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TWO THEOREMS ON GENERAL SYMMETRIC SPACES

H. BUSEMANN AND B. B. PHADKE

An important result in the theory of Riemannian sym-
metric spaces is the theorem that the universal covering space
of a complete locally symmetric space is symmetric. The proof
uses the highly nontrivial property enjoyed by Riemann (but
by neither Finsler nor G-) spaces that they are automatically
analytic when locally symmetric and of class C1. Our first
theorem, nevertheless, extends the above result to locally sym-
metric G-spaces, which need not be smooth and which even
when smooth are only Finsler, and not necessarily Riemann,
spaces. Our second theorem states that a generic locally sym-
metric G-space is locally Minkowskian. This theorem has no
analogue in Riemannian geometry.

1* Introduction* A basic theorem on symmetric Riemann
spaces states that a complete locally symmetric space has a globally
symmetric (or, shorter, symmetric) universal covering space. In [5]
we attributed this result wrongly to Ambrose and Singer [1], who
prove a more general fact; the mentioned theorem is due to Ehre-
smann [6] and Borel and Lichnerowicz [2].

One of the principal purposes of the present paper is extending
the theorem to G-spoces (which are by definition complete).

THEOREM I. A locally symmetric G-space has a globally sym-
metric universal covering space.

In view of the fact that our proof uses a simple geometric idea
instead of the elaborate machinery of the literature some remarks
on I are in order. A Riemann space of class C1 is a, say, ^-dimen-
sional manifold with a diίf erentiable structure and a positive definite
quadratic form ds2 = Σ 9ik(%)?£kt where ξ = (ξ\ . ., ξn) is a tangent
vector and the gik are of class C1. We choose this old fashioned
definition since it facilitates explaining the difference between a
Riemann and a Pinsler space where ds2 = F\x, ξ) and F satisfies
certain standard conditions [3, § 15], in particular F(x, kζ) = \k\ F(x, ζ)
for real k, F(x, ζ) > 0 for ζΦO and F{x, ξ) = 1 is for fixed x a
strictly convex hypersurface in the tangent space instead of an
ellipsoid.

A fundamental difference appears at once: in the Riemannian
case ds2 depends for fixed x analytically on ξ. This need not be so
even in the simplest (symmetric) Finsler space of class C°°, namely
a Minkowski space whose spheres are of class C°° but not analytic.
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The G-spaces comprise the Pinsler spaces, but need not have any
differentiability properties. It is even easy to construct Riemannian
G-spaces which are not class C1, i.e., when the gik(x) are merely
continuous.

A basic and far from trivial step which is required by the
mentioned deep methods is proving that a locally symmetric (l.s.)
Riemann space of class C1 is analytic, which implies via analytic
continuation that isometries can be continued. This induced us in
[5] to consider essentially only spaces without conjugate points. But
we find that the simple method of [5] also works for general l.s.
G-spaces. We construct an extension of an isometry of two possibly
small domains in l.s. spaces to domains of a standard size and use
this to show that continuation is possible. In several instances we
could have followed Helgason's procedure [7, Chapter I, § 11, Chapter
IV, § 5] literally, but did not do so because the extension theorem
allows certain simplifications.

In two dimensions we obtain only the Minkowski spaces in ad-
dition to known (Riemannian) symmetric spaces. However, we show
with one of several available methods that in higher dimensions
non-Riemannian symmetric spaces of any class and great complexity
exist.

Nevertheless the result for two dimensions is in a certain sense
typical, and this is the content of our second theorem. Since the
difference between Riemann and Finsler spaces shows up in the line
element only, a minimum of smoothness seems indispensable to
formulate "generic". In a G-space which is continuously different i-
able and regular (c.d.r) at a poi,nt p in the sense of [4, § 5] a normal
Minkowski metric (approximating the given metric near p) is defined.
A G-space is generic at p if it is c.d.r. at p and the corresponding
normal Minkowski metric admits no other true motion (i.e., different
from the identity) leaving p fixed than the reflection (symmetry)
in p.

In a l.s. G-space if one point is generic all are; and the normal
Minkowski metrics are everywhere the same. We show that the
metric of the space then coincides locally or, if simply connected,
globally with this common normal metric. Hence:

THEOREM II. A locally symmetric G-space which is generic at
one point is locally Minkowshian.

It is therefore topologically and geodesically one of the eucli-
dean space forms, see [3, p. 192] and, for information regarding the
forms, Wolf [8]. Since a Riemann space is nowhere generic, II is
a typically non-Riemannian theorem and is interesting for this
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reason alone.

