
PACIFIC JOURNAL OF MATHEMATICS
Vol. 90, No. 2, 1980

HOLDER ESTIMATES FOR THE d EQUATION WITH
A SUPPORT CONDITION

FRANK BEATROUS, Jr.

A Holder estimate for solutions to au — a in weakly pseudo-
convex domains is obtained when the restriction of a to the
boundary vanishes near the set of degeneracy of the Levi form.
Applications are given to holomorphic approximation and divi-
sion problems.

l Introduction* Holder estimates for the equation du = a in
a strictly pseudoconvex domain D were first obtained by Kerzman
[8] and Lieb [11], and were later sharpened by Romanov and
Henkin [16]. In the weakly pseudoconvex case, analogous results
were obtained by Range [15] by assuming that the support of is a
bounded away from the set of boundary points were the Levi form
degenerates. The argument used there requires the additional
hypothesis of existence of a Stein neighborhood basis for D, which
in general may not exist (see Diederich and Fornaess [3]). The
hypothesis of existence of Stein neighborhoods was removed by
the author [1] by using the results of Kohn [10] concerning boundary
regularity of 9 in weakly pseudoconvex domains to construct a
global kernel of the Grauert-Lieb type (see [4]). In the present
work this approach is refined in order to relax the support condi-
tion on a. In particular, we obtain a Holder estimate for solutions
to du = a whenever a\dD vanishes near the set of degeneracy of
the Levi-form. We remark that a simpler proof based on local
solution operators is possible if one imposes a more stringent sup-
port condition on a (see Beatrous and Range [2]).

To facilitate the formulation of the main theorem, we introduce
the following notation. If D is a smooth, bounded, pseudoconvex
domain, we denote the set of strictly pseudoconvex boundary points
by S(D), and we set W(D) = dD\S(D). If N is a neighborhood of
W(D), let Z&(D) denote the set of 3 closed (0, q) forms a of class
C1 on D which extend continuously to D with a\dD[ΛN — 0. Set
Zq(D) = U Z$(D) where N runs over all neighborhoods of W(D).
Our main result is the following.

THEOREM 1.1. Let D be a bounded, pseudoconvex domain in Cn

with a smooth boundary. Then for each q ^ 1 there is an operator
Eq: Zq(D) —> Zq~\D) with d(Eqά) = a. Moreover, for any neighbor-
hood N of W(D) there is a constant CN such that the following
estimate holds for aeZq

N(D):
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\{Eqa){z') - {Eqά){z")\ ^CN\\a\\D\z' - z"\*

for all z\ z" e D.

Here || 1̂  denotes the sup norm on D.
The theorem will be proved by constructing an integral solution

operator in § 2 and then estimating the kernel in § 3. In § 4 we
give some applications concerning holomorphic functions with con-
tinuous boundary values.

2* The solution operator* The construction of a solution
operator will require a special defining function for the hypersur-
face S(D), which we now construct. Let τ be an arbitrary defining
function for the domain D. The special defining function will be
of the form

p(z) - τ(z) exp (Φ(z)τ(z))

where Φ is a smooth, positive function in a neighborhood of S(D).
Direct computation shows that for zeS(D) the Levi form of p has
the form

; t) = :^τ(z\ t) + 2Φ(z)

Choose Φ to be a smooth, positive function on S(D) which increases
so rapidly as z approaches W(D) that J*fp(z;t)>0 for every zeS(D)
and every t e Cn\{0). This is possible since the first term in (1) is
strictly positive where the second term vanishes. Now extend Φ
to be a smooth, positive function in a neighborhood of S(D). Then
by continuity there is a neighborhood U of S(D) on which p is
strictly plurisubharmonic and Vp Φ 0.

The defining function p will now be used to construct a smooth
family of holomorphic support functions for S(D) (cf. Henkin [6],
Lemma 2.4). Let F(ζ, z) denote the Levi polynomial associated with
p, i.e.,

F(ζ,z)= -Z^-^
1 dZ

- Σ

THEOREM 2.1. Let k be a positive integer. There are a neigh-
borhood U of S(D), a smooth, positive function r on U, and a rέ?k

function Φ on U x D with the following properties:
( i ) For each ζ e U, Φ(ζ, •) e A\D) - r^\D) n <?(D);
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(ii) G(ζ, z) = Φ(ζ, z)/F(ζ, z) is a nonvanίshing ^ k function on
{(ζ,z)eUxD:\ζ-z\^r(ζ)};

(iii) Φ(ζ, z)Φθ if\ζ-z\ ^ r ( ζ ) ;
( i v ) R e . F ( ζ , z) > p(ζ) - p{z) + r ( ζ ) | ζ - z\> if | ζ - z\ ^ r ( ζ ) .

