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SOME EXPANSIONS INVOLVING BASIC HYPERGEOMETRIC
FUNCTIONS OF TWO VARIABLES

V. K. JAIN

In this paper we obtain expansions of ¢-Appell type of
functions of higher dimensions. These expansions are different
in nature from the ones studies thus far. Transformations and
reducibility of basic double hypergeometric functions are also
discussed.

Burchnall and Chaundy [5, 6] has made a systematic study of
the expansions of the Appell functions. Later on Jackson [8, 9]
defined the g-analogue of Appell functions and made a parallel study
by obtaining g-analogues of most of the results of Burchnall and
Chaundy. Jackson [8; p. 78] had pointed out that it does not seem
possible to obtain simple extensions of the expansions (46)-(51) of
Burchnall and Chaundy [5]. In §3 of this paper we give g-analogues
of five of the results, viz., (46)-(49) and (51) of Burchnall and
Chaundy [5] cited above.

It may be remarked that Andrews [1] had proved that the
g-analogue of Appell’s function F' defined by Jackson [8] is infact
reducible to the basic hypergeometric series ;4,, We show in §4 that
some higher dimensional analogues of double hypergeometric func-
tions could also be reduced to basic hypergeometric series and use
the reduction formula for obtaining some interesting transformations
for double hypergeometric functions. In this sequal we also derive
g-analogues of some of the well known transformations of Appell
functions and discuss their reducibility.

2. Definitions and notations. If we let
[e;9, =1 —a)X —aq)--- (1 —ag"™),
[a;9h =1 and [o;ql. = IO —ag),

then we may define the basic hypergeometric series as

P [an Qoy * 0y Qpis w}
p+1¥Pp+r
bl, b2s Tty bp+r

_ o [ qla - - - [@pes; glug™(—) g7 20
- * 2 ’ q < 1 ’
7=0 [q; q]‘n[bl; q]n ttt [bp+'r; q]n I |

where the series ,.,6,+.(x) converges for all positive integral values
of » and for all xz, except when » = 0, it converges only for |2| < 1.
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350 V. K. JAIN

Further to simplify writing we will abbreviate [a;q], by [a].
whenever there is no confusion regarding the base q.

Next, g-analogues of Appell functions F®, F'®, FF® and F“ were
defined by Jackson [8] as follows:

®[q: b, ¥; ¢; q] = R . M 1 8 L
Plab isn v d = 2 A (el

S [a]m+'n[b]m[b’]nwmy”
22 (gl ddliehieT,

¢®la: b, b'5¢,¢'sw, y; 4] =

®[a, b; o', V'; c; 1q] = & < [a]ulblala’].[b ]2y
e e Ve v dl = 2 B T el

?

#9la, by ¢, sw, s gl = 3 3 mealblacad™s
7=02=0 [q]nlgqlalclnlc’]n
Lastly, we define the generalized basic hypergeometric function lof

two variables as:

q{(ap): (d,); (e,) | @, ¥; q}
(@): (en); (f) 1% 55 &
3 [(a)]mtal (B ]ul(c,)]ats™ymgim/2 im0 +ins2in =11 emn

m=0 n=0 [q]m[q]n[(dt)]m+n[(eu)]m[(f'v)]'n

3. In this section we give the g-analogues of the formulae of
Burchnall and Chaundy (46, 47, 48, 49 and 51 of [5]):

b b —
ab| =3 [l [k 1ol

aq, Y, q}

e abx 5 % s [a’]r[b]r £ (—wy)’q“"'—”
3¢z[ @ b’ cY J l: a :|r
C

(3.1) , 0

ab’

'r:b 'r;b r
Xg{aq a3 bq
L— =

cq*”: yq'; —

0 [a]r[b]r[—;—-]r(cxy)"qrﬂ (r—1)
= [qllcll—2](ab)

r r X . CY
aq”, bq", —q"; =
xsqﬁz[ ’ Y J

oz oy,
ab’ a,b’q ji =

1, —; -

ab
cq2r, ___xq"
ab /25 —3)
s (110} 22| (eamyq
r=0 [q]r[c]h[y]r

a, b, =%y
Y

(3.3) 3¢Z[
¢, 0
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o [—: ag’, bq"; aq’, bg"
g Yq"; —

%9, Yq'; q
L —1 )’

