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TWO THEOREMS ON GENERAL SYMMETRIC SPACES

H. BUSEMANN AND B. B. PHADKE

An important result in the theory of Riemannian sym-
metric spaces is the theorem that the universal covering space
of a complete locally symmetric space is symmetric. The proof
uses the highly nontrivial property enjoyed by Riemann (but
by neither Finsler nor G-) spaces that they are automatically
analytic when locally symmetric and of class C'. Our first
theorem, nevertheless, extends the above result to locally sym-
metric G-spaces, which need not be smooth and which even
when smooth are only Finsler, and not necessarily Riemann,
spaces. Our second theorem states that a generic locally sym-
metric G-space is locally Minkowskian. This theorem has no
analogue in Riemannian geometry.

1. Introduction. A basic theorem on symmetric Riemann
spaces states that a complete locally symmetric space has a globally
symmetric (or, shorter, symmetric) universal covering space. In [5]
we attributed this result wrongly to Ambrose and Singer [1], who
prove a more general fact; the mentioned theorem is due to Ehre-
smann [6] and Borel and Lichnérowicz [2].

One of the principal purposes of the present paper is extending
the theorem to G-spoces (which are by definition complete).

THEOREM I. A locally symmetric G-space has a globally sym-
metric universal covering space.

In view of the fact that our proof uses a simple geometric idea
instead of the elaborate machinery of the literature some remarks
on I are in order. A Riemann space of class C' is a, say, n-dimen-
sional manifold with a differentiable structure and a positive definite
quadratic form ds® = 3 g,.(x)&’s*, where & = (&, ..., &*) is a tangent
vector and the g,, are of class C'. We choose this old fashioned
definition since it facilitates explaining the difference between a
Riemann and a Finsler space where ds* = F*z, £) and F satisfies
certain standard conditions [3, § 15], in particular F(x, k&) = |k| F(x, &)
for real k, F(x,&) >0 for £¢+0 and F(x, &) =1 is for fixed z a
strictly convex hypersurface in the tangent space instead of an
ellipsoid.

A fundamental difference appears at once: in the Riemannian
case ds* depends for fixed x analytically on & This need not be so
even in the simplest (symmetric) Finsler space of class C*, namely
a Minkowski space whose spheres are of class C* but not analytic.
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The G-spaces comprise the Finsler spaces, but need not have any
differentiability properties. It is even easy to construct Riemannian
G-spaces which are not class C!, i.e., when the g, (x) are merely
continuous.

A basic and far from trivial step which is 7required by the
mentioned deep methods is proving that a locally symmetric (l.s.)
Riemann space of class C' is analytic, which implies via analytic
continuation that isometries can be continued. This induced us in
[5] to consider essentially only spaces without conjugate points. But
we find that the simple method of [5] also works for general L.s.
G-spaces. We construct an extension of an isometry of two possibly
small domains in l.s. spaces to domains of a standard size and use
this to show that continuation is possible. In several instances we
could have followed Helgason’s procedure [7, Chapter I, § 11, Chapter
IV, § 5] literally, but did not do so because the extension theorem
allows certain simplifications.

In two dimensions we obtain only the Minkowski spaces in ad-
dition to known (Riemannian) symmetric spaces. However, we show
with one of several available methods that in higher dimensions
non-Riemannian symmetric spaces of any class and great complexity
exist.

Nevertheless the result for two dimensions is in a certain sense
typical, and this is the content of our second theorem. Since the
difference between Riemann and Finsler spaces shows up in the line
element only, a minimum of smoothness seems indispensable to
formulate “generic”. In a G-space which is continuously differenti-
able and regular (c.d.r) at a point » in the sense of [4, § 5] a normal
Minkowski metric (approximating the given metric near p) is defined.
A G-space is generic at p if it is e.d.r. at p and the corresponding
normal Minkowski metric admits no other {rue motion (i.e., different
from the identity) leaving p fixed than the reflection (symmetry)
in p.

In a l.s. G-space if one point is generic all are; and the normal
Minkowski metrics are everywhere the same. We show that the
metric of the space then coincides locally or, if simply connected,
globally with this common normal metric. Hence:

THEOREM II. A locally symmetric G-space which is generic at
one point is locally Minkowskian.

It is therefore topologically and geodesically one of the eucli-
dean space forms, see [3, p.192] and, for information regarding the
forms, Wolf [8]. Since a Riemann space is nowhere generic, II is
a typically non-Riemannian theorem and is interesting for this



TWO THEOREMS ON GENERAL SYMMETRIC SPACES 41

reason alone.