2* Local extensions of isometries in locally symmetric
spaces* We recall from [5] that a locally symmetric (l.s.) G-space
is a space with a positive continuous function σ(p) such that each
S(p, σ{p)) is symmetric. From the results proved in [5; (2.5) and
(2.1) respectively] we know that each S(p, p(p)/2) is symmetric and
that each S(p, p(p)l£) is symmetric and convex. It is clear that a
locally isometric bijection of a convex set onto a convex set is an
isometry on that convex set. This fact is useful in the following
result whose proof is based on the principal idea and the method
of [5, Theorem 2.5] and which is crucial for our theory. For
G-spaces R and R', ιc{x, xf) stands for the number 1/4 mm.(p(x), p(x')),
xeR, x'eR'.

2.1. Let R and Rr be l.s. G-spaces and let ψ be an isometry of
S(p, a)dR onto S(p', a)aRf with p' = φp. Then, ifa<ao = κ(p, p'),
φ can be extended to an isometry of S(p, a0) onto S(p', a0).

It suffices to show that if the radius a± of the largest sphere
to which φ can be extended as a local isometry is less than a0 then
we reach a contradiction.

Choose δ with at < δ < a0 and a± > 2{at — δ) and on each unique
T(p, x) with px < δ take x with px < ax. Let xf = φx and define
xf by requiring that (p'x'x') and pfxf = px. Then the association
of x with x' defines a continuous bijective extension of φ from
S(p, δ) onto S(p', δ). We show that this extension is a local isometry
by showing that for every q Φ p with pq < δ there is a convex
neighborhood U of q on which φ is isometric. This will provide
the necessary contradiction to the definition of ax.

Define τ = vnm{ιc{x, xr) \ px ^ a19 p'xf ^ a j > 0. Choose 6 with
(pbq), pb < alf pb > bq < τ. Let ψ be the symmetry of S(b, τ) and
ψ' the symmetry of S(b\ τ) where V = φb. Let S = S(b, 7) and
S' = S(b', 7) be so small that S and S' are convex subsets of S(p, aλ)
and S(p', aλ) respectively. Let U be a convex neighborhood of q so
small that UaS(b,τ), ψUaS(p, aλ), φU = U' cS(6', τ), φ-ψφUcz
S(p9 «i) and such that for all xeU, T(p, x) meets S in a segment
L and T(p', #') meets Sf in a segment L' with xf — φx. Denote by
Lo and LΌ the prolongations of L and 1/ respectively to x and a/.
See Fig. 1.

On S we have φψ = ψ»V because S being convex, ^ is isometric
on S. Hence φL — V — ψ'2L' = ψf2φL — ψ'φψL and this extends to
φL0 = ψ'φψL0, so that ^x = ψ'φψx for all α? in Z7. Since each of the
steps U-^ ψU-^ φψU-> ψ'φψU = Ur is an isometry, the restriction
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of φ to U is an isometry of U on U'\
As observed above, this contradicts the definition of ax and

hence proves 2.1.

Note. ιc(p, p') is in general not nearly the best number for
which 2.1 can be proved. A reader interested in this question may
appreciate to know that 2.1 holds for l/4min (ζ(p), ζ(p')); the defini-
tion of ζ(p) is found in [5, p. 6].

We note also that analytic Riemann spaces R and R' (even if
not l.s.) always satisfy 2.1. The proof uses very strongly and es-
sentially the analyticity assumption, see p. 62 (last six lines) and
p. 63 (first four lines) in [7].

FIGURE 1

FIGURE 1. The figure for S(p', δ) is obtained by replacing the
letter y by y' and ψ by ψf in the above figure.

3* Continuations* In this section we prove that a simply
connected l.s. G-space is symmetric. The proof depends on conti-
nuations of isometries along curves. Before defining this notion we
note the following useful fact.

3.1. Let To, Tx he segments from a to b in a simply connected,
or homotopic in any, G-space. Then a deformation of To into T1

exists using curves T8 of uniformly bounded lengths X(TS) < Λ.

To prove this, let T0(t), Tx(t) represent TQ, 2\ in terms of arc
lengths 0 ^ t ^ ab and let 78(t) be a deformation of To into 2\ (so
that 7o(t) = T0{t), 7i(t) = 2\(t)). Partition the ί-interval in n equal
parts in such a way that 7β([t<-i, ίj) lies in Sfr.fo-i), po)> 0 ^ s <; 1,
where ρ0 = inf t,,|θ(7.(ί)) > 0 and replace 781 [tt-lf t*] by Tβtti =
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-̂1)1 7.(ti)). Then U?=i T8tti is a continuous curve from a to b
which depends continuously on s and its length is less than npQ = Λ.
If T9(t) represents U?=i 2V*, in terms of arc length then T8(t) is
continuous in s and t with λ(Γβ(ί)) < -4. This proves 3.1.

