(x) =
/(x + j«) - /(«), δ(α) = 1 for a < 1 δ(α) = 0 for α ̂  1 and fco(t)
given by ko(t) = Max {&: 4"4 + tr 4"fcα ^ 4~fc+1}. One can observe that
for tr < 1/4 and a ^ 1 there is no bound on k and we replace ko(t)
by oo, In accordance with the discussion in § 2 we have Supp / c
[0, 3/4] with no loss of generality.

The functional α>?(/, t) represents the Lp smoothness of / in
exactly the same way as the r modulus of continuity does when
away from the singular point, in this case 0. Near the singular
point the function need not be as smooth. The expression (4.1) is
a quantitative measure of smoothness needed near 0 (the singular
point) as well as elsewhere that expresses the above qualitative
description. For K(tr, f) given by

(4.2) K(t% /) = inf
9

we can derive the following theorem.

THEOREM 4.1. For f(x)eLp and Supp/c[0, 3/4] we have
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(4.3) Aω*(f, t) £ K(t% f) S Bω*(J, t)

where K(tr, f) and a)?(f, t) are given by (4.2) and (4.1) respectively.

Proof. We first show α>*(/, ί) ^ A~ιK(tr

9 f) for some A > 0.
By definition of K(tr, f) there exists gt such that \\f~gt\\^2K(tr

9 f)
and tr\\xr"gϊ\x)\\ ^ 2K(t% / ) . Obviously α>*(/, ί) ^ α>*(/ -
o>ΐ(gtt t).

To estimate (*>?(/ — flft> ί) we write f — gt = Ft and

r

*(F t, t) ^ r Sup Sup

k \Ft(x-

Since 4~fe + t r A~ka < £~k+1 (also 4~k+1 + t r 4~fcα < 4~1/C+2), each point
ζ = x + ηj4:~ka x e [4~fc, 4~fc+1] appears for fixed 37 and i at most twice

and therefore ω*(Ft, t) ^ r sup. (j)4JB:(ίr

f /) + 2r2K(tr, / ) .

Somewhat more complicated is the estimate of co*(gtt ί). Using
Taylor's formula (and forward differences), we have

Ii ^ Sup Σ
V£t \ k=l

g Supί Σ \

x Γ+"4 (x + jη4rka-u)r~ιgir)(u)du * dx Y*
JX /

^ Mx{r) Sup Sup

(
ko\tι /• —fc-|-i Γx-{- jyί ί? \ i/p

^ * I I I ̂  Λ» _|_ 'lyiA / ) J ) r I / Ί J ^ a \ Ί j l ' > ' a ( Ί ( Ί A ί d Ί l fli/* I

Λ=l J 4 -A; ) % /

Observing that

S x+h

\urag(tr)(u)\du, the Hardy-Little-

wood maximal function of urag{

t

r)(u), we have for 1 < p < 00

ii ^ -Mi(r) Sup Sup ηr( Σ ^ + Ί M[urccg(

t

r)](x) \p dxY*
η<t j^T \fc = l J4-fc /

^ Mlr)V2K{t\ f) .

For j) = l we estimate Iι by Fubini's theorem (using ko(t))
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ko{t}ς k + ι rx+jηi-k«

/i ^ Mar)?'1 Sup i Σ 4fcα 1 I uragίr)(u) \ dudx

*θW( 4-fe+2

< il£(r)ίV Σ \ I vrgΐ\υ,) I <Zw ^ fM,(r)K(r, f) .

For a < 1 we have to estimate one more term i.e.,

J 2 = Sup
lFollowing the above and using Taylor's formula around x +

(r/2)η,

I2 ^ M Sup Π Γ + ί I Γ+r" 3\x + (r - j)η - u)r-lg{r(u)\du\pdx\/P

j^l/l-α L Uθ )y) Jx+(r!2)V J

— j I r

For x > η or j < r

(x + rff — î y — u)r~ι

and the estimate of J2 proceeds as that of Iλ since ηril~a) ^ tr. For
x < 7] and j" = r(^ > α?)

(x + ry — ry —

and

Γ ur-ra~l

)x+{rl2)η

-ra~ldu

Therefore we have

r
\urag?)(u)\du

l/P

To prove K(tr, f) ^ Bω*(J, t) we define gt which will satisfy | | / -
jr. II, ^ B,ω*(f, t) and ί' 11 x™gT % ̂  B,ω*(f, t). Define fh, fh* and gt

the same as in §3 by (3.4), (3.5), (3.6) and (3.7) with possibly
different M in (3.6).