2. Local extensions of isometries in locally symmetric
spaces. We recall from [5] that a locally symmetric (l.s.) G-space
is a space with a positive continuous function o(p) such that each
S(p, o(p)) is symmetric. From the results proved in [5; (2.5) and
(2.1) respectively] we know that each S(p, o(p)/2) is symmetric and
that each S(p, o(p)/4) is symmetric and convex. It is clear that a
locally isometric bijection of a convex set onto a convex set is an
isometry on that convex set. This fact is useful in the following
result whose proof is based on the principal idea and the method
of [5, Theorem 2.5] and which is crucial for our theory. For
G-spaces R and R’, k(x, ') stands for the number 1/4 min(o(z), o(z")),
xeR, 2’ eR.

2.1. Let R and R’ be 1.s. G-spaces and let ¢ be an isometry of
S(p, ®)C R onto S(p’, «) CR' with p' = ¢p. Then,if a < &, = k(p, '),
o can be extended to an isometry of S(p, o) onto S(p’, a,).

It suffices to show that if the radius «, of the largest sphere
to which ¢ can be extended as a local isometry is less than «, then
we reach a contradiction.

Choose § with a, < 0 < «, and a, > 2(a, — §) and on each unique
T(p, x) with pxr < § take £ with »Z < a@,. Let ' = ¢7 and define
2’ by requiring that (p'z’2’) and p’z’ = px. Then the association
of x with 2’ defines a continuous bijective extension of ¢ from
S(p, 6) onto S(p’, 6). We show that this extension is a local isometry
by showing that for every ¢ =+ p with pg < § there is a convex
neighborhood U of ¢ on which ¢ is isometric. This will provide
the necessary contradiction to the definition of «j.

Define 7 = min{k(z, ") |px < a;, '’ <} > 0. Choose b with
(pbq), pb < ay, pb >bg < z. Let 4 be the symmetry of S(b, z) and
' the symmetry of S(b',7) where b’ = ¢b. Let S = S(®,v) and
S’ = S(¥', v) be so small that S and S’ are convex subsets of S(p, a,)
and S(p’, a,) respectively. Let U be a convex neighborhood of ¢ so
small that Uc SO, ), vUCS(p, ), ¢U = U’ SW, 7), ¢ 'sUC
S(p, &) and such that for all x€ U, T(p, x) meets S in a segment
L and T(p’, ') meets S" in a segment L’ with 2’ = gx. Denote by
L, and L; the prolongations of L and L’ respectively to x and «'.
See Fig. 1.

On S we have ¢y = +'¢ because S being convex, ¢ is isometric
on S. Hence ¢L = L' = "L’ = "¢L = ¢4 L and this extends to
6Ly = 'Ly, 80 that ¢x = ¢ for all £ in U. Since each of the
steps U — U — ¢y U — 4'¢yoU = U’ is an isometry, the restriction
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of ¢ to U is an isometry of U on U’.
As observed above, this contradicts the definition of «, and
hence proves 2.1.

Note. k(p, p') is in general not nearly the best number for
which 2.1 can be proved. A reader interested in this question may
appreciate to know that 2.1 holds for 1/4min ({(»), {(p")); the defini-
tion of {(p) is found in [5, p.6].

We note also that analytic Riemann spaces B and R’ (even if
not 1.8.) always satisfy 2.1. The proof uses very strongly and es-
sentially the analyticity assumption, see p. 62 (last six lines) and
p. 63 (first four lines) in [7].

FIGURE 1

FIGURE 1. The figure for S(»’, §) is obtained by replacing the
letter y by %’ and + by +' in the above figure.

3. Continuations. In this section we prove that a simply
connected l.s. G-space is symmetric. The proof depends on conti-
nuations of isometries along curves. Before defining this notion we
note the following useful fact.

3.1. Let T, T, be segments from a to b in a simply connected,
or homotopic in any, G-space. Then a deformation of T, into T,
exists using curves T, of uniformly bounded lengths MT,) < A.

To prove this, let T\(t), T\(t) represent T,, T, in terms of arc
lengths 0 <t < ab and let 7,(t) be a deformation of T, into T, (so
that v,(t) = Tu(t), 7.(t) = Ty(t)). Partition the t-interval in = equal
parts in such a way that 7,([¢,—,, t]) lies in S(v,(¢:-y), 00), 0 < s <1,
where p, = inf, ,0(7,(t) >0 and replace 7,|[tiy, t] by T, =
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T(vy(tim)y 7s(t:)). Then Ui, T, is a continuous curve from a to b
which depends continuously on s and its length is less than np, = 4.
If T,(t) represents Ui, T,; in terms of arc length then T,(¢) is
continuous in s and ¢ with MT,(¢t)) < 4. This proves 3.1.