¢ 7 yr/2(6r—3
[—: a, b;a, bz, y; qjl _s [a[r[b],[&—bl(abwy) (e
(3.4) oY L—1) = [q1le)e 1w,
r s g,
X 3¢2[aq » bar, — ?/QJ
g™, 0
and
a.b: %Y a.b: =% - [a]r[b],[ﬁ.] I:%] (cay)rg>rD
2¢1{ ’ ,ab}%[ "7 ab } =3, a r
(3 5) [+ ¢, —% =0 [Q]r[C]r[C]zr[—“x],(ab)’

s r —% . CY
aq’, bq ’ —q;
X s¢2[ Y abj! :

chr, ___xq'r

Proof of (8.1). In view of the g-analogue of Gauss’ summation
theorem [12; 3.3.2.5] we have

_(Z_ _(i_ mn —m —-ﬂ.bq
Gl [ened

(3.6) [C ] = oy D 1men ’
-b— 'm+n ?q

multiplying both sides of (3.6) by

falofol] £ [£] | smyrqeriey
[q]m[q],,[o]m+,,[y]m[%]m

and summing with respect to m and » from 0 to -, we get:

e, [ala[blamgm " [F, 25 v
mZ=0 [q]m[c]m[y]'m 2¢1l: o b J

cq™
. [a],[b}f[i} (—my)yg
=3 a
7=0 [al.[e)..lv],
o [a1ulbe g™ [iq’, L g, y]

3.7

X b
2 lahled T iva T, o

Using the transformation [11]:
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abx
; — | [e, e obz
(3.8) m[“’ b’”}=—e——l:¢1 e |
e [=1. "',

to transform the inner .4, on both sides of (3.7) and simplifying,
we get (3.1).

Proof of (3.2). The g-analogue of Vandermonde’s theorem [12;
3.8.2.7] may be rewritten as:

4 S
| BIORE

b b
On multiplying both sides of (3.9) by

éi[af]m[b]m[i—l [%l, (cx)™yrq™/*m—>

[glnla)le)ms ol —]alab)™

and summing with respect to m and n from 0 to -, we have:

e [alablulor)m gm0 [, 2qmsy
m=0 [q]m[c]m[_—x]m(ab)m 2¢ll:cam b :l

101, < 7 r/2r—1)
(3.10) = i Lal,19] |:a, :|r (czy)'q =, [0q"]u[bq ]u(cw)™gm/2m =142
= gllel[—xl(ab)” = [qluleq™])ul —2q"]n(ab)"

C »rC m

—q —q;Yq

X o] @ b ’
cqm-i-zr

transforming the two .4, in (3.10), using (3.8), we get:

whb | . [a],[b],[i] (cmy)g =
g{ ’ ab’ ab’ }:z @
c: —x; — 1; —; — =0 [QJT[O]ZT[—x]r(a’b)T
D S S il PN L A7) P C D i

m=0 n=0 [Q]M[Q]n[cq2r]m+n[ - xqr]m(ab)m+n
(8.11) [a]r[b]rl: _2_ :L (cary)rg>r—

& [aq71.10q].(cy)"
[ql.[el.[—2).(ab)”  += [ql.[cq].(ab)"

—2
", Y —qt"
x 2¢1{ y :' .

—_ xq"'

iMe



SOME EXPANSIONS INVOLVING BASIC HYPERGEOMETRIC 353

(38.11) gives (3.2), on summing the inner most series by the g-analogue
of Gauss’ theorem.

Proof of (3.3). On the other hand if we start with the g-analogue
of the Saalschiitz summation theorem [12; 3.3.2.2]

[b]m[—] [—] a", 9" gc—b; q

Bl <] " Lo

(3.12)

and proceed as in the proof of (3.1), we obtain:

S [alalblaz"g"" "0 {qu’ %; aqu}
272
n=0  [glalc]albyln oq™, byg™

_ i[a,] [b] [ :] (090?/) qﬂmr_m [aqT]m[bqr]mmmqm/zm+4r—1)

=0 [q] [c]e [bY ], = [qluleq”1ulbya” ]

bq , m+r ayqz'r+m
X 2y .
Cqm+2r bqu+2'r

Transforming the inner ,4, on both sides by the following formula
of Jackson [7]:

5% V2
(3-13) z¢2|:a’ ’ bJ = “&2?51[“ b z:l ’
¢, az a

we get (3.3) on some reduction.

Proof of (3.4). To accomplishes (3.4) we need only to start with

C —-m  y—n _c_.
[?:lwﬁn [a]m[a]n _ qa,q ab’ q
- 3¢2

e g e

instead of (3.12) and proceed along the lines of proof of (3.3).