Proof By expanding p in a Taylor series about ζ e U, and
using the fact that p is strictly plurisubharmonic, one obtains a
smooth, positive function d on U such that ReJFXζ, z) > p(Q — p(z) +
5(C) IC - z|2 whenever ζ e [ / a n d θ < | ζ - z | < δ(ζ). (Here C/denotes
the neighborhood of S(JD) on which ^ is defined.)

Choose a smooth function X(ζ, z) on ?7 x C% with 0 <̂  X <; 1 such
that Z(ζ, -) = 0 outside of Sa(C)(ζ) and %(ζ, 0 = 1 on 51/2β(C)(ζ)._ For
each ζ 6 Z7, define a (0, 1) form ac on D by setting aζ(z) = 3«(Z(ζ,
«)(F(ζ, )̂)~1) if F(ζ, «) Φ 0, and αc(«) - 0 if F,{z) = 0. Then, after
shrinking C7 if necessary, the map ζ H^ αζ is a ^°° map of ί7 into
^7o,i)(D), and clearly 3,αζ(2;) = 0 for each ζ e U. Thus we can find
solutions in D to the equation dzuc(z) = αζ(z). Moreover, by using
the solution operator for the 3-Neumann problem (with an appro-
priate weight function) and the Sobolev estimates of Kohn [10],
the solution u: can be chosen so that uζ e r^?k{Ό) for each ζ and
the map (ζ^uζ): U->rt?\D) is of class ^°°.

Define meromorphic functions mζ on D by setting mζ(z) = Z(ζ,
z)F(ζ, z)~ι — uζ{z), and choose a smooth, real valued function τ on
U such that Re mζ(z) > τ(ζ) for 2 6 D\BHOn{Q and Re (mζ(z) - F(ζ,
z)-1) > r(ζ) for z e D Π Bί(C,(C). Set Φ(ζ, z) - (mc(«) - r(ζ))-1. Then,
after shrinking U once again, Φ is a ^ f c function on U x D.
Moreover, writing

φ(ζ z) -

for z near ζ, one sees that Φ satifies (i)-(iv) for an appropriately
chosen positive function r.

For the kernel construction, it will be necessary to express the
function Φ in the form

F(ζ, z)(mζ(z) - F(ζ, z)-1 - τ(ζ))

(2) Φ(ζ, z) = Σ Pi(

where Px, , P» are sufficiently smooth on U x D and holomorphic
in 2. One first observes that by property (ii) of Theorem (2.1),
this division problem can be solved locally in z and ζ. Next, one
uses once again the result of Kohn [10] on boundary regularity of
3 to pass from local to global in z. This step is rather technical,
and, since the argument is virtually identical to that used by
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Θvrelid in [14], it will not be given here. Finally, since we only
require smoothness in ζ, we can pass from local to global via a
partition of unity.

We are now ready to construct the solution operator. We will
use the formalism of Harvey and Polking [5]. Let 2?(ζ, z) denote
the Bochner-Martinelli kernel:

B(ζ, z) =
| ζ - z | 2

where (ζ - z) dζ = Σ (C - «,)#, and d(ζ -z) dζ =
Then for any (0, q) form α of class <^71 on Z) we have (see [5] or
[13]) the Bochner-Martinelli formula

a(z) = d\ B{ζ, z) A α(ζ) + ( B(ζ, z) A 3α(ζ)
JD )D

+ ί B(ζ, z) A α(ζ) ,

where it is to be understood that all differentials involving the z
variable are to be moved to the right before performing the inte-
gration.

Set P = (Pi, , Pn) where Pl9 - , Pn are the functions from
(2). Then the Henkin kernel (see [5]) is

H(ζ, z) = (2πt)--^p~ A ^-=^

. ^ ι υJr cLL, * 0>(ζ — Z/ CίL,

where 3 acts coordinatewise on P = (Plf , P J . Our solution
operator for the 9 equation is then defined by

( 4 ) (Eqa)(z) = ί S(ζ, a;) Λ α(ζ) + ( H(ζ, z) A α(C)
JZ) J3Z)

where aeZq(D) for some g ^ 1.

THEOREM 2.2. For any a eZQ(D) with q >̂ 1 we have dEqa = a
in D.

