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HOLDER ESTIMATES FOR THE ¢ EQUATION WITH
A SUPPORT CONDITION

FRANK BEATROUS, Jr.

A Héilder estimate for solutions to ox=a in weakly pseudo-
convex domains is obtained when the restriction of a to the
boundary vanishes near the set of degeneracy of the Levi form.
Applications are given to holomorphic approximation and divi-
sion problems.

1. Introduction. Holder estimates for the equation du = « in
a strictly pseudoconvex domain D were first obtained by Kerzman
[8] and Lieb [11], and were later sharpened by Romanov and
Henkin [16]. In the weakly pseudoconvex case, analogous results
were obtained by Range [15] by assuming that the support of is «
bounded away from the set of boundary points were the Levi form
degenerates. The argument used there requires the additional
hypothesis of existence of a Stein neighborhood basis for D, which
in general may not exist (see Diederich and Fornaess [3]). The
hypothesis of existence of Stein neighborhoods was removed by
the author [1] by using the results of Kohn [10] concerning boundary
regularity of 0 in weakly pseudoconvex domains to construct a
global kernel of the Grauert-Lieb type (see [4]). In the present
work this approach is refined in order to relax the support condi-
tion on «. In particular, we obtain a Holder estimate for solutions
to ou = @ whenever al;, vanishes near the set of degeneracy of
the Levi-form. We remark that a simpler proof based on local
solution operators is possible if one imposes a more stringent sup-
port condition on a (see Beatrous and Range [2]).

To facilitate the formulation of the main theorem, we introduce
the following notation. If D is a smooth, bounded, pseudoconvex
domain, we denote the set of strictly pseudoconvex boundary points
by S(D), and we set W(D) = oD\S(D). If N is a neighborhood of
W(D), let Zi(D) denote the set of 4 closed (0, q) forms a of class
C' on D which extend continuously to D with al;;ny = 0. Set
ZY(D) = U ZHD) where N runs over all neighborhoods of W(D).
Our main result is the following.

THEOREM 1.1. Let D be a bounded, pseudoconvex domain in C*
with a smooth boundary. Then for each q = 1 there is an operator
E,;: ZYD)— ZY(D) with 3(E,a) = a. Moreover, for any mneighbor-
hood N of W(D) there is a constant Cy such that the following
estimate holds for ac Z4(D):
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|(E,)(@) — (E,a)@")| < Cyllallp|z’ — 2"

for all ', 2" €D.

Here || ||, denotes the sup norm on D.

The theorem will be proved by constructing an integral solution
operator in §2 and then estimating the kernel in §3. In §4 we
give some applications concerning holomorphic functions with con-
tinuous boundary values.

2. The solution operator. The construction of a solution
operator will require a special defining function for the hypersur-
face S(D), which we now construct. Let ¢ be an arbitrary defining
function for the domain D. The special defining function will be
of the form

0(z) = 7(z) exp (P(z)7(2))

where @ is a smooth, positive function in a neighborhood of S(D).
Direct computation shows that for z € S(D) the Levi form of o has
the form

2

(1) Fmt) = 2 t) + 200 |5 L@

0

Choose @ to be a smooth, positive funection on S(D) which increases
so rapidly as z approaches W(D) that £, (z;t)>0 for every ze S(D)
and every teC"\{0}. This is possible since the first term in (1) is
strictly positive where the second term vanishes. Now extend @
to be a smooth, positive function in a neighborhood of S(D). Then
by continuity there is a neighborhood U of S(D) on which p is
strictly plurisubharmonic and 7p # 0.

The defining function o will now be used to construct a smooth
family of holomorphic support functions for S(D) (cf. Henkin [6],
Lemma 2.4). Let F({, z) denote the Levi polynomial associated with

o, i.e.,

FG 0= —25 L0 - 0)
5 0P )z — L
5 5O — L = 6.