Now let R and R’ be G-spaces and let ¢ be an isometry of a
convex sphere SC R on the (automatically convex) sphere S'c R'.
We say that the ordered pair (g, S) as above is an “isometry ele-
ment”. If (¢, S;),%7 =12 are two isometry elements such that
é, = ¢, on a nonempty open subset of S,N S, then ¢, =4, on S, N S,
sinece this set is convex. (Compare [3, 28.8, p.178]). We then say
that ¢, (resp. ¢,) is a continuation of ¢, (resp. ¢,).

For a curve C given by 7(f), a =<t < B8 in R let » > 0 and for
each £ an isometry ¢, of S(v(t), 3A)C R on the sphere S'(v'(t), 3\)C R’
where ¥'(t) = ¢,(v(t)) exist such that ¢, is a continuation of ¢, if
0<t,—t < Then v'(t) is continuous. Take a partition 4,;: a =
HL<..-<t =g of [a,B] such that for each ¢ the restriction
YOIt ti] of Y(@) to [t ] lies in S(v(), V). Put ¢, =4, If ¢,
is a continuation of ¢, ,(¢ =1, 2, ..., v) then the sequence ¢, -, 4,
leads to an isometry ¢, of S(b, ) = S(¥(B), M) on 8’ (¥'(B), N) = S(b’, \)
which we call the result of continuing ¢, along C.

We must show that ¢, does not depend on 4,. Let ze(¢t, t,v).
Then ¢, continues ¢, and ¢,., continues ¢., so the partition ¢, ¢, ---,
ty, Ty tiyy, ---, t, also leads to ¢,. Hence generally, any partition
deia=17,< .- <7, =0 for which v(¥)|[z;, T:+.]S(¥(z,), \) yields ¢.

Let now R and R’ be l.s. G-spaces and let QC R and @ c R’
be compact sets. Define £ = mink(, 2'),2€@Q,2'€Q" and U, =
S(x, k/3), € Q. If peU, and ¢, is an isometry of a neighborhood
of p taking p to ', » €Q', then by 2.1, ¢, can be extended to
S(p, k(p, »'))DU,; because whenever yx < £/3, we have yp < yx +
xp < 2k/3 < k < k(p, p'). Thus continuation of such an isometry ¢,
is independent of the path of continuation in U,, in the sense that,
if ¢, and ¢, are two continuations of ¢, along paths from » to ¢
lying in U, then ¢, = ¢, in a neighborhood of q. We call such a
neighborhood U, a “neutral” neighborhood.

Returning to homotopic segments 7, and 7T, in R with a
homotopy T,(t) as in 3.1 let ¢, be an isometry of a neighborhood of
e with o' = ¢,a. We show that continuation along each T,(t) = v(¢),
0 =<t < «a, is possible. Put £ = min k(x, '), x € S(a, 4), 2’ €S(a’, A4).
Choose 4,:0=t, <t ..+ <t,=a with v{E)v({t,-) < /3 and put
¥ = Y(@®)|[ti-y, t]. By 2.1 and the definition of k, ¢, can be continu-
ed along v, getting v, with the length A(v) = A\ (7)) and '(t) =
¢, (7(t)). Similarly ¢, can be continued along v, getting v; with
M72) = M(7,) and ¥'(t,) = ¢,,(¥(t,)). This process yields a continuation
of ¢, along (t) because for all j < m we have a’'vj(t;) < i, A7) < A
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If necessary refine the subdivision of the deformation square,
so that the pre-image of every subsquare lies in some neutral
S(x, £/3). A familiar argument shows that the deformation of T,
into T, can be obtained by successively traversing the boundaries
of the subsquares in a suitable order, hence continuation along T,
and T, leads to the same result.

Specializing further, let R = R’ be l.s. and simply connected.
Choose p arbitrarily and let ¢, be the symmetry in p of S =
S(p, o(p)/4). For any x, let T be a segment from p to x and con-
tinue ¢, along T to ¢,. Then as noted above ¢, does not depend on
the choice of segment T from p to x and hence this defines a map
& of R into itself which maps S(x, k(x, 2')) isometrically on
S(z’, k(x, 2')) where &' = ¢,2. Moreover 4+ coincides with ¢, on
S(p, p(p)/4). Thus 4 is a local isometry of R into itself. By con-
struction it maps any half geodesic issuing from p» on the entire
opposite half geodesic, so R = R. Since  # I and «* =1 in
S(p, o(p)/4) and hence in R, it must be the symmetry of R in p.
Therefore we have:

THEOREM I. A locally symmetric G-space has a globally sym-
metric universal covering space.