(3.14)

’

Proof of (3.5). Lastly, starting with (3.9) with b = 1, multiply-
ing both sides by [a].[b]alc/alule/blu(c)"y"q™* ™ [[qlnlglalc]mtol — 2] m(ab)™
and summing with respect to m and »n from 0 to «, we get

_c_ _c_. y a b,—_(m [a,] [b] |:__:| I: :l (cxy)r /2(r—1)
Bl a’ b’ g | ab | =
’ {a J¢ L, ey J D PNEI TR Bk

c
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Cc c
oo i r 2 (20 —1) L, g yqm
X [a’q ]m[bq ]m(cx) q + ¢ {a q, b q; Yq :I .

7= [qlaleq 1l —2q Tm(ab)™ " eg

Transforming the .4, by (3.8), we get:

2¢1[a, b;%}@{a,b;—_@“ﬁ . [al.[0], [ ] [z ilr (cxy) g™
¢

“ J = [q].[e) e[ — ] (ab)

y — &

i pgrim Y
w 5 [0071abq Lu[y]a(em) g 40 { e ab}

r

c

515 I CIN C G N Sy R L B

[4 [4 £y rl2(r—1)
_5 k| 3] [ 3] o 3 laglfbal (e
7=0 [al.[el.[e)s ] — ], (ab)" =0 [ql.lcq*].(ab)"

r —x 1
a"Y; qr

><2¢1L Uy J
_xqf

(8.15) gives (3.5), on summing the inner most series by the g-analogue
of Gauss’ theorem.

4. In this section we would prove g¢-analogues of the trans-
formations between the various Appell functions. In fact we begin
by proving:

c. ¢ .y by|abx ax
== b, ===, =
(4.1) [a]m[bw]wg{ B }:[@] q{a Wz | ¢V q}
[l ba, by €= le:—;by - ==
- b; i) b s T ;
4.2) _ [x]mq{ a, a r, —ay Q}.
c: —; by — 11

Proof of (4.1). If we denote the right hand side of (4.1) by S,
then

Cc o =0 [Q]n[b’y]n[c]ﬂ(b’)“

n

5[] g Ll ](‘”)"@{ o
cq

Transforming the inner ,4, by (3.13) and rearranging the series, we
get
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sofu] g Halrer o5 BREa
T gl 2] by

Now transforming the inner .4, using:

: g e [e e .0
a, b, c; ¢ ab a’ b’ ¢
(4.3) 3¢{ abc:! =11 eg 3P2 eg ’
e, 9 g, a,_bé I_e _b

(which is obtained from [11; (8.3)] by taking the limit as N — o) we
get,

_ [ylfaz]. < la] [bb’] (=ba)rgmn= {aq””,ﬂq b yjt

b’
[y, @ [al.lel.lax],. cq™, axq™

2 i —m b’y 1—-m R!.
= [b'y]. =0 [Q]m[c]m[ax]m 3Ps gbiql—m,o
[+

Next, transforming the inner .4, by [14]

e e .
o5 @ e [ube
(4.4) 24'511: abJ =11 e 3¢z[§j‘_q‘ 0 J ’
e ® b e’

(provided either a, b or ¢ is of the form ¢=¥, N a nonnegative inner,
if only ¢ = ¢~" then |ec/ab| < 1) we have

¢ _ m ym/2(m—1) —m '-ﬂg_
_ bldasl. § | $ ], (b T
byl = [dlulcllaal, ¢

b

c
_ lfael. & [albly" | 99" a5 be
bl 2 Tallellash, 2‘1{ }

cq”, arq”

once again, transforming .4, by (3.13), we get

el & 2 [aleeBllb ey
45 S= Tyl 22 lahldhe,

Lastly, an appeal to
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a, bx, b’ Loz a
$“a: b, b5 c;x, y; 9] = H': y:lssé{a v } ,
%Y bz, b'y
due to Andrews [1], yields (4.1).

One the other hand in order to prove (4.2), we need only rewrite
(4.5) in the form

g = Wllole & [a]nlb]me™ ¢[aq’”, v yJ
byl = lglaleln [ cqm

and transform the inner .4, by (3.13).

It may be observed that the ,4, in (4.1) remains unchanged if
we interchange the roles of x and y and that of b and %’. This
yields us the transformation:

c. ¢ » by |abxr ax,
[abx:\ [b’y]m¢|ia bb” b; x ’ b, ’q:l
o: =5 by == -
c. ¢ . @ aby ay
[“by] [ba ]wg{a Wy e b ’q}
c: —; bx —; = —

which is a g-analogue of a known transformation between two F'®’s
[3; §9.4 (4) and (5)] to which it reduces if we replace a, b, b, ¢ by
¢, ¢°, ¢, ¢ and let ¢ — 1. Similarly we could have obtained from
(4.2) the transformation

[b’y]w,{ a, b;%, v |@, —ay; q}
[yl —; by — L1
(4.6)
_ [bx]wg{ﬂ a, 52, by, —aw;q}
[2]. c: —; bx —;1;1

which is the g-analogue of yet another known transformation be-
tween two F®’s [3] to which it reduces if we replace a, b, o', ¢ by
¢, ¢, ¢, ¢ and let ¢ — 1.

