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THE EQUATIONS 4u = Pu(P =z 0) ON RIEMANN SURFACES
AND ISOMORPHISMS BETWEEN RELATIVE
HARDY SPACES

TAKEYOSHI SATO

It has been demonstrated by M. Nakai that the Banach
spaces PB (the space of bounded solutions on R of the equa-
tion du=Pu, P>0) and HB (the space of bounded harmonic
functions on R) are isometrically isomorphic whenever the
condition

S P(2)G(z,wo)dxdy < + o0
R

is valid for some point w, in R (z=x+1iy). Here, G(z, w) is
the harmonic Green’s function on R. In this paper we shall
show, under the preceding condition that the Hardy space
H?, 1<p<+ oo, of harmonic functions on a hyperbolic Riemann
surface R is isometrically isomorphic to the relative Hardy
space PH? of quotients of solutions of 4u=Pu by the P-ellip-
tic measure w of R.

1. Introduction. Throughout this paper, let R be a hyperbolic
Riemann surface. We consider a density P on R, that is, a non-
negative Holder continuous function on R which depends on the
local parameter z =« + 7y in such a way the partial differential
equation

1.1) du=Pu, 4=3oat+ &oy:,

is invariantly defined on B. Let P=*= 0 on R. A real valued funec-
tion w is called a P-harmonic function (or P-solution) in an open set
U of R, if v has continuous partial derivatives up to the order 2
and satisfies the equation (1.1) on U. The totality of bounded P-
harmonic functions on R is denoted by PB. Then, PB is a Banach
space with the uniform norm

(1.2) Jull = sup lu(2)] .

Also, HB is the Banach space of the totality of bounded harmonie
functions on R with the uniform norm (1.2).

Many works ([5, 6, 11, 12 and 14] among others) were done on
the comparison theorem, that is, to compare the spaces PB for
different choices of P. For example, in 1960 ([11]) it was proved
that, if two densities P and @ on R satisfy the condition
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9 | 1PE - @@IE"6, w) + 6%, wdady < +oo

for some points w, and w, in R, then Banach spaces PB and QB are
isometrically isomorphic, where G*(z, w) and Gz, w) are Green’s
functions of B with pole w associated with the equations (1.1) and
du = Qu(Q = 0) respectively. Here, in particular we consider the
case @ =0 on R. In this case we can conclude that under the
assumption

(1.4) |, P@GE, wdady < + <=

for some point w, in R, the Banach spaces PB and HB (=QB, Q =0)
are isometrically isomorphic, where G(z, w) is the harmonic Green’s
function of R with pole w in R.

Let a pair (R, P), P = 0, be hyperbolic. Then there exists the
positive P-solution w on R which takes the constant 1 at the ideal
boundary of R, which we call the P-elliptic measure of R. The P-
elliptic measure w plays a role somewhat analogous to that played
by the constant 1. A w-P-harmonic function is a quotient of a P-
harmonic function by the P-elliptic measure w. The relative Hardy
class PH2, 1 < p £ + o, of w-P-harmonic functions in R is defined
by the way analogous to that of Hardy class H” of harmonic func-
tions on R. We are interested in the comparison problem of Banach
space structures of PHZ and H®. In this paper, we shall give the
theorem: under the assumption (1.4) the Banach spaces PH? and H?,
1 < p £ + 0, isometrically isomorphie.

Let 4, and 4, are the sets of minimal boundary points of Martin
and P-Martin compactifications, respectively. And, let X and X, be
the harmonic measure on 4, and the P-elliptic measure on 4,
respectively. Since L. L. Naim [9] proved that H? and PH?,
1 < p £ + oo, are isometrically isomorphic to Banach spaces L*(4,, X)
and L*(4,, X») respectively, by constructing a measurable trans-
formation defined almost everywhere on 4, into 4, we shall
investigate a relation between X and X, under the assumption (1.4),
and so, we can find an isomorphism from PH? onto H?, 1 < p < +co.

2. Preliminaries. In 1941 Martin [7] introduced a compacti-
fication in the investigation of nonnegative harmonic functions.
Nakai [10] extended the Martin theory to the setting of P-harmonic
functions. The results of these theories were established by Hervé
[4] in the setting of Brelot’s axiomatic potential theory. We shall
use extensively the Martin compactification R* and the Nakai’s P-
Martin compactification R} of R. We denote by 4, (resp. 4,) the
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set of minimal points of R} — R (resp. R* — R) and by K? (resp.
K,) the associated Martin kernel of a € 4,, (resp. be 4,) with pole z,.
And, let

K*(z, a) = Ki(2) , zeR and aed,,,
and
K(z, b) = Ky(2) , z€R and bed,.