THEOREM 2.1. Let k be a positive integer. There are a neigh-
borhood U of S(D), a smooth, positive function r on U, and a &*
function @ on U x D with the following properties:

(i) For each Lc U, 0(, -)e A¥D) = *D) n &(D);
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(ii) G, 2) = 0K, 2)/F(C, 2) is a nonvanishing " function on
{€,2)eUx D:|¢ — 2| = 7O}

(iii) O, 2) =0 if | —z| = r{);

(iv) ReF (@, 2) > p) — p() + Q)| —z[* if | — 2| 7.

Proof. By expanding o in a Taylor series about (e U, and
using the fact that o is strictly plurisubharmonie, one obtains a
smooth, positive function ¢ on U such that Re F({, z) > o({)—p(z) +
0(C)|C — z|* whenever {e U and 0 < |{ — 2| < 6((). (Here U denotes
the neighborhood of S(D) on which p is defined.)

Choose a smooth function X({, 2) on U X C* with 0 < X < 1 such
that X(, -) = 0 outside of B;({) and X, -) =1 on B, (). For
each (e U, define a (0,1) form a, on D by setting a.(z) = 0,X(,
2)0FE, =) if F 2 +0, and a,(z) =0 if F.(z) =0. Then, after
shrinking U if necessary, the map {+—a, is a &~ map of U into
&% (D), and clearly 0,a.(z) =0 for each {e U. Thus we can find
solutions in D to the equation d,u.(z) = a.(z). Moreover, by using
the solution operator for the 9-Neumann problem (with an appro-
priate weight function) and the Sobolev estimates of Kohn [10],
the solution u, can be chosen so that u,ez*D) for each ¢ and
the map ((+ u,): U— @XD) is of class &=.

Define meromorphic functions m, on D by setting m.(z) = X(,
2)F(, 2)7* — u,(2), and choose a smooth, real valued function z on
U such that Rem(2) > 7({) for z¢€ D\B,,,(() and Re (m.(z) — F(,
2)™) > () for ze DN By, (£). Set D, 2) = (m(2) — (L)~ Then,
after shrinking U once again, @ is a <* function on U x D.
Moreover, writing

_ F(, 2)
2, 2) 1+ F(C, 2)(m(z) — F(&, 2" — z(0)

for z near {, one sees that @ satifies (i)-(iv) for an appropriately
chosen positive funetion 7.

For the kernel construction, it will be necessary to express the
function @ in the form

(2) 0@, 2) = 2. Pi(C, 2)(&; — 2;)

where P, ---, P, are sufficiently smooth on U x D and holomorphie
in 2. One first observes that by property (@ii) of Theorem (2.1),
this division problem can be solved locally in z and (. Next, one
uses once again the result of Kohn [10] on boundary regularity of
0 to pass from local to global in z. This step is rather technical,
and, since the argument is virtually identical to that used by
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Ovrelid in [14], it will not be given here. Finally, since we only
require smoothness in {, we can pass from local to global via a
partition of unity.

We are now ready to construct the solution operator. We will
use the formalism of Harvey and Polking [5]. Let B((, z) denote
the Bochner-Martinelli kernel:

iy &= D [AC — B)-dC
56, #) = i) 2 g | S
where ({ — 2)-d{ = 3, ({; — 2,)d¢; and d(€ — 2)-dC = Sid(€;—2z;) NdE;.

Then for any (0, ¢) form a of class ' on D we have (see [5] or
[13]) the Bochner-Martinelli formula

a(z) = 5§DB<C, 2) A a) + LB(C' 2) A da(0)
+ |, BG AN,

where it is to be understood that all differentials involving the z
variable are to be moved to the right before performing the inte-
gration.

Set P= (P, -+, P,) where P, ---, P, are the functions from
(2). Then the Henkin kernel (see [5]) is

P-dt , € —72)-dC
] < — 2
“IAP-dl :lf’“l [d(i —2)-dC ]”"’"‘
A gi[ o A [ — z]?
where 0 acts coordinatewise on P = (P, ---, P,). Our solution
operator for the d equation is then defined by

H(E, 2) = @ri)™

(3)

(4) (Ea@ = | BE 2 Aa© + | HE 2 Aa©)

where a € Z%(D) for some q = 1.