Next, we would prove:

b; & —b'y;
(4.7) [_[ag%]_w?{a v |7 Y q} = ¢%[a: b, b'; ¢, ¢; x, ¥; q]
® lay:e;e' | —;1; —
4.8) _ [a=], |a: b % Y, —bw; q
‘ LY ’
ar:c;e |—;1; —
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’ 14
bb’cmx ; ;_‘L;f_b_y_b .
49) 4 by || 2l g e T T
[l ’
—:¢c —; * lay:e; ¢ 1; —; —
a:b, —b;c, —c ﬂ, —Y; q
¢ . v
—:b%ar, =5 ¢ ay|1; —; —1
(4.10) Wy o
z, Y a,aq: — L, L]y xzyz'tf
— H[ I’ }¢[ 2 b w, x b4 q3 s }
W 0V I L —: bg; g —; —2; —2
(provided a is of the form ¢ %)
and
/ e 4. | ey
(4.11) W{g*@&cm%%%q}=¢{q’hy’q Vi |
q —:¢;¢ —1; —; —1J

(provided ¢c’/q is of the form ¢=7%).
Proof of (4.7-4.8). Rewriting the left hand side in the form

[ay]l. & _[a]a[b].2™ {aq , g,,b' }

[y]oo m=0 [q]m[c]m[ay]m2 ’

¢, ayq™

and transforming .4, by (3.13) we get the right hand side of (4.7),
for proving (4.8) rearranging the series on the right hand side of
(4.7) and transforming the ,4, by (3.138). This reduces to a known
transformation between F'®’s [3; §(9.4)]. It may be pointed out that
(4.7) is a known result due to Upadhyay [13].

Proof of (4.9). Rewrite the left hand side of (4.9) as:

WL 25| v g i,
_ by agq™, by
R A

transforming the ., by (3.138) and rearranging the series, we get

_ [az].. i [a][ }(—bm)mqm/m—ugé[b' c, , aq™; y}

by
[x]w m=0 [q]m[c]M[ax]m ¢, axq

Transforming the .4, by (4.2) and simplifying, we get (4.9). This
result is a g-analogue of a known transformation between two F®’s

[3].
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Proof of (4.10). If we denote the left hand side of (4.10) by S,
then

al. bZ; 2 mxm m/2(m4-1) aqm, c’ —¢; ._yq—’”"
S 3 B glege | ]

P (gt L] g e e

Transforming the .4, by the formula [10; equation 3.1]:

(4.12) @{a’ b, —b; —2 J _ Izl s [a, ag; ¢ 2 ]

b, az  [a2].." " b

and rearranging the series, we get

[y]oo [a]zn?/m [a’qh’; b: _b; —xq_%:]
413 S= .
(415) [ay].. 2 l¢*; ¢’Lle’e; ¢*ls 3¢2Lb2, ax

Once again, transforming the ,4, by (4.12) and simplifying, (4.13)
yields (4.10), which is the g¢-analogue of a terminating version of
[4; 4.7)].

Proof of (4.11). In view of the g-analogue of Gauss’ summation
theorem, we have

—m —a. 4
q ’ q » 7
(4.14) [LIM1I — b
[b]m'l'n 1 1—m—mn
—b_q

Multiplying both sides by [cc'/q)n+al0]m+2"y"/[@]nlallc]alc ], (Where
¢c’/q = ¢) and summing with respect to m and n, we get

’
¢‘2’[3;—: b,b; ¢, ¢ @, u; q}

’

CcC -

[, Blerasam sy en(ygrossscnsen
mTRT2P

fl

[Q]m[Q]n[Q]p[c]mﬂ’[c,]'rﬁ'pqm”

cc’ _
[T:L& +p[b]m+w+pxm+py“+p( - c,)pqu/z /2
n

0 [Q]m[Q]n[Q]p[c]m[c']“_,_pq"mﬂnp

ec’ .
LB [q-"; c'xﬂ ¢ [q-"‘; y}

0 [Q]m[q]n[c]m[c']%q’”"‘ 1Po 1% ,

summing the two .4, we get (4.11), which is g¢-analogue of a
terminating version of a formula [3; Ex. 20(i) p. 102]. Lastly, we

s
v
=]
3
IV
(=1
S
v
<

[q“"]s[%ql‘““’lq“
[gl.[cq™].