Let P be a density on R which is not constantly zero on R.
Almost every theorem in this paper will be proved under Nakai’s
integral condition:

@.1) SR P(2)G(z, w)dwdy < + oo

at some point w, in RB. If this condition holds at some point w, of
R, then it does at all points of B by Harnack’s inequality.

We state the definition of P-elliptic measure from the work of
H. Royden [14]. By a compact region we mean a connected open
set whose closure is compact and whose boundary is composed of
finite number of analytic curves. Let {R,} be an exhaustion of R,
i.e., a sequence of compact regions such that B,cR,;, and R =
Uo. R,. We define the function w, to be the P-solution in B, which
is identically one on o0R,. For P=* 0 we have 0 < w, < 1. Since
the maximum principle implies that the functions w, form a mono-
tone decreasing sequence of positive P-solutions, this sequence con-
verges uniformly on each compact set in R to a nonnegative P-
solution w, which is called the P-elliptic measure of R.

The P-elliptic measure w is either identically zero or else every-
where positive. In the second case we say that the pair (R, P) is
hyperbolic provided P = 0.

The P-elliptic measure w may be characterized as the largest
P-solution which is bounded by 1.

For the P-elliptic measure w of R, there exists a unique measure
X» supported by 45, such that

(2.2) w(z) = SA K%z, a)dXx(a) , zeR,
Pl
which is called the P-elliptic measure on the P-Martin boundary.
And, the harmonic measure is denoted by X, that is, the measure

which represents the constant funetion 1 and is supported by 4;:

1= L Kz, b)dX(b), zcR.

DEFINITION 2.1. We introduce the set 45, of point a in 45, such
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that
(2.3) SR P(2)G(z, w)K"(z, a)dady < -+ oo

for some point w, in R, and hence for every point in R.

DEFINITION 2.2. We introduce the set 4/, of points b in 4, such
that

|, P@GE, w)K(, bidedy <+
for some point w, in R.
LEMMA 2.1. Let u be a positive P-solution on R such that
(2.4) SR P(2)G(z, w)u(z)dedy < +

for some point w, in R, and let 1 be the canonical measure on Ay,
which represents w:

wz) = SA K*(z, a)ip(a), zeR.
P1
Then, dp, — 4p, is a measurable set of p-measure zero.

Proof. For each positive integer u, let E, be a set of points
a in 4, svch that

|, PeGG, w)K? @, aydedy = n

where w, is a fixed point in R. Since E, is measurable and, by
Fubini’s theorem,

ni(B,) < gﬁm {SR PR)G(z, w)K"(z, a)dady} dgu(a)

I

SRP(z)G(w, wl){gdm K*(z, a)d;e(a)}dxdy

L P(2)G(z, wyu(z)dady ,
we have

dn— 4,0 = () B,)
= m(E,)

< lS P)G(z, w)ule)dwdy
n Jr
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for every positive integer n. Hence, it follows that (4, — 45,) = 0.

LEMMA 2.2. Let v be a positive harmonic function on R such
that

SR P(2)G(z, w)v(@)dady < + oo

for some w, in R and v be the canonical measure on 4, which
represents v:

(@) = L K(z, bydv(b), zeR.
Then, 4, — Aip s a measurable set of v-measure zero.

Proof. This can be shown by the same proof as that of Lemma
2.1.

THEOREM 2.3. Let P be a density on R which satisfies Nakai's

integral condition (2.1). Then, the P-elliptic measure of the set
Ap — Ap, 18 zero:

Xp(dp, — 4dp) =0 .
Proof. Since w < 1 on R, from (2.1) it follows that
SR P(z)G(z, w)w(z)dxdy
= SR P()G(z, w)dxdy < + oo .

Therefore, by the fact that w is represented as the integral (2.2)
by the measure X,, Lemma 2.1 gives this theorem.

Lemma 2.2 gives the following:

THEOREM 2.4. Under the same assumption as that in Theorem
2.3, the harmonic measure of the set 4, — dyp 18 zero.

Proof. The constant function 1 and the harmonic measure X
play the roles of v and v in Lemma 2.2.