Proof. By the Bochner-Martinelli formula we have

d(Eqa)(z) = a(z) - ί B(ζ, z)/\a{Q - [ dzH(ζ, *)Λa(ζ)
JdD JdD

( 5) = α(z) -• ( B(ζ, z) A α(ζ) - ί 3iϊ(ζ, «) Λ α(ζ)
J3D J3Z)

+ ί (3ζίί(ζ, 2)) Λ α(ζ) .
J 3D
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For fixed zeD, let φ(ζ) be a cut off function which vanishes
near W(D) and near the singularities of H(-,z)f and which is
identically 1 near supp (cc\3D). Then for the last term on the right
in (5) we have

( 3c#(ζ, z) A α(ζ) = ( 3c[9>(ζ)iϊ(ζ, z) A α(ζ)]
JdD JdD

= 0 .

The first equality follows since da = 0, and the second from Stokes'
formula. Moreover, one can compute from (3) (see [5]) that

) L

Since P is holomorphic in z, the second term on the right is of
type (n, n — 1) in ζ. Thus we obtain the formula

ί dH(ζ, z) A α(ζ) = - 1 B(ζ, z) A α(ζ)
J 3Z> J 3D

and it follows from (5) that

d(Eqa)(z) = a{z) .

3* Estimates for the kernel* In this section we fix a neighbor-
hood N of W(D) and we restrict our attention to forms in Z£(D),
q :> 1. First, we remark that Holder 1 — ε estimates for the
Bocher-Martinelli kernel are well known (see Kerzman [8]), so in
order to complete the proof of Theorem 1.1 it will suffice to
estimate

= \ H(ζ,z)Aa(ζ).
JdD

Thus, by Lemma 4 of Romanov and Henkin [16] it will suffice to
obtain the estimate

(6) \Fv(z)\^CN\\a\\D\τ(z)\-1/2

for all z eD, where τ is some fixed defining function for D.
Choose neighborhoods iNΓ and N" of W(D) with JNP'cciV'cciNΓ,

and let τ be a defining function for D which agrees with p near dD\N"
(where p is the defining function for S(D) from the preceding
section). Let U, r and F be as in Theorem 2.1 and assume, by
shrinking U, that τ\ϋW,, = p\UXN,,. Set U' = (UΓiD)\N'. Then for
ζ 6 Uf, r(ζ) is bounded below by a positive number ε. Moreover, by
shrinking U' and choosing ε sufficiently small we can choose a
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positive constant 7 such that (c.f. [16] Lemma 1)
(7) | G ( ζ , s ) | ^ γ for ζeU' and \ζ - z\ ^ ε;
(8) |Φ(ζ, z)\^7 for ζeU' and | ζ - s | ^ ε ;
(9) ReF(C, z)^p(ζ) - < φ ) + 7 | ζ - s | 2 for ζ e t Γ and |ζ - z\^ε.

The estimate (6) is now easy if z is bounded away from 3D\N.

LEMMA 3.1. For any σ > 0 there is a positive constant Cσ

such that \Fv(z)\ £ Cσ\\a\\D whenever zeN' or dist(z, 3D) :> σ.

Proof. It follows from (7), (8) and (9) that |Φ(ζ, z)\ is bounded
below by a positive constant whenever z is as in the statement of
the lemma and ζ e 3D\N. Thus, since a vanishes on 3D Π N9 the
estimate follows by differentiation under the integral sign.

Choose σ e (0, ε] sufficiently small that ζ e U' whenever ζ e D\N'
and dist (ζ, 3D) < 2σ. Then by the preceding lemma it suffices to
verify (6) when z e Uσ = {z e D\NΊ dist (z, 3D) < σ}. Following
Romanov and Henkin, we set Φ(ζ, z) — (F(ζ, z) — 2p(ζ))G(ζ, z) for
z e Uσ and | ζ — z \ ̂  o . Let J?(ζ, 2) be the kernel defined by replac-
ing Φ with Φ in (3). Using (7)-(9), one easily verifies that for
zeUσ

(10) I Vv (z) I £ const. 11 a \ \D + \ Fvγ{z) \

where

vι(z) = \ H(ζ,z)Λa(Q.
Jd(D(]Bσ(z))

Thus, to complete the proof, it will suffice to estimate [Fv^z)]. By
Stokes' formula we have (since da = 0)

3ζff(ζ,^)Λα(Q.
Df\Bσ(z)

By direct computation, one finds that each coefficient of 3ζH has
one of the following forms:

, z) (ζj — Zj)a(ζ9 z) ^(C, z)

Φ(ζ, zY I ζ - z \2n~2p Φ(ζ, z)p+11 ζ - 212*-2* Φ(ζ, ^ ) p I ζ -

or

(ζ f — Zj)(ζj — Zj)a(ζ, z)

Here 1 ^ i, j ^ n, 1 ^ p <^ n — 1, and α(ζ, 2) denotes some smooth
function of ζ and z.