Now let R and ϋJ' be G-spaces and let φ be an isometry of a
convex sphere SczR on the (automatically convex) sphere S'aR'.
We say that the ordered pair (0, S) as above is an "isometry ele-
ment". If (φi9 S^, i = 1, 2 are two isometry elements such that
φ± — φ2 on a nonempty open subset of Sx Π S2 then ^ = φ2 on ^ Π S2

since this set is convex. (Compare [3, 28.8, p. 178]). We then say
that φ2 (resp. ψ±) is a continuation of φx (resp. 02).

For a curve C given by y(t), α <; £ <; β in R let λ > 0 and for
each t an isometry ^ of S(y(t), 3λ)cϋί on the sphere S'(y\t), ZX)aR'
where 7f(ί) = Φt(y(t)) exist such that φh is a continuation of φh if
0 < ί2 — tx < λ. Then y'(t) is continuous. Take a partition Δt: a —
t0 < . . . < tv = /3 of [α, β] such that for each i the restriction
τ(*)|[*«, ί«+J of 7(ί) to [tif ti+1] lies in S(7(t<), λ). Put ^ = ^ . If ^
is a continuation of ^-^i = 1, 2,.. , v) then the sequence φQf , ^
leads to an isometry φc of S(δ, λ) = S(y(β), X) on S'(y'(β), λ) = S(δ', λ)
which we call the result of continuing φa along C.

We must show that φc does not depend on Δt. Let τ e (t4, ί<+1).
Then φτ continues φt and φi+1 continues φτ, so the partition t0, tlf - - -,
ίif τ, ί4+1, -- ,tv also leads to ^ . Hence generally, any partition
Δτ\ a = τ0 < < r s = /5 for which 7(ί)|[r<, τ<+1]cS(7(r<), λ) yields φc.

Let now i2 and R' be l.s. G-spaces and let Q czR and Q' c Rf

be compact sets. Define K = min /c(ic, #'), α; 6 Q, α;' e Qf and C/̂  =
S(x, κ/3), xeQ. It peUx and φp is an isometry of a neighborhood
of p taking p to j9', p 'eQ', then by 2.1, φp can be extended to
S(p, fc(p, P'))IDUZ; because whenever yx < /c/3, we have yp <L yx +
#2> ̂  2Λ:/3 < K ̂  /c(p, ί>') Thus continuation of such an isometry φp

is independent of the path of continuation in Ux9 in the sense that,
if φ0 and φλ are two continuations of φp along paths from p to q
lying in Ux then ^0 = φx in a neighborhood of q. We call such a
neighborhood Ux a "neutral" neighborhood.

Returning to homotopic segments TO and Tx in R with a
homotopy Γβ(t) as in 3.1 let φa be an isometry of a neighborhood of
a with α' = ^αα. We show that continuation along each T3(t) = y(t),
0 ^ t <̂  α, is possible. Put /c = minΛ:(ίc, x'), xeS(a, A), x' eS(a', A).
Choose Δt\ 0 ^ ί0 < tt < ίw = α with 7(^)7(^-1) < /c/3 and put
7i = 7(ί)|[ίi-i, ί j . By 2.1 and the definition of tc, φa can be continu-
ed along 7i getting y[ with the length λ(7x) = λ(7ί) and y'(t^) =
ΦtSytti))- Similarly φh can be continued along 72 getting y[ with
λ(7D = λ(72) and 7'(t2) = ΦtJCfiQ)- This process yields a continuation
of ^α along y(t) because for all i ^ m w e have afyfj{tQ) ̂  Σf=1 λ(7ί) < A.
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If necessary refine the subdivision of the deformation square,
so that the pre-image of every subsquare lies in some neutral
S(x, fcβ). A familiar argument shows that the deformation of To

into 2\ can be obtained by successively traversing the boundaries
of the subsquares in a suitable order, hence continuation along To

and 2\ leads to the same result.
Specializing further, let R = R! be l.s. and simply connected.

