INVARIANT SUBSPACES FOR FINITE MAXIMAL SUBDIAGONAL ALGEBRAS

KICHI-SUKE SAITO

Let M be a von Neumann algebra with a faithful, normal, tracial state τ and H^{∞} a finite, maximal, subdiagonal algebra in M. If $1 \le p < s \le \infty$, then there is a one-to-one correspondence between left-(resp. right-) invariant subspaces of the noncommutative Lebesgue space $L^p(M,\tau)$ and those of $L^p(M,\tau)$.

1. Introduction. Let M be a von Neumann algebra with a faithful, normal, tracial state τ and let H^{∞} be a finite, maximal, subdiagonal algebra in M. A number of authors have investigated the structure of the invariant subspaces for H^{∞} acting on the noncommutative Lebesgue space $L^p(M,\tau)$ (cf. [3], [4], [5] and [6]). In [6], we showed that, if $\mathfrak M$ is a left-(resp. right-) invariant subspace of $L^p(M,\tau)$, $1 \leq p < \infty$, then $\mathfrak M$ is the closure of the space of bounded elements it contains.

In this paper, we shall show that, if $1 \leq p < s \leq \infty$, then there is a one-to-one correspondence between left- (resp. right-) invariant subspaces \mathfrak{M}_p of $L^p(M,\tau)$ and left- (resp. right-) invariant subspaces \mathfrak{M}_s of $L^s(M,\tau)$, such that $\mathfrak{M}_s = \mathfrak{M}_p \cap L^s(M,\tau)$ and \mathfrak{M}_p is the closure in $L^p(M,\tau)$ of \mathfrak{M}_s . This is of course true in the weak*-Dirichlet algebras setting (cf. [2, p. 131]) and this is attractive to study the structure of the invariant subspaces of $L^p(M,\tau)$.

2. Let M be a von Neumann algebra with a faithful, normal, tracial state τ . We shall denote the noncommutative Lebesgue spaces associated with M and τ by $L^p(M,\tau)$, $1 \leq p < \infty$ (cf. [7]). As is customary, M will be identified with $L^\infty(M,\tau)$. The closure of a subset S of $L^p(M,\tau)$ in the L^p -norm will be denoted by $[S]_p$; $[S]_\infty$ will denote the closure of S in the σ -weak topology on $L^\infty(M,\tau)$.

DEFINITION 1. Let H^{∞} be a σ -weakly closed subalgebra of M containing the identity operator 1 and let Φ be a faithful, normal expectation from M onto $D=H^{\infty}\cap H^{\infty^*}(H^{\infty^*}=\{x^*:x\in H^{\infty}\})$. Then H^{∞} is called a finite, maximal, subdiagonal algebra in M with respect to Φ and τ in case the following conditions are satisfied: (1) $H^{\infty}+H^{\infty^*}$ is σ -weakly dense in M; (2) $\Phi(xy)=\Phi(x)\Phi(y)$, for all $x,y\in H^{\infty}$; (3) H^{∞} is maximal among those subalgebras of M satisfying (1) and (2); and (4) $\tau \circ \Phi = \tau$.

For $1 \leq p < \infty$, the closure of H^{∞} in $L^{p}(M, \tau)$ is denoted by H^{p} and the closure of $H_{0}^{\infty} = \{x \in H^{\infty} : \Phi(x) = 0\}$ is denoted by H_{0}^{p} .

DEFINITION 2. Let \mathfrak{M} be a closed (resp. σ -weakly closed) subspace of $L^p(M, \tau)$ (resp. $L^{\infty}(M, \tau)$). We shall say that \mathfrak{M} is left-(resp. right-) invariant if $H^{\infty}\mathfrak{M} \subseteq \mathfrak{M}$ (resp. $\mathfrak{M}H^{\infty} \subseteq \mathfrak{M}$).

The following theorem shows that, in considering left- (resp. right-) invariant subspaces, it sufficies to consider left- (resp. right-) invariant subspaces of $L^2(M,\tau)$, or alternatively, σ -weakly closed left- (resp. right-) invariant subspaces of $L^\infty(M,\tau)$. The method in the proof is based on a facterization theorem, that is, if k is in M with inverse lying in $L^2(M,\tau)$, then there are unitary operators u_1 , u_2 in M and operators a_1 , a_2 in H^∞ with inverses lying in H^2 such that $k=u_1a_1=a_2u_2$ ([6, Proposition 1]).

Theorem 1. Suppose $1 \le p < s \le \infty$.

- (1) If \mathfrak{M} is a left- (resp. right-) invariant subspace of $L^p(N, \tau)$, then $\mathfrak{M} \cap L^s(M, \tau)$ is a left- (resp. right-) invariant subspace of $L^s(M, \tau)$ and $\mathfrak{M} = [\mathfrak{M} \cap L^s(M, \tau)]_p$.
- (2) If $\mathfrak M$ is a left- (resp. right-) invariant subspace of $L^s(M, \tau)$, then $[\mathfrak M]_p$ is a left- (resp. right-) invariant subspace of $L^p(M, \tau)$ and $\mathfrak M = [\mathfrak M]_p \cap L^s(M, \tau)$.

Proof. It sufficies to consider the assertion for left- invariant subspaces.