Differentiating the coefficients of dζf?(ζ, z) with respect to z, one
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finds that for zeUσ

(11) I Vv\(z) I ̂  const. 11 a \\D Σ If + If + If

where

I
\Φ(ζ,z)\p\ζ

a n d

d V- ί 5-> I I C — z \ M - A μ - 1

The estimate

If S const. \p{z)\~m

can now be obtained from (7)-(9) as in Romanov and Henkin [16].
Thus, combining (10) and (11) we have the estimate (6). This com-
pletes the proof of Theorem 1.1.

4* Applications* In this section we give two applications of
Theorem 1.1 which generalize certain well known results for strictly
pseudoconvex domains.

The problem which originally motivated this investigation was
that of approximating a given function in A(D) = ^Φ) Π #(D) by
functions which extend holomorphically across the boundary. An
example due to Diederich and Fornaess [3] shows that this may not
be possible if D is only assumed to be weakly pseudoconvex. Ho-
wever, Theorem 1.1 implies the following generalization of the
classical result for strictly pseudoconvex domains.

THEOREM 4.1. Suppose that D is a smooth, bounded pseudo-
convex domain in Cn and that feA(D). Then f can be uniformly
approximated on D by functions in A(D) which extend holomor-
phically across S(D).

This result has appeared previously in Beatrous [1] and Beatrous
and Range [2], and the proof will not be repeated here. The same
result had been proved earlier by Range [15] under the additional
hypothesis of existence of a Stein neighborhood basis for D, but
this earlier result did not apply to the example of Diederich and
Fornaess [3].
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For the second application we consider the following division
problem. Let D be a domain in Cn and let p be a point in D.
Denote by MP(D) the maximal ideal of A(D) consisting of functions
which vanish at p. We wish to show that MP(D) is generated
(algebraically) by {zλ — plf , zn — pn}. In the strictly psudoconvex
case this problem was solved by Kerzman and Nagel when n = 2
and by Lieb [12] and 0vrelid [14] in higher dimensions. If D is a
weakly pseudoconvex domain in C2 we obtain the following result.

THEOREM 4.2. Suppose that D is a smooth, bounded, pseudo-
convex domain in C2 and that p is a point in D. If there is a
complex hyper plane through p which does not meet W(D) then MP(D)
is generated by {z1 — pl9 z2 — p2}.

Proof. By translation and rotation of coordinates we may
assume that p = 0 and that W(D) n fo = 0} = 0 . Let / be a func-
tion in A(D) satisfying /(0) = 0. We must construct functions f
and f2 in A{D) such that / = z,f + z2f2.

Choose a small poly disc Uo of radius ε about 0 with Uo n W(D) =
0 and holomorphic functions f? and /2° on Uo with / = zγf} + zjl
in C70. For j = 1, 2, set Uό = {|̂  | > ε/2}, and define /? = δj^-1 on
Uά. Then / = zj( + «2// on i7, . For 0 S i, 3 ̂  2 we have (// -
//K + (Λ* + fί)z2 = 0 on C7, n lΓy. Set ̂  = (/2* - fbzϊ^ifl- fi)zV
on ί7, n t/y.

Choose smooth functions X3 with compact support in Uό such
that 0 ̂  lό ^ 1, Zo + X, + Z2 = 1 on D, and Z ^ l i n a neighborhood
of W(D). Set flry = Σu%i9n on ϋy τ h ? n ^ - gs = giS on U, Π i/if

so we can define a (0, 1) form a on D by setting a = 3̂ ^ on £7,-.
Moreover, since Zx = 1 near W(D), the support of a is bounded
away from W(D). Thus, by Theorem 1.1, there is a function u e
^°°(D) Π ̂ ( S ) with 3u = α. We can now define the functions f
and /2 in J7€ Π D by

/i = ft + (flr* ~

and

One checks easily that f and f2 are well defined functions in A(D)
and that ^ + z2f2 = f
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