To show | | / - fft|| ^ Bω*(f, t) we write

11/ -
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which follows since the sum is finite for every x.
Since /t.4-*«(a0 can be written as

( Λ, \ r Γ t/r f t/r r

-7) ••' Σ(-D*+1

t I Jo Jo k=i

and since 0 ^ ^ t £ 1 and ^ ^ , ( 1 - ψfc) ^ 0 in [4"fc, 3 4-*+1], the fcth
term

s::
\Δ

\t / Jθ

ί/r ft/i

We observe now that with η—uxΛ Vur or )7=:4-α(u1H hur)
and since the integral is the same for all terms, we have on

Similarly we can treat the remaining integral remembering
that 4-( ϊ+1)(1-β) <t ^4~ ί ( 1 " α ) and t-4rι« ^ 4~* and 4^ikf < ί1/J-α for
appropriate ilί. To estimate | | # r α # i r ) | | we shall observe first that
(3.14) and (3.15) are still valid for feLp except that the result is
valid almost everywhere rather than everywhere.

Rewritten to take into account forward difference, we have
for (3.14) and (3.15)

(4.4)

and

(4#5)

Σ(

Using (4.4) and (4.5), we have
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trp^k

C+1\xraftt-*«(x)\pdx

^ M(r) max I | A

( 4 6 ) f

^ Λf(r) max I | ΛJ(ί/r)4-*« f(x) \*>dx
r4~k+2 ,

+ max I \Ar

5{tlr).4ι-a.A-a{k-ι)f{x)\pdx\ .

We notice that it is a maximum or a finite number of terms and
j(t/r) and j(t/r)A~a are smaller than £ and moreover it is a maximum
on the same terms for all k. Similarly one can estimate

S
4-*-rl

I ^raf(r)

0

To conclude the proof let us follow Lemma 2.1 in much the
same way as was done in the proof of Theorem 3.1.

To calculate the Lp norm of gίr)(x) we recall that in

{x; 4-fc+1 < x < 3 4-fc+1} gt(x) = /„-*«+«(&)

and since l^i^l 5£ Af4fci, we have to estimate in L,,[4~*+1, 3 4~fc+1]
f£^Jh«(x) — f^-ka+aix) and for this we use (4.4) and earlier estimates
in this section together with Lemma 2.1 where b — a = 2 4~*+1.

It can be seen that the estimate for Lp norm in [4~fe+1, 3 4"fc+1]
is given by a maximum of a finite number of terms that depend
on j and r but not on k. Using this and the fact that in the
sums (3.6) or (3.7) we have for any x only two nonzero terms, we
can conclude the proof i.e., ίr||a?rΛflr{r)|| ^ Bω*(f, t).

If r is even, we can write α>2r(/, p, t)

fi>2r(/f p, t) = Sup ] Σ Γ
(4.7) ' s f l k=1 )4~

+ Sup

where the differences are symmetric (Δηf{x) =
and kQ(t) = Max (k: A~k — t r A~ka > 4"fc~1) In this case one can prove
similarly:

THEOREM 4.2. For f(x)eLp S u p p / c [ 0 , 3/4], we have for t < t0

(4.8) Aω2r(f, p, t) ^ K(t\ f) ^ Bω2r(f, V, t) .

Actually Theorem 4.2 does not yield a new result, just a similar
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characterization which is proved following the same method, but I
believe that (4.7) and a)2r(f, p, t) will be convenient using symmetric
rather than forward differences.

5* Conclusions* In this section we will use the two main
results for §§3 and 4 as well as considerations of § 2 to obtain a
global description of the K functional (which is a sum of translates
of the local case) and also the interpolation theorem involved.

DEFINITION 5.1. A weight function W{x) on [a, b] is of class A
if it is a continuous nonnegative function with finitely many zeros
at a <̂  xx < x2 < < xn ^ 6 such that 0 < Au \ x — xt |

α^ ^ W(x) ^
Biό\x — flCtl"** in 0 < (x — £*)( — l)j < δ where aiό > 0 i = 1, , n
and j = 0, 1 and where, in case xλ — a or xn = 6, the above condi-
tion for i = 1, j = 1 or i = n, j = 0 is void, (α and δ might be
— co or oo respectively.)