3. Relations between minimal P-solutions and minimal
harmonic functions. To give an isomorphism between PB and @B,
Nakai [11] has defined the transform 77¢f for a function f as
follows:
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T*f(e) = f&) + o= | (Pw) — Qu)Gw, f(w)duds

where w = w + 4. And, Lahtinen [5], Nakai, and Sato [15] showed
some properties of the transformation 77°. In this paper we
consider only the case in which @ is identically zero on R. Some
usefull properties of 7°° will be shown in this section.

DEFINITION 3.1. Let P be a density on R and f be a continu-
ous function on R for which

3.1) SR Pw)G(w, 2)| fw)|dudv < +oo , w=wu+iv,

is true at some point z, in R (then it holds at all points z in R).
Then, the linear transformation T7°f of f is well defined by

(3.2) T™f(z) = f(z) + % S Pw)G(w, 2)f(w)dudy .

By changing the role of P and 0 we define also the transformation
T°?. For a continuous function g on R such that

(3.3) SR Pw)G®(w, 2))| g(w)| dudy < -+ oo
for some point z, in R, T°%g is defined by
(3.4) T%g(z) = g(z) — _2.1; SR Pw)G*(w, 2)g(w)dudv .

To derive properties of T we consider an auxiliary sequence
of transformations T%°, n =1,2, ---, of a real valued continuous
function f defined on the closure R, of R, as follows:

TEf@) = £0) + 5= || PO)G(R,, w, Dftw)dud,

where G(R,, w, z) is the harmonic Green function on R,. It is
evident that, if f is a P-solution on R,, then T7°f is a continuous
function on R, which is harmonic on R, and satisfies

T®f|3R, = f|oR,

(see, for example, Nakai [11] or Lahtinen [5]).

The following lemma is a special case of Lahtinen’s lemma in
[5] in which P is acceptable in the sense of his definition.

LemmA 3.1 (Lahtinen). Let f be a P-solution on R and {f,} a
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sequence of P-solutions each defined on R, such that lim,_...f, = f.
If there exists a function u continuous on R such that | f,| < u for
each positive integer n and u fullfils the inequality obtained by
replacing f by u in (8.1) at some point in R, then TF°f is well
defined and has the following properties: (1) lim,... TEf, = T*f,
(2) T*°f is harmonic on R.

By changing the roles of P and 0, the transformation T is
defined and we can state the following:

LemmA 3.1'. Let g be a harmonic function on R and {g,} be a
sequence of harmonic functions each defined on R, such that
lim, ... 9, = 9. If there exists a function v continuous on R such
that |g,| < v for each positive integer n and v fullfils the inequality
(8.3) at some point in R, then T°Pg s well defined and has the
Sollowing properties: (1) lim, ., T%g, = T°%g, (2) T°?g 1s P-harmonic
on R.

LEMMA 8.2. Let P be a density on R. If P satisfies Nakai’s
condition

(3.5) SR P(2)G(z, w)dady < + oo

for some point w, in R, then we have

1
2w
1

a3

38 G w) =6 w) + o= | POGE, 267, wyisdy

= G"w, 2) + o | POGE, w6, 2)dédn
for each point (z, w) in R X R with w # 2z, where { = ¢& + 7).

Proof. Green’s formula implies that, for (z, w) in R, X R, with
z# w,

(37) G(Rm 2, w) — GP(R,,,, z, ’LU)
5= | POG®, ¢ w6 @R, ¢ sy,

where G*(R,, z, w) is Green’s function of R, related to the differen-
tial equation (1.1) and G(R,, z) is the harmonic Green function of
R,.

In order to apply Lebesgue’s dominated covergence theorem, let

F(z, w, 0) = PQOGE, w)G*(E, 2) .



180 TAKEYOSHI SATO
And, let U and V be small discs with centers z and w respectively
such that UNV = @. Then, by the minimum principle, Nakai’s
condition (8.5) gives that
S F(z, w, O)dedn < sup G*(C, 2)
14 {eadlU
x| P0G wdsdy <+

and, by G, 2) < G(, z) (which follows from the definition of the
Green function),

|, Fe, w, Odidy < sup G, w)

x | POGC 2dsdn
< sup G, w)

x| PoGE, dein < +o0
from which it follows that
(3.8) SR Fz, w, O)dedy = SV F(z, w, Q)dedy
+|  Fe,w, 0y < 4o .