|
M

0

=
v
v

0P

K
v

mz0n —_ —_

v
I
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give g-analogues of reduction formulae for Appell’s double, hyper-

geometric function:
@b, y;c|®w, —viq bx, y b, ¢; xy
(4.15) 52{ . ] = H[ J2¢2[ )
-1 - x, cy a, bx

cy:a;a
—:a b-—c-ix——aby'q @
s Yy ’ ’ ’ a b, -2y
(416) g a b ¢ - [z#@{ ’ ” J ,
c: M; — 1; —;1 [_g_y_] c, 0
C (43 o
(—ia, L6, L) g, x;q} [ac,iz, 29 4 o, 0; ¢4 wT
] a c = oPs ac ¢ @
4.17) Ld: —q; —¢q — = — q, —q, —¢, d, dq
: 3 2 2
x(a — ¢)(g — ca) aeq, L, 29, 40, 0; g% o*
Tacd @)L —g) | % ¢ ’
_qz’ q3: —q3, dqy dq2
a:b, —b;c, —clx, —x;¢q
19 ¢[—: b ¢ — = —]

_ [a, aq, be, —bc, beq, —beg; ¢°; @
~ " b, ¢%g, b, 0, 0 '

Proof of (4.15). Rewrite the left hand side of (4.15) in the form

& [blalylae™ | aq™, c; Y
5= mz=“° lqlaley]n * 2[0,, cyq” }

_ Iyl $ [b] ™ ¢[Q"", c; yq”‘}

T eyl A= gl @
(4.19) — [y]oo i [b]‘n[c]n(—xy)“qn/zm—l) 15250[6(]”; —; x] .
[ey].. = [al.[al.
Summing the inner .4, of (4.19) and we get (4.15) which is a g¢-

analoque of [3; §9.5-(7)] to which it reduces if we replace a, b, ¢ by
q°, ¢*, ¢° respectively and let ¢ — 1.

Proof of (4.16). Left hand side of (4.16) may be rewritten as:

" m o m/2(m—1) < i_@_bi m
§— 3 L2l o m{a’ b o }
" [q]m[c]m[_c‘]m

_ yle & [a]u[b].™g™ " [aq’", bq™; y }
B l: aby ] m=0 [Q]m[c]m = Cqm
C oo

cq™
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oo =R

Summing the inner .4, of (4.20) and we get (4.16). It is a g-analogue
of [3; §(9.5)-(5)].

Proof of (4.17). The summation theorem [10]

a, L, —q g q|  [ac qz]n[gg; qﬂ
(4-21) D5 e = a u ’

__q’ 0, _]_-_q1—2n [0]2”
c

could be written in the symmetrical form (on replacing ¢ by cqg™™):

af2]e 2] o

r=0 . .
(4.22) le% ¢*1.L¢% ¢*)a—r
[va“"; qz]n[iql—ﬂ; q2:| (___)nqn/z(n.:,.l)
— a n
¢"l¢*; ¢’l. ’

multiplying on both sides of (4.22) by x2*/[d], and summing with
respect to n form 0 to «~, we get (4.17) (on separating the even
and odd parts on right hand side) on some simplification.

Proof of (4.18). The g-analogue of Watson’s theorem [2] can be
written in the symmetrical form (on replacing b by ¢“*~"/b):

2 ¢ ¢°1.16% ¢°lon_(—=)" _ [6%¢*; @°len
4.23 = ’
D N M T A L R [ N PO N oo N oo

multiplying both sides of (4.23) by [a]..2* and summing with respect
to n from 0 to -, we get

< n 2 2; § r bz; 2] n-—r(—)T
Za”xzz[c L.l qu
2 R e e
_ |:a: aq, bC, —"bcr bcq, _bcq, qz; xzi)
S b%q, c*q, b%c* 0, 0 )

(4.24)

But, since

516 LY latao (=) _
';—0' [q]r[q]2n+1—r[cg]r[b2]2n+1-—r ’

therefore (4.24) yields
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[0 q2] [b2 2]n~r(~_)r
(4.25) Zl b Z 7 o -
| - [a,aq,bc’_—bc’bcq,-—bcq;qz;x2J
— 6Ps bzq’ C2q, bzcz’ 0’ O .

Now, rearranging the series in left hand side of (4.25), we get (4.18),
(4.17) and (4.18) are the g-analogues of (4.2) and (4.4) of [4] respec-
tively.

I am grateful to Dr. Arun Verma for suggesting the problem
and for his helpful discussions during the preparation of this paper.
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