Applying our result [5, 3.5] we find the corollary:

3.2. If a positive continuous function N\p) exists on the
G-space R such that for each p all ellipses in S(p, M) (i.e., the
loci fix + xf, = B > fife > 0) have centers, then the universal cover-
ing space of R is globally symmetric.

4, Examples. We now show that when the (topological) dimen-
sion of the space exceeds 2 there are lots of nontrivial examples of
locally symmetric spaces.

One method of generating many is the following. Let g(u) =
g(uy, wy, -+, u,) be defined for u;=0,g(u) >0 for u+0, glu)<
g) if u, < v, for all ¢ and u; < v; for at least one j,1 <14, j <s.
Moreover let g(u) be positive homogeneous, i.e., g(ku) = kg(u) for
k=0, and assume that g(u + v) < g(u) + g(v) unless v = v =0 or
# = v for a scalar n. An example of such a g(u) is g(u) =
[X ()1 a0 > 1.

If R, R, ---, R, are G-spaces then R = R, XR,X...-XR, with
points x = (x, 2, - -+, %,), 2, € R, and distance xy = g(@.y,, .95, - - -»
2.y, is a G-space. If x,(t) is a geodesic in R, then x(f) = (x,(¢), -- -,
z,(t)) is a geodesic in R; the first ¢ need not be arc length for x(¢)
but g(¢, ¢, ---, ¢t) is. (Compare [3, 8.15], p. 42.)
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If ¢, is a motion of R, then ¢x = (¢,2,, ¢, %,, - - -, ¢s%,) iS one of
R. In particular, if each R, is either locally symmetric or sym-
metric then so is R.

5. Generic locally symmetric spaces. We begin with the fol-
lowing observation on l.s. G-spaces.

5.1. In a l.s. G-space two points, p, ¢ have for a suitable o > 0
isometric neighborhoods S(p, p) and S(g, o).

This can be seen either by applying our Theorem I or from the
following direct argument: Let ¢ = min{o(z)|xca segment T =
T(p, @) joining p to ¢}. By choosing points p = p, 2, -+, D, = ¢,
k=2l —1, in this order on 7T such that p,p,;, < 6/4 and denoting
by v, t=1,2, ..., 1, the symmetry of S(p,;, 0) we see that -r,maps
S(p,y-1, 0/2) isometrically on S(9,,.4, 06/2). Hence ¢ = iy -+ Py
maps S(p, 6/2) isometrically on S(q, a/2).

The notion of a continuously differentiable and regular (e.d.r.)
G-space is defined in the following way, see [4, §5]. Denote, for
0 < B =1 and a unique segment T(a, q), by a, the point on T(a, q)
with qa,; = Bqa. The space is said to be continuously differentiable
at p if for ¢ > 0 there exists 0 < d,(¢) < p(p) such that for a, b, q
in  S(p, 0,(€)), |@gsb,s — Bba| < e-Bab for 0<B3=<1. The limit
a,5b,5: B as B — 0, then exists (denoted m,(a, b)) for a, b€ S(p, o(p)).
Then m,(a, b) defines in S(p, o(p)) a metric which is equivalent to ab
and satisfies m,(a, b): ab— 1 when a #b, a — p, b— p. The space
is, in addition, regular if continuation is unique for m,, i.e., if the
three points a,b, ¢; in S(p, o(p)) are distinct (¢ = 1, 2) and m,(a, b) +
m,y(b, ¢;) = my(a, ¢;) with m,(, ¢,) = m,(®, ¢;) imply ¢, =c¢,. Then
m,(a, b) is a part of a Minkowski metric (with strictly convex
spheres) and is called the local normal Minkowski metric at p and
the space the l.n. Minkowski space.

Hence we have from 5.1.

5.2. If a l.s. space is c.d.r. at one point them it is so at all
points and the normal Minkowski metrics are all isometric.

Another consequence of 5.1 is:

5.3. If a l.s. space has a sphere S(p, p) which admits for some
small o > 0 no other true isometry on itself, keeping p fixed, than
the symmetry in p, then the same holds for all points.