Therefore, since
PQOGR,, &, w)G*(R,, C, 2) = F(z, w, {)
for each positive integer n and

lim POG(R,, €, w)G"(R,, {, 2) = PG, w)G"(, 2) ,

n—-+oo

Lebesgue’s dominated convergence theorem shows (3.6) as n tends
to + o in (3.7).

LEMMA 3.3. Let f be a continuous function on R such that
(3.9) | PG, w)l f2) dady < + <
for some point w, in R. Then, it holds that
(3.10) SR P(z)GF(z, wy) | T"f(2) | dady < + oo

for all points w, in R.
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Proof. By the definition of T7°f, we have
@1 | P@G", w)| T7f@) | dedy
= |, P@GG, w)| /@) dzdy
+ |, Paeee w L PaGw, 1 fw)| dudo} dady

Here, the first term of the right side of this inequality is finite by
the inequality G*(z, w,) < G(z, w,) on R.

To apply Fubini’s theorem to the second term we define a func-
tion F(z, w) by

Fz, w) = %P(z)P(w)GP(z, w)G(w, 2)| fw)] .

Since, by Lemma 3.2,
(3.12) SR {SR F(z, w)dxdy} dudv

— 83{51; SR P()G"(z, w)G(z, w)dxdy} P(w)| f(w)|dudv

= SR P(w) {G(w, wy) — GP(w, wo)} | flw)| dudw

< |, PG, w)| fw)|dudv
< +oo.

Fubini’s theorem shows that the second term of the right side of
(8.11) is equal to (3.12). Hence, we established the lemma.

LEMMA 3.4. Let f be a positive P-harmonic function on R
which satisfies the same condition as that in Lemma 3.3. Then we
have

™5 (T"f)=f on R.

Proof. Lemma 3.3 shows the inequality (3.10), and so, Lemma
3.1 and 3.1’ imply that T°7(T7°f) is well defined and is P-harmonic,
since

TPf = lim T2

n—-+oo
and

Tﬁof < TPOf
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for every n. Furthermore,

(3.13) (T f) = lim T(TEf)
n—+oo

on R.
The definitions of TZ2° and TY” give that

T(TYf)|oR, = T f|0R, = f|oR, .

Since TF(T2°f) is P-harmonic on R,, the maximum principle implies
that

T Tyf)=f on R,,
which completes the proof by (3.13).

LEMMA 3.5. Let g be a continuwous function on R such that
(3.14) |, P@GG, w) 9@ dady < +e=
for some point w, in R. Then, it follows that
[, PEGG, w)| T9(2) | dady <+ ,
where w, 18 any point in R.

Proof. This can be provided in the same way as that of Lemma
3.3.

DEFINITION 3.2. We define the space P, (resp. H,) consisting of
positive P-solutions f (resp. positive harmonic functions g) on R
with the property (3.9) (resp. (3.14)), and define the space H, con-
sisting of positive harmonic functions ¢ on R such that

SR P()G*(z, w)g(z)dxdy < +
for some point w, in R.

LEMMA 8.6. Let g be a harmonic function in Hp such that T°Cg
belongs to the space P,. Then, it follows that
T(T"9) =9 on R.

Proof. Since the function T°Pg satisfies the condition (8.1) in
Definition 3.1, T7(T°%g) is well defined, and Lemmas 3.1, 3.1’ show
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the equality in this lemma by the same way as that in the proof
of Lemma 3.4.

LemmaA 38.7. HpcC T"(P,) C Hp.
Proof. Lemmas 3.3, 3.5 and 3.6 show this lemma.

THEOREM 3.8. T is a ome-to-one transformation from P, onto
T™(Py), and T coinsides with its inverse tramsformation.

Proof. Lemma 3.4 shows this theorem.

LEMMA 3.9. Let g and g, be harmonic functions on R. If
g=9, on R and g, g, belong to the space Hp. Then, it follows
that

T?g < T%g, on R.

Proof. Since
TYg|oR, = g|0R, < 9,|0R, = T79,|0R, ,
the maximum principle for P-solutions shows that
g = Twg9, on R,
for each n. Thus, from Lemma 3.1’ it follows that
T?g < T°%g, on R.
THEOREM 3.10. If a minimal P-solution K. belongs to the space

P, (i.e., a € dp), then TPK? is a minimal harmonic function on R,
that s, there exists a unmique point b im 4, such that

THK? = T?KE(z)K, on R.