Choose p arbitrarily and let φp be the symmetry in p of S —
S(p, p(p)/A). For any x, let T be a segment from p to x and con-
tinue φp along T to φτ. Then as noted above φτ does not depend on
the choice of segment T from p to x and hence this defines a map
ψ of R into itself which maps S(x, ιc(x, xr)) isometrically on
S(x', ιc(x, x')) where xr = φτx. Moreover ψ coincides with φp on
S(p, <o(2>)/4). Thus | i s a local isometry of R into itself. By con-
struction it maps any half geodesic issuing from p on the entire
opposite half geodesic, so ψR = R. Since ψ Φ I and ψ2 = / in
S(p, p(p)/4) and hence in R, it must be the symmetry of R in p.
Therefore we have:

THEOREM I. A locally symmetric G-space has a globally sym-
metric universal covering space.

Applying our result [5, 3.5] we find the corollary:

3.2. // a positive continuous function X(p) exists on the
G-space R such that for each p all ellipses in S(p, X(p)) (i.e., the
loci fλx + xf2 = β > /i/2 > 0) have centers, then the universal cover-
ing space of R is globally symmetric.

4. Examples* We now show that when the (topological) dimen-
sion of the space exceeds 2 there are lots of nontrivial examples of
locally symmetric spaces.

One method of generating many is the following. Let g(u) =
g{uu u2, , us) be defined for ut ^ 0, g(u) > 0 for u Φ 0, g{u) <
g(v) if Ui ^ vt for all i and uo < vό for at least one j , 1 ^ ί, j ^ s.
Moreover let g(u) be positive homogeneous, i.e., g(ku) = kg(u) for
k ^ 0, and assume that g{u + v) < g(u) + g(v) unless u = v = 0 or
u == Xv for a scalar λ. An example of such a g{u) is g(u) =
[ΣUiWT o i .

If Jίi, iϋ2, . , R8 are G-spaces then i? = RλxR2x xRs with
points a? = (xl9 x2, , α?β), a?< eiϋ* and distance α?2/ = g(XιVi, x2y2, ,
α?8i/8) is a G-space. If a54(t) is a geodesic in ϋ?* then x(t) = («i(t), ,
ίi?s(ί)) is a geodesic in i2; the first t need not be arc length for x(t)
but g(t, t, . , t) is. (Compare [3, 8.15], p. 42.)
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If φi is a motion of Ri then φx = (φyXl9 φ2x2, , φsx8) is one of
R. In particular, if each Rt is either locally symmetric or sym-
metric then so is R.

5* Generic locally symmetric spaces* We begin with the fol-
lowing observation on l.s. G-spaces.

5.1. In a l.s. G-space two points, p, q have for a suitable p > 0
isometric neighborhoods S(p, p) and S(qf p).

This can be seen either by applying our Theorem I or from the
following direct argument: Let σ = min{<7(#) | x e a segment T =
T(p, q) joining p to q}. By choosing points p = p0, plf . ., pk = q,
k = 21 — 1, in this order on T such that PiPi+1 < o/4 and denoting
by ψ4, i = 1, 2, . . . , ί, the symmetry of S(p2i, σ) we see that α/rrmaps
S(p2r-u tf/2) isometrically on S(p2r+1, σ/2). Hence φ = ψ^i-i . . . ^
maps S(p, σ/2) isometrically on S(q, σ/2).

The notion of a continuously differentiate and regular (c.d.r.)
G-space is defined in the following way, see [4, § 5]. Denote, for
0 ^ / 3 ^ 1 and a unique segment Γ(α, q), by α^ the point on Γ(α, g)
with gαgj3 = βqa. The space is said to be continuously differentiable
at p if for ε > 0 there exists 0 < δλ(ε) <̂  p(p) such that for a, b, q
i n S(p, δfe)), \aqβbqβ - βba\^ε βab f o r 0 ^ / 3 ^ 1. T h e l i m i t
aPβbpβ: β as β-> 0+ then exists (denoted m,(α, 6)) for a, beS(p, ρ(p)).
Then mp(α, 6) defines in S(p, p{p)) a metric which is equivalent to ab
and satisfies mp(a,b): ab-^1 when aφb, a->p, b-^p. The space
is, in addition, regular if continuation is unique for mp9 i.e., if the
three points α,&, ct in S(p, p(p)) are distinct (i = 1, 2) and mp(α, 6) +
mp(δ, c<) = mp(a, ct) with mp(δ, cx) = mp(δ, c2) imply cx = c2. Then
^3)(^, δ) is a part of a Minkowski metric (with strictly convex
spheres) and is called the local normal Minkowski metric at p and
the space the l.n. Minkowski space.

Hence we have from 5.1.

5.2. If a l.s. space is c.d.r. at one point then it is so at all
points and the normal Minkowski metrics are all isometric.

Another consequence of 5.1 is:

5.3. If a l.s. space has a sphere S(p, p) which admits for some
small p > 0 no other true isometry on itself, keeping p fixed, than
the symmetry in p, then the same holds for all points.