For TΓ(α?) of class A we may define the modified modulus of
continuity as follows:

For feC and t ^ ί0

(5.1) ω*(/, t; IF, C) = Σ Sup Sup | z Γ ^ / f e + (-1)^) |
«<cί/2

+ Sup \\Ar

ηf(x)\;x±r3-e[a,b] and |a;- xj >—1 .
η<t ( 2 4 J

For / e Lp and t <> t0 we have

(5.2) ω*(f, t, w; L,) = Σ ω*4>i(/, t) + Sup \ 14/1' dx\

where α>£ify are the expressions given by (4.1) with ati replacing
<*, f(%i + ( —l)ifl5) replacing •/(a?) and k starting from fcx rather than
1, (chosen so that 4~fci+1 ^ d/2, and therefore the distance between
Xi and xi + ( — 1)% is less than d/2). Both expressions are measure-
ments of smoothness showing that near a zero of W(x) less smooth-
ness is needed and that the amount of relaxation in smoothness
depends on the rate at which W(x) tends to zero near xt.

Now using the introduction, § 2 and the main result in §§ 3 and
4 we can conclude the following interpolation results:

THEOREM 5.1. For W{x) of class A, feC[a, b] or feLp[a,b],
and the expressions K(tr, / ) , (O*(ff t; w; C) and α>?(/, t; w; Lp) given
by (1.5), (5.1) and (5.2) respectively, we have for t <£ to(to small
enough)
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(5.3) ilfiα>*(/, t; w, B) ̂  K(t% f) ^ M2ωr*(/, t, w, B), 0<M 1<M 2< oo

where B is either C[α, 6] or Lp[a, b].

THEOREM 5.2. Under the conditions of Theorem 5.1 and when
the interpolation space (B, B(r9 w))θ,q,κ* is given by the norm in (1.2)
and (1.3) using the functional K*(f, t) defined in (1.4) for B = C
or B = Lp, we have f e (B, B(r, w))θtqιKm if and only if

(5.4) Sup t-rθωϊ{f, t, w, B)^M(f) for g = oo and B=C or B=LP

respectively and

(5.5) [\t-rβω*(f, t, w, B))q — ̂ M(f) for l^q<oo and B=C or B=LP

Jo t

respectively.

6* Remarks and generalizations*

1. In an earlier paper [4] the author proved for Bernstein
polynomials, B%(f,x) for β < 2 \\Bn(f) - / | | c [ O i l ] = 0(W / 2) if and
only if | [x(l — x)]β/2A\f | ^ Mhβ, as a result of the equivalence of
K(t\ f)/V£M and Sup,<ίC<1_, |[^(1 - x)ψ*A\f\ ^ Mhf where JΓ(t8, /) =
inf g(| |/-flr| | ί 7 + ί2||aj(l-aj)flr"(a?)||σ). This paper yields the new
characterization of H ^ / - /|U,i] = 0(^-^/2), that is \\Bnf-f\\ =
0(n'β/2) if and only if Hz/Lr̂ /H™2, ^fi^MW where α of our Theorem
3.1 is 1/2. Similarly with respect to other results of [4] one can
deduce additional results from Theorem 3.1. (Results on conditions
for rate of convergence of combinations of Bernstein polynomials.)

2. For the case C[0,1] given in § 3 the condition K(t\ f)/tβ ^
M (which is an important case) is equivalent to

Sup \xraβΔlf\^Mhβ .
{rl2)h<x<l-{rί2)h

We did not go that route in order to characterize the K functional
completely and not just the case K(tr, f)/tβ ^ M.

3. An alternative for ω}r{f, t) could be

G l-C \1/J)

\Jfaf(x)\'dx)
{*Λ) /f v "

+ Sup (\ \J«f(x)\'dx) f o r α < l
and

G l-C \ 1/p

\Jfr,f(x)\>dx) f o r α ^ l .
0 /
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While in proving α>2**CΛ t) ^ AK(t2r, f) there was no problem, the
author was not able to show K(t2r, f) ^ A«>2**(/, t).

4. Various a were treated and while the case a = 1/2 has
already yielded a result about the rate of approximation of Bernstein
polynomials, the rate of approximation of the Post-Widder inversion
formula for Laplace transforms or the Gamma operators relate to
a = 1 and together with a much wider class of operators will be
treated elsewhere.
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