Proof. Let g be a positive harmonic function on R such that
(3.15) 0<g=T"K] on R.
By Lemmas 3.4 and 3.9 we have
0< IT'%g < T*°(T™K;) = K; on R,

and so, T°’g = aK? on R, where a is a positive constant. Then,
sinece (3.15) implies g € H, by Lemma 3.3, from Lemma 3.6 it follows
that
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g = TP(T°?g) = aT*K?

which shows that T7°K? is a minimal harmonic function on R.

LeEMMA 38.11. Let f and f, be P-harmonic functions on R. If
f<f, on R and f, f, belong to the space P,, then it follows that

T"fF < T™f, on R.

Proof. By Lemma 3.1 this can be proved similarly as Lemma
3.8.

THEOREM 3.12. If a minimal harmonic function K, belongs to
T?(P,), then T°?K, is a minimal P-harmonic function on R and is
contained in the space P,.

Proof. This can be proved similarly as Theorem 3.10 by Lemma
3.11.

Theorems 3.10 and 3.12 can be paraphrased by saying that the
transformation T P,— H, gives a one-to-one mapping from the
set of minimal P-harmonic functions in P, onto the set of minimal
harmonic functions in T7°(P,).

The following theorem says that the P-elliptic measure w of R
is transformed into the constant function 1 on R by T*°.

THEOREM 3.13. If the pair (R, P) is hyperbolic, then T w =1
on R.
Proof. By w = lim,_;,w,, Lemma 3.1 implies that

T"w = lim T?w, =1 on R.

n—>+00

4. Relation between the P-elliptic and harmonic measures.

DEFINITION 4.1. Let 4, be a set consisting of points b in 4,
such that the minimal harmonic function K, belongs to the set
T(P,):

dp = {be 4 K, € TP(P)} .

In the following, it will be shown that 4,, is measurable. We
shall use the same notations X, and X for the restrictions of the
P-elliptic and harmonic measures to the measurable sets 4, and 4,
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respectively, and consider two measure spaces (45, Xp) and (4yp, X).
The purpose of this section is to show that there exists a

measur ability preserving transformation ¢ from (4,, X,) onto (4,z, X)

such that X,o¢' is absolutely continuous with respect to X.
Theorems 3.10 and 3.12 give the following definitions.

DEFINITION 8.2. We define a transformation
tpo: dpo — 4dop

by assigning to a in 45, a point b = ty(a) in 4,» such that T*°KZ(z,)
K, = T™K? on R.

DEFINITION 3.3. We define a transformation
top: dop — 4p,
by assigning, to b in 4,,, a point a = £,(b) in 4y such that
T?K,(z,)KE = T°’K, on R.

It is clear, by Theorems 3.8, 8.10 and 3.12, that ¢, is the
inverse of tpy: typ = t7i.

LEmMA 4.1. Under Nakai’s condition:
(4.1) SR P(2)G(z, w)dady < -+ oo

Jor some point w, in R (then it holds at all points in R), the
Junction TPKE(w, of a in dp, is lower semi-continuous on g,
where w, is any fixed point in R.

Proof. Let D.(w,) be the disc centered at w, and having radius
r. By Harnak’s inequality there is a positive constant « such that,
for all z in D,(w, and for all points a in 45,

a K" (w,, a) < K*(z, a) = aK"(w,, a) .
Thus, for each point a in 4;,
(4.2) S P(2)G(z, w)K*(z, a)dudy
D (wg)
< aK(w,, a) X g _ P@)G(, wdady .
D, (wy!

Since (4.1) implies that
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limS P(2)G(z, w)dzdy = 0,
Dy (wg)

70

for any ¢ > 0 we can find a positive number 6 = d(¢) such that
(4.3) SD _ P@G(z, w)dsdy < ¢ .
5wy

The function K7(z, a) is finitely continuous on (B, — Ds(w,)) X
dpy, so that for any ¢ > 0 there exists a neighborhood U(a) of «a
such that

|K*(z, a") — K*(z,a)| < ¢
for ¢’ e U(@) N 4p, and z€ R, — D;(w,). Therefore, from (4.2) and
(4.3) it follows that
HR P(2)G(z, w)K"(z, a'ydedy — SR P(2)G(z, w)K*(z, a)dwdy

<

P(2)G(z, w,) | K*(2, o) — K*(z, a)|dzdy

SRn—Da(wo)
+ SD _ P@)G(, w)K"(z, o')dady
5 (wo
+ S P(2)G (2, w) K" (z, a)dzdy
Dg(wg)
<& x S P(2)G(z, wo)dady
Ry —Dg(wg)
+ a(K(w,, a') + K*(w,, ) X S P(2)G(z, wy)dxdy
Djlwg)
<eX SR P(2)G(z, wo)dxdy + ¢ X a(K¥(w,, a') + K*(w,, a)) .
This inequality shows the continuity of the function on 45,
[, P@GE 0K, wdndy,
by which the relation
lim L P(2)G(z, w)K*(z, a)dudy
= SR P(2)G(z, w)K*(z, a)dzdy

implies that TP°K.(w,) is lower semi-continuous on 4.

