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PLANAR CONTINUA WITH RESTRICTED
LIMIT DIRECTIONS

C. L. BELNA, M. J. EVANS, AND P. D. HUMKE

An affirmative answer is given to a question of D. M.
Campbell and J. Lamoreaux concerning minimal conditions on
the set of limit directions of a planar continuum that guaran-
tee it is a line segment.

Throughout we let E denote a planar continuum. The set E is
said to have a limit direction eίa at the point z in E if there is a
sequence of points zn in E — {z} with zn -> z and (zn — z)/\ zn— z\—>
eia; this limit direction is called a right limit direction if we also
have Re (z%) |Ξ> Re (z) for each zn. The set of all [right] limit direc-
tions of E at z is denoted by £&(z)[£&R(z)\ and is called the con-
tingent of E at z in the older terminology of Saks [2].

D. M. Campbell and J. Lamoreaux [1] proved: Let K be a sub-
set of E such that &(z) Π {eiθ: 0 < \θ\ ̂  ττ/2} = 0 for each z in
E — K. If the projection of K on the y-axis has measure zero,
then E is a horizontal line segment. Then they asked whether this
theorem remains true when the condition on <&(z) is replaced by
the conition S&R(z) Q {1}. We now show this to be the case.

THEOREM. Let K be a subset of E such that £&B{z) £ {1} for
each z in E — K. If the projection of K on the y-axis has measure
zero, then E is a horizontal line segment.

Proof. To prove this theorem we show that the projection of
E on the i/-axis is of measure zero.

One observes 3fR{z) C {1} implies &(z) Π {eiβ: 0 < \θ\ < π/2} = 0
and therefore for every point of E — K the set &(z) cannot be the
entire circle {eiθ: 0 <; θ <£ 2π}. By the first fundamental theorem on
contingents of plane sets ([2], p. 266), at every point of E — K, ex-
cept those of a set L of linear measure zero, the set &(z) is either
a doubleton {eia, —eia} or a semicircle {eiθ: a <̂  θ <; a + π). Since
SfR{z) £ {1} on E - K, it follows that for each z in E - (K U L),
the set £2f(z) is either the doubleton {i, —i}, the doubleton {1, —1},
or the arc {eiθ: π/2 ^ θ ^ Sπ/2}.

The second fundamental theorem on contingents of plane sets
([2], p. 267) asserts that M = {z e E - (K U L): &{z) = {1, -1}} has
a projection on the y-axis of measure zero. Thus, to complete the
proof we now show that the set N = E — (K U L U M) is countable.
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For each ze N, SfR{z) — 0 and hence there is a rational number
r(z) and a corresponding closed half-disk

D(z, r{z)) = {ζ: -ττ/2 ^ arg (ζ - z) ̂  π/2 and |ζ - z\ ^ r(z)}

such that D(z, r(zj) f] E = {z}. Also, for each rational number r the
set Nr = {z 6 iSΓ: r(«) = r} is an isolated set, and the countability of
N is established.

In closing we note that in view of its proof, the theorem above
remains true when the hypothesis &R{z) £ {1} is replaced by any
condition which guarantees that if zeE — K, then either (i)
&R(z) = 0 or (ii) 1 e 2f{z) and &(z) is a subset of either {eiθ: 0 ^
ί ^ π} or {eiθ: π ^θ ^ 2π).
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