THEOREM 2.2. For any a e Z%D) with ¢ =1 we have 0E,a = «
wm D.

Proof. By the Bochner-Martinelli formula we have
(EE) = a@ — | BECDAa© ~ | 3.HE 9 Aa©
(5) —a@) — | BCna© - | 38E 2 Aa@

+ |, GHE D) Aa@ .
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For fixed ze D, let @) be a cut off function which vanishes
near W(D) and near the singularities of H(-,z2), and which is
identically 1 near supp (a|;»). Then for the last term on the right
in (5) we have

[, 3:HE 9 Aa@ = | 3eOHE, 2 Aa©)]

The first equality follows since da = 0, and the second from Stokes’
formula. Moreover, one can compute from (3) (see [5]) that

HE D =BGt (2,”)_%13%2;); : A[ 3P§(’cz);>dc ] :

Since P is holomorphic in 2z, the second term on the right is of
type (n,n — 1) in {. Thus we obtain the formula

|3HG DA a© = - BE 2 Aa©

and it follows from (5) that
A(E,0)(z) = a(z) .

3. Estimates for the kernel. In this section we fix a neighbor-
hood N of W(D) and we restrict our attention to forms in ZiD),
q=1. First, we remark that Holder 1 — ¢ estimates for the
Bocher-Martinelli kernel are well known (see Kerzman [8]), so in
order to complete the proof of Theorem 1.1 it will suffice to
estimate

Lo (PYNR

Thus, by Lemma 4 of Romanov and Henkin [16] it will suffice to
obtain the estimate

(6) [Fo@)| = Cyllellp|z(2)|~"

for all ze D, where 7 is some fixed defining function for D.

Choose neighborhoods N’ and N of W(D) with NccN'CCN,
and let 7 be a defining function for D which agrees with p near 6D\N”
(where o is the defining function for S(D) from the preceding
section). Let U,r and F be as in Theorem 2.1 and assume, by
shrinking U, that z|py~ = Olpy. Set U’ = (UN D)\N'. Then for
CeU’, r(€) is bounded below by a positive number ¢. Moreover, by
shrinking U’ and choosing ¢ sufficiently small we can choose a
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positive constant v such that (c.f. [16] Lemma 1)

(7) 1GE 2)| =z~ for Le U’ and |[{ —z| Z ¢

(8) |0, 2)| =~ for LeU’ and [ — z| = ¢;

(9) ReF( 2) = o) — p(@)+7|{~2[" for Ce U’ and |{ — z|<e.
The estimate (6) is now easy if z is bounded away from 4D\N.

LEMMA 3.1. For any o >0 there s a positive comstant C,
such that |Fv(z)| < C,||a|l, whenever ze N’ or dist(z, 0D) > o.

Proof. It follows from (7), (8) and (9) that |®(, z)| is bounded
below by a positive constant whenever z is as in the statement of
the lemma and {€oD\N. Thus, since a vanishes on D N N, the
estimate follows by differentiation under the integral sign.

Choose o0 € (0, €] sufficiently small that { € U’ whenever { e D\N'
and dist ({, D) < 20. Then by the preceding lemma it suffices to
verify (6) when zeU, ={zeD\N':dist (¢,0D) < g}. Following
Romanov and Henkin, we set @, z) = (F(&, 2) — 20()G(, z) for
zeU, and [ —z| < 0. Let H(, 2) be the kernel defined by replac-
ing @ with @ in (3). Using (7)-(9), one easily verifies that for
ze U,

(10) [Fv(2)| = const. [[a]l, + [Fv,(z)]

where

0,(2) = S HE, 2) Aal@) .