From the definition of m, and 5.3 we see:
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5.4. If there are two different true tisometries of S(p, o) on
itself in a l.s. space and the space is c.d.r. then the normal Minko-
wskt metric has at p (or everywhere) true motions other than the
symmetry in p.

We are now ready to prove:

IMa. If a locally symmetric G-space contains a point p such
that no S(p, p), p > 0, admits a true isometry, except the symmetry
in p, on itself keeping p fixed, then the space is locally Minko-
wskian.

From 5.3 we see that the hypothesis of IIa holds at all points
p. Thus, since the universal covering space of a locally symmetric
space and also the universal covering space of a locally Minkowsian
space is symmetric, it suffices to consider the case when the given
space is globally symmetric.

Let a be an arbitrary given point of the space R and let a =
o(a)/32. Let g, ¢, r be any three noncollinear points in S(a, a).

%

7z

FIGURE 2

Let p,, m,, m, be the midpoints of the unique segments T(q, 7),
T(q,, 9.) and T(p,, g, respectively. Denoting by +, the symmetry
of R in m;, 1=1,2, define p, = 4p, and p, = 4,»,. Then the
segment T(p,, »,) is also unique (since an easy computation shows
that ap,, ap, < p(a)), let m; be the midpoint of T(p,, p,) and let 4,
denote the symmetry of R in m,. See Fig. 2.

Now 4.p, = p;, so that pym, = m,p, = 1/2.p,p,. Since ¥,p, = p,,
we have ¥ng, = Do, DoD1 = VDoVl = @10, = 2pym;.  AS 5P, = D, We
have Y0, = D,. Hence by the hypothesis of the statement Ila,
¢ = Pgyry¥, is the symmetry in p,; or ¢g, = r. On the other hand
990 = Vsvvido = V¥ = ¥sDo = D,.  Thus p, =r.  Consequently
2pym, = 74q;.

This means that the triangle ¢,rq, satisfies the condition of zero
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curvature [3, p.237]. As this was an arbitrary triangle in S(a, a)
we have proved that R has zero curvature. The result IIa now
follows from [3, 39.12, p. 261].

We say that a G-space R is generic at a point » if R is c.d.r.
at p and the normal Minkowski metric at p possesses no other true
motions leaving p fixed than the symmetry in p. It follows from
5.2 that:

5.5. If a l.s. space is generic at one point then this is so at
all points.

Combining IIa, 5.2, 5.4, and 5.5 yields our second theorem:

THEOREM II. If a locally symmetric G-space is generic at ome
point then it is locally Minkowskian.

It should be noted that, actually, with a minor reinterpretation
the proof for Ila works directly for II also.

Both II and IIa are definitely non-Riemannian statements. II,
as mentioned in the introduction, since a Riemann space is nowhere
generic and Ila because, if the space were Riemannian, it would be
Euclidean, which contradicts the hypothesis of IIa.

But it is very easy to construct a Riemann (hence nowhere
generic) space which is symmetric at a point p, but no S(p, o) has
any other true isometries leaving p fixed than the symmetry in ».

It is also simple to produce a Finsler space, symmetric at a
point p, where all normal metrics are isometric, but no other true
motions than the symmetry in p exist.

We indicate briefly how this can be done. In an (x, y)-plane
define F'(0, 0) as a strictly convex curve of class C* with (0,0) = »
as center. By an affinity «(z, y) given by the matrix (a,(x, y)) of
of its coefficients transform F'(0,0) into F(z, y). We can choose
a,(x, ¥) such that they are of class C* and F(—=x, —y) originates
from F(x, y) by o'=—=, y'=—y.

Take the F(zx, y) as the (infinitesimal or) local unit circles of a
Finsler metric with line element f(x, y, dx, dy). This will be of
class C* except for dx = dy = 0. Since the Fl(x, y) are affinely
related the local Minkowski metrics are isometric, see [3, §17].
Clearly the freedom in the choice of the a;(x, y) allows us to pre-
vent that the space has another true motion than the symmetry in
p, or even that any S(g, p) possesses a true isometry on itself.

The second named author thanks the University of Auckland
for the use of its facilities during his visit overlapping the pre-
paration of this paper.



48 H. BUSEMANN AND B. B. PHADKE

Note added im proof. In the meantime the paper by V. N.
Berestovskii “On homogeneous Busemann G-spaces,” Doklady Akad.
Nauk, 247 (1979), No. 3 has come to our attention which states
without proof a theorem basically identical with our Theorem I.
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