LEMMA 4.2. The function T?K,(w,) of b in d,p is upper semi-
continuous on 4d,p, where w, is a fixed point in R.
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Proof. Applying the inequality
g P(2)G*(z, w)dady < 2
R

for all w in R, which is stated in Myberg [8], we can prove this
lemma in the same way as that of the proof of Lemma 4.1. This
Myberg’s inequality plays the role of Nakai’s condition (4.1) in
Lemma 4.1.

Let 4, and 4 be the P-Martin and Martin ideal boundaries of
R, respectively. We identify these ideal boundaries 4, and 4 with
subsets of the product space of the real lines. Let {w;} be a
countable dense set of points in . To a point @ in 4, (resp. b in
4) we assign a point mp(a) (resp. m,(b)) of the product space I, I
(I; is the real line for all ) whose ith coordinate is K?(w;, a) (resp.
K(w,, b)) for each 7. Then, the mappings

Mp: dp — ﬁ 1,
i=1
and
My 4 — ﬁ I,
i=1

are continuous and one-to-one, and also their inverse mappings
mz': Mo(dp) — 4p
and
myt: my(d) — 4
are continuous. Therefore, the mappings
Mp: dp —> mp(dp)
and
My 4 —— my(4)

are homeomorphisms.

For a point mp(a) in mp(4p,) we assign a point in m,(4,) whose
ith coordinate is K(w,, tp(a)) for each 7; this mapping will be denoted
by

Spo: Mp(dpo) — Mo(dyp) -
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And, the mapping
Sop: Mo(dop) — Mp(dp,)

is defined by the same way as that of sz, that is, for a point m,(b)
in m,(4,) we assign a point in mp(ds) whose ith coordinate is
K*(w,, t,»(b)) for each 7. It is evident that s,, is the inverse mapping
of sz

In the following we shall always assume Nakai’s condition (4.1).

THEOREM 4.4. The mapping
tpo: dpo—— dop

18 measurability preserving.

Proof. Since m;* is continuous on m,(4) and, by Lemma 4.1,
the ith coordinate of the point sz o mp(a), a € dp:

K(wi, tpo(@)) = T7 Kz (w)) X {T7Kz (20}

is a measurable function on 4,, for each ¢, that is, sp,omp is
measurable on 4, the relation

My o8poMmp =tp, ON  Ap,

shows that ¢, is measurable on 4.
Similarly, from

15 = top = Mp'o8pom, On Ayp

and Lemma 4.2, it follows that ¢z} is measurable on 4,,. Then the
transformation ¢y, 4, — 4,» is measurability preserving.

LEMMA 4.4. 4,5 is measurable, so that (dyp, X) is a measure
space, where X also denotes the restriction to d,» of the harmonic
measure on 4.

Proof. Since 4p, is measurable, this follows from the preceding
lemma and the fact that 4,, = £;2(dp,).
THEOREM 4.5. The set 4, — 4,p 1s of harmonic measure zero:
X(d, — 4p) = 0.
Proof. Since 4, consists of points b in 4, such that the minimal

harmonic function K, belongs to the set H, (where 4;; and H; are
defined in §§2 and 3, respectively), Lemma 8.7 shows that
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Al - AOPCAl - A(;P ’
which gives X(4, — 4,5) = 0 by Theorem 2.4.

LEMMA 4.6. Let u be a P-harmonic function in P, and let p
be the camonical measure representing u:

w(z) = LPI K*(z, a)dp(a) .
Then,

TPou(z) —_—S TPR?(2)dpa), 26R.
4po

Proof. For a point z in R, let F, be a function defined by
F,(w, a) = P(w)G(w, 2)K*(w, a)

for (w, @) in R X 4p,. Since Lemma 2.1 shows that 4, — 4, has p-
measure zero, it follows that

S {S F.(w, a)dﬂ(a)}dudv - S Pw)G(w, 2)uw)dudy < + oo .
& ip, R
Then Fubini’s theorem gives that

TPou(z) = SAPO K*(z, a)dp(a) + SR {Sdm'zl?F’(w’ a)d#(a)} dudv

= S {KP(z, @) + L S Pw)G(w, 2)K*(w, a)dudv} dp(a)
4po 27 Jr
- SA TPR?(2)dpa), 2eR.