3(DNB,(2)

Thus, to complete the proof, it will suffice to estimate |/v,()|. By
Stokes’ formula we have (since da = 0)

w@=| = AN

DN Bg(z)

By direct computation, one finds that each coefficient of 4.4 has
one of the following forms:

G-z _ G—EeGs a2 ,
OC 21— s | BC A -z T B I — s

or

€ — 2 — 29a(C, 2)
B, 2 [0 — afrr

Here 1<4,j<mn, 1=<p=n—1, and a(, 2) denotes some smooth
function of ¢ and z. s
Differentiating the coefficients of d.H({, 2) with respect to 2, one
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finds that for ze U,

11) Pu@)| < const. [|ally 5 I7 + I7 + I
=1
where ‘
I? = S _ av
D Byl2) |¢(C, 2)|P|E — z|rh
1r = g av
DnBa(z)Iﬁ(C — 2)[PH|E — z|m ’

and

I:n — S dV
3 = = .
DN B,(2) i(p(c, z)]p+2lc _ z]z-n—2p—1

The estimate
I? < const. | p(z)|~*

can now be obtained from (7)-(9) as in Romanov and Henkin [16].
Thus, combining (10) and (11) we have the estimate (6). This com-
pletes the proof of Theorem 1.1.

4. Applications. In this section we give two applications of
Theorem 1.1 which generalize certain well known results for strictly
pseudoconvex domains.

The problem which originally motivated this investigation was
that of approximating a given function in A(D) = (D) N &(D) by
functions which extend holomorphically across the boundary. An
example due to Diederich and Fornaess [3] shows that this may not
be possible if D is only assumed to be weakly pseudoconvex. Ho-
wever, Theorem 1.1 implies the following generalization of the
classical result for strictly pseudoconvex domains.

THEOREM 4.1. Suppose that D is a smooth, bounded pseudo-
convex domain in C* and that fe A(D). Then f can be uniformly
approximated on D by functions in A(D) which extend holomor-
phically across S(D).

This result has appeared previously in Beatrous [1] and Beatrous
and Range [2], and the proof will not be repeated here. The same
result had been proved earlier by Range [15] under the additional
hypothesis of existence of a Stein neighborhood basis for D, but
this earlier result did not apply to the example of Diederich and
Fornaess [3].
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For the second application we consider the following division
problem. Let D be a domain in C* and let p be a point in D.
Denote by M, (D) the maximal ideal of A(D) consisting of functions
which vanish at p. We wish to show that M,(D) is generated
(algebraically) by {2, — », ---, 2, — v,}. In the strictly psudoconvex
case this problem was solved by Kerzman and Nagel when n =2
and by Lieb [12] and @vrelid [14] in higher dimensions. If D is a
weakly pseudoconvex domain in C? we obtain the following result.

THEOREM 4.2. Suppose that D 1is a smooth, bounded, pseudo-
convex domain in C* and that p is a point im D. If there is a
complex hyperplane through p which does not meet W(D) then M, (D)
is generated by {2, — p,, 2, — D,}.

Proof. By translation and rotation of coordinates we may
assume that p = 0 and that W(D)N{z, = 0} = @. Let f be a func-
tion in A(D) satisfying f(0) = 0. We must construct functions f
and f, in A(D) such that f = z,f, + z.f.

Choose a small polydisc U, of radius ¢ about 0 with U, N W(D)=
@ and holomorphic functions f? and f? on U, with f =z, + 2,/
in U, For j=1,2, set U; ={|z;] > ¢/2}, and define f/ = diz;' on
U,, Then f=z2f{ +2fi on U;. For 0<i,j<2 we have (fi —
e+ (ff+ fDz.=0o0n U, NU;. Set gy;=(ff — fHe'=(f—fHz'
on U;N U;.

Choose smooth functions X; with compact support in U; such
that 0 <X, <1, 4, + % + X% =1 on D, and X, = 1 in a neighborhood
of W(D). Set g; =>,:X.9;; on U;. Then g, — g, =g, on U,n U,
so we can define a (0,1) form @ on D by setting a = dg; on U,.
Moreover, since X, =1 near W(D), the support of a is bounded
away from W(D). Thus, by Theorem 1.1, there is a function u e
z“(D) N & (D) with du = a. We can now define the functions f,
and f, in U, N D by

fl :fli + (gi - u)zz
and
L= — (9. — w3z .

One checks easily that f; and f. are well defined functions in A(D)
and that z.f, + 2./, = f.
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