From the definition of m« and 5.3 we see:
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5.4. If there are two different true ίsometries of S(p, p) on
itself in a l.s. space and the space is c.d.r. then the normal Minko-
wski metric has at p (or everywhere) true motions other than the
symmetry in p.

We are now ready to prove:

Πa. // a locally symmetric G-space contains a point p such
that no S(py p), p > 0, admits a true isometry, except the symmetry
in p, on itself keeping p fixed, then the space is locally Minko-
wskian.

From 5.3 we see that the hypothesis of Ha holds at all points
p. Thus, since the universal covering space of a locally symmetric
space and also the universal covering space of a locally Minkowsian
space is symmetric, it suffices to consider the case when the given
space is globally symmetric.

Let a be an arbitrary given point of the space R and let a =
p(a)β2. Let q0, qu r be any three noncollinear points in S(a, a).

FIGURE 2

Let p0, mlf m2 be the midpoints of the unique segments T(q0, ?*)>
T(q0, ?i) and T(p0, qj respectively. Denoting by ψt the symmetry
of R in mi9 i = 1, 2, define px = ψj>0 and p2 = ψ2p^ Then the
segment T(p0, p2) is also unique (since an easy computation shows
that apQ, ap2 < p(a)), let m3 be the midpoint of T(pOt p2) and let ψz

denote the symmetry of Jϊ in m3. See Fig. 2.
ίP0 = p19 so t h a t pQm1 = m±pγ — l/2 p 0 p l β Since ψ2px = p2}

^q* = p0, p,px = ψ2pQf2Pi = Q1P2 = 2p0m1. As ψsp2 = p0 we

Po = p0. Hence by the hypothesis of the statement Ha,
is the symmetry in po; or φq0 = r. On the other hand

= ΨsPo = Pi- Thus p2 = r. Consequently

Now
we have
have ψsψ

ΦQo = Ψzfϊf&o =
2p0m1 = rq,.

This means that the triangle qQrqλ satisfies the condition of zero
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curvature [3, p. 237]. As this was an arbitrary triangle in S(a, a)
we have proved that R has zero curvature. The result Πa now
follows from [3, 39.12, p. 261].

We say that a G-space R is generic at a point p if R is c.d.r.
at p and the normal Minkowski metric at p possesses no other true
motions leaving p fixed than the symmetry in p. It follows from
5.2 that:

5.5. // a l.s. space is generic at one point then this is so at
all points.

Combining Πa, 5.2, 5.4, and 5.5 yields our second theorem:

THEOREM II. If a locally symmetric G-space is generic at one
point then it is locally Minkowskian.

It should be noted that, actually, with a minor reinterpretation
the proof for Ha works directly for II also.

Both II and Πa are definitely non-Riemannian statements. II,
as mentioned in the introduction, since a Riemann space is nowhere
generic and Πa because, if the space were Riemannian, it would be
Euclidean, which contradicts the hypothesis of Ha.

But it is very easy to construct a Riemann (hence nowhere
generic) space which is symmetric at a point p, but no S(p, p) has
any other true isometries leaving p fixed than the symmetry in p.

It is also simple to produce a Finsler space, symmetric at a
point p, where all normal metrics are isometric, but no other true
motions than the symmetry in p exist.

We indicate briefly how this can be done. In an (x, ̂ /)-plane
define F(0f 0) as a strictly convex curve of class C°° with (0, 0) = p
as center. By an affinity ψ(x, y) given by the matrix (aik(x, y)) of
of its coefficients transform F(0, 0) into F(x, y). We can choose
aik(%, y) such that they are of class C°° and F( — x, —y) originates
from F(x, y) by x '=— x, y'=— y.

Take the F(x, y) as the (infinitesimal or) local unit circles of a
Finsler metric with line element f(x, y, dx, dy). This will be of
class C°° except for dx = dy = 0. Since the F(x, y) are affinely
related the local Minkowski metrics are isometric, see [3, § 17].
Clearly the freedom in the choice of the aik(x, y) allows us to pre-
vent that the space has another true motion than the symmetry in
p, or even that any S(q, p) possesses a true isometry on itself.

The second named author thanks the University of Auckland
for the use of its facilities during his visit overlapping the pre-
paration of this paper.
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Note added in proof. In the meantime the paper by V. N.
Berestovskii "On homogeneous Busemann G-spaces," Doklady Akad.
Nauk, 247 (1979), No. 3 has come to our attention which states
without proof a theorem basically identical with our Theorem I.
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