By the uniqueness in the Martin integral representation, we
obtain the following usefull theorem:

THEOREM 4.7. Let uw be a P-harmonic function in P,, and let
v denote the harmonic function T w. If the wmeasures which
represent u and v are denoted by t, and p,, respectively:

w@) = |, K@ adpa),

v@) = | K@ vau®,

1

then the measure assigned to the restricted measure |4y, of tt, by
the measurability preserving tramsformation tp, is absolutely con-
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tinuous with respect to p,; dp = TT "Kf;%m(zo)dyot;é(b).

Proof. Since tpy: 4py — 4yp is measurable, from Lemma 4.6 and
the definition of ¢, it follows that

v(@) = T™u(z) = SJ THK?(2)dg.(a)
= | KG tu@) TR =, K, DT KE o t710)

From the uniqueness of the canonical measure which represents v,
this theorem follows.

Theorems 4.7 and 4.3 are reduced to the following theorem:

THEOREM 4.8. Let p, and p, be measures defined in Theorem
4.7. Then, tp, 1s a measuradblity preserving transformation from
the measure space (dp, t,) onto the measure space (4p, tt,) such that
au, = TPOKf;(l,(b)(zOd#u o t7(b).

COROLLARY 4.9. Let (R, P) be a hyperbolic pair. itz is a
measurability preserving transformation from the measure space
(4py, Xp) 0nto the measure space (4yp, X) such that dX=T* °Kfz-,%(,,)(zo)dXPo

¢7:(b)-
Proof. By Theorem 3.13, Theorem 4.8 shows this corollary.

5. Comparisons between relative Hardy spaces. In [13]
Parreau gave a characterization for harmonic funetions in Hardy
space on a Riemann surface, using the Martin boundary ([7]) and
related kernel; in [9] L. L. Naim proved the similar results for the
axiomatic functions of Brelot, using essentially Gowrisankaran’s
results ([3]) on axiomatic Martin boundary and fine limits. Since
typical examples of Brelot’s axiomatic setting are given by harmonic
functions and by solutions of the differential equation 4u = Pu(P = 0)
on an open Riemann surface R, any result established in [9] for
Brelot’s axiomatic setting holds for each of these two special cases
without further verification. Restating definitions and theorems in
[9] in the case of harmonic functions and P-solutions, we recall the
definitions of Hardy spaces, the relative Hardy spaces and some
theorems for functions in these spaces.

For an exhaustion {R,} of R and a fixed point 2z, in R, we
denote by pr. and p,. the P-elliptic measure and harmonic measure
on oR, relative to z, and R,, respectively. Clearly,
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| .=t and | ap., =1
Ry,

IRy

for all positive integers =.

DEFINITION 5.1. A hamonic function ¢ on R belongs to the
Hardy space H?, 1 <p < +oo, if and only if the L?-norms with
respect to the harmonic measures f, ., of the restrictions of g to
the boundaries oR,, are uniformly bounded in #. In other words, g
belongs to H? if and only if there exists a constant M, independent
of n, such that ||g,.|| = M for all n, where

1/p
(T I T e e R
and
[1g]]c,n = sUP|g] .
R,

We proceed to define the relative Hardy spaces for the equation
4du = Pu and harmonic functions. For a fixed positive P-harmonic
function . on R we define the relative u-P-elliptic measure with
respect to z,e¢ R, and R, by

P,u U P
iz — X Uy . ’
Hoito = ey " 1

and for a fixed positive harmonic function » on R we define the
relative v-harmonic measure with respect to z,€ R, and R, by

Y ,v

Nz T O X Nyzg

o = ot Hom

For the positive P-harmonic funetion % w-P-harmonic funections are
quotients of P-harmonic functions on R by %, and for the positive
harmonic function v v-harmonic functions are quotients of harmonic
functions on R by v.

DEFINITIONS 5.2. A wu-P-harmonic function f’ belongs to the
relative Hardy class PHZ, 1 < p < + oo, if and only if the L*-norms
with respect to the relative u-P-elliptic measure g, of the restric-
tions of f’ to the boundaries oR, are uniformly bounded in n. In
other words, f’ belongs to PH? if and only if there exists a constant M,
independent of n, such that || f’||7,, = M for positive integers, where

/p
11 = {),, 17raea” . 1sp< 4w,

Sz = sup | F1] .
3Ry,
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DEFINITION 5.3. A v-harmonic function ¢’ belongs to the rela-
tive Hardy space HZ, 1 < p £ -+ oo, if and only if the L*-norms with
respect to the relative v-harmonic measure (., of the restrictions
of ¢’ to the boundaries 0R, are uniformly bounded in ». In other
words, g’ belongs to H? if and only if there exists a constant M,
independent of n, such that ||¢’||,,, < M for all n, where

1/p
19w = {§, 1oPdes )" 1sp< 4o,
19" llen = sUD || .
OR,,

Naim gave the extended characterization of funections in Hardy
spaces, showing the role of uniform integrability. We shall recall
her theorems and restate them in our case. In the following, fine
filters defined by the P-Martin compactification and minimal P-
harmonic functions K?, a € 4,,, is called P-fine filters.

THEOREM 5.1. Let w be a fixed positive P-harmonic function
on R. A wu-P-harmonic function f' belongs to the space PHZ, 1 <
p £ +oo, if and only if f' is the solution of a Dirichlet problem
relative to w with the P-minimal boundary 4y, the P-fine filters in
R and boundary function f' in L*(dp, p.), where p, represents w
wn the integral representation

u(e) = S K™(z, a)dp.(a) .

And, the correspondence f' — f' is an isometric isomorphism of the
Banach space PH? onto L*(4p,, t.).

THEOREM 5.2. A harmonic function g belongs to the space H?,
1< p £ +oo, if and only if g is the solution of a Dirichlet problem
with the minimal boundary 4,, the fine filters in R and boundary
funetion g in L*(4, X). And, the correspondence g— g 1is an
isometric isomorphism of the Banach space H? onto L*(4, X).

THEOREM 5.3. Let v be a fixed positive harmonic function on
R. A v-harmonic function g’ belongs to the space H?, 1 < p £ + oo,
if and only if ¢’ is the solution for a Dirichlet problem relative to
v with the minimal boundary 4,, the fine filters in R and boundary
function g' in L*(4, p,), where p, represents v im the integral
representation

o) = | K, ) .
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And, H? is a Banach space isometrically isomorphic to L*(4,, tt,).

THEOREM 5.4. Let w and v be functions on R satisfying the
same conditions as those in Theorem 4.7. If Nakai’s condition:

(.1) SR P(2)G(z, wdady < -+ oo

for some point w, in R 1is satisfied, then the Banach space PHZ,
1< p < 400, 18 tsometrically isomorphic to the Banach space H?.

Proof. For a function f’ in PH?, 1 < p < + o, there exists a
boundary function f’ in L?(dp, £t.), with which the relative Dirichlet
problem gives f’. The function {T°FK,(z,)}2f" ots: is defined on 4,
and satisfies, by Lemma 2.1 and Theorem 4.8, that

|, TUK@) T otaipap, =\ 1P pde =, 17 pdu,
4op 4po 4p1
ess. sup | f'otzt| = ess.sup | f'],
dop 4p1

where the essential supremums are taken with respect to g, and g,
respectively. This shows that f’otz. belongs to L?(4,, p,), since
L*(4,, te,) = L*(4yp, tt,) by Lemma 2.2.

To a u-P-harmonic function f’ in PH? we assign the solution
for the Dirichlet problem relative to v with the boundary function
{TPKy(2,)}/2f"otz. Then, this solution is a function in the space
H? by Theorem 5.3. Denoting this function by Tp(f’), we define a
linear transformation

T‘pot PH?:———’HZ,’ .

The fact that T, is an isometric isomorphism from PH? onto H? is
easily verified by theorems prepared in §4.

THEOREM 5.5. Let (R, P) be a hyperbolic patr. If Nakai’s
condition (5.1) s satisfied, then the Banach space PHL, 1 < p =< + oo,
18 1sometrically isomorphic to the Banach space H?, where w ts the
P-¢lliptic measure.

Proof. By Corollary 4.9 we can prove this theorem by the
same way as that in the proof of Theorem 5.4.

Since PH® = PB and H” = HB, it is clear that this theorem
contains Nakai’s result ([11]): under the condition (5.1) PB and HB
are isometrically isomorphic.
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