(1) Let \mathfrak{M} be a left-invariant subspace of $L^{p}(M, \tau)$. It is clear that $\mathfrak{M} \cap L^{s}(M, \tau)$ is a left-invariant subspace of $L^{s}(M, \tau)$. By [6, Theorem], we have $\mathfrak{M} = [\mathfrak{M} \cap L^{\infty}(M, \tau)]_{p}$ and so

$$\mathfrak{M} = [\mathfrak{M} \cap L^{\infty}(M, \tau)]_p \subseteq [\mathfrak{M} \cap L^s(M, \tau)]_p \subseteq \mathfrak{M}.$$

Therefore $\mathfrak{M}=[\mathfrak{M}\cap L^s(M,\, au)]_p$. This completes the proof of (1).

(2) Let \mathfrak{M} be a left-invariant subspace of $L^s(M,\tau)$. It is clear that $[\mathfrak{M}]_p$ is a left-invariant subspace of $L^p(M,\tau)$. Now, if the assertion (2) in the case $s=\infty$ is proved, then $[\mathfrak{M}\cap L^\infty(M,\tau]_p\cap L^\infty(M,\tau)=\mathfrak{M}\cap L^\infty(M,\tau)$. By (1),

$$egin{aligned} [\mathfrak{M}]_p \cap L^s(M,\, au) &= [[\mathfrak{M}]_p \cap L^\infty(M,\, au)]_s = [[\mathfrak{M} \cap L^\infty(M,\, au)]_s = [\mathfrak{M} \cap L^\infty(M,\, au)]_s &= [\mathfrak{M} \cap L^\infty(M,\, au)]_s &= \mathfrak{M} \end{aligned}.$$

Therefore, suppose that $s=\infty$. Let \mathfrak{M} be a left-invariant subspace of $L^{\infty}(M,\tau)$ and put $\widetilde{\mathfrak{M}}=[\mathfrak{M}]_{p}\cap L^{\infty}(M,\tau)$. It is clear that $\mathfrak{M}\subseteq\widetilde{\mathfrak{M}}$. If $\mathfrak{M}\subsetneq\widetilde{\mathfrak{M}}$, then there exist $x\in\widetilde{\mathfrak{M}}/\mathfrak{M}$ and $a\in L^{1}(M,\tau)$ such that $\tau(ax)=1$ and $\tau(ay)=0$ for every $y\in\mathfrak{M}$.

- (i) Case $2 \leq p < \infty$. Define the number q by the equation 1/p + 1/q = 1. Let a = v | a | be the polar decomposition of a. Let f be the function on $[0, \infty)$ defined by the formula f(t) = 1, $0 \leq t \leq 1$, f(t) = 1, t > 1, and define k to be $f(|a|^{1/p})$ through the functional calculus. Then note that $k \in L^{\infty}(M, \tau)$ and $k^{-1} \in L^{p}(M, \tau) \subset L^{2}(M, \tau)$. By [6, Proposition 1], we may choose a unitary operator u in $L^{\infty}(M, \tau)$ and an operator $b \in H^{\infty}$ such that k = bu and $b^{-1} \in H^{2}$. Since $k^{-1} \in L^{p}(M, \tau)$, by [6, Proposition 2], $b^{-1} \in L^{p}(M, \tau) \cap H^{2} = H^{p}$ and note that $ab = v |a|^{1/q} |a|^{1/p} k u^{*} \in L^{q}(M, \tau)$, because $|a|^{1/p} k \in L^{\infty}(M, \tau)$. Since \mathfrak{M} is left-invariant, $\tau(aby) = 0$ for every $y \in \mathfrak{M}$ and so $\tau(aby) = 0$ for every $y \in [\mathfrak{M}]_{p}$. On the other hand, $b^{-1}x \in H^{p}\mathfrak{M} \subset [\mathfrak{M}]_{p} = [\mathfrak{M}]_{p}$ and so $\tau(ab) = \tau(abb^{-1}x) = 0$. This is a contradiction. Thus $\mathfrak{M} = \mathfrak{M}$.
- (ii) Case $1 \leq p < 2$. Define the numbers q and r by the equations 1/p + 1/q = 1 and 1/r + 1/2 = 1/p. Put $k = f(|a|^{1/2})$, where f is the function in (i). By [6, Proposition 1], there are a unitary operator u in $L^{\infty}(M,\tau)$ and an operator $b \in H^{\infty}$ with inverse lying in H^2 such that k = bu and note that ab is a nonzero element in $L^2(M,\tau)$. Also, let ab = v'|ab| be the polar decomposition of ab. Put $k' = f(|ab|^{2/r})$, where f is the function in (i). Since $|ab|^{2/r} \in L^r(M,\tau) \subset L^2(M,\tau)$, by [6, Proposition 1], there exists an operator c in H^{∞} with inverse lying in H^r such that abc is a nonzero element in $L^q(M,\tau)$. Since $\mathfrak M$ is left-invariant, we have $\tau((abc)y) = \tau(a(bcy)) = 0$, for every $y \in \mathfrak M$, and so $\tau(abcy) = 0$ for every $y \in [\mathfrak M]_p$. On the other hand, since $(bc)^{-1} = c^{-1}b^{-1} \in H^rH^2 \subset H^p$, $(bc)^{-1}x \in H^p \widetilde{\mathfrak M} \subset [\widetilde{\mathfrak M}]_p = [\mathfrak M]_p$ and so $\tau(ax) = \tau(abc(bc)^{-1}x) = 0$. This is a contradiction. Thus $\mathfrak M = \widetilde{\mathfrak M}$.

This completes the proof of (2).

Next we shall consider the structure of doubly invariant subspaces and simply invariant subspaces of $L^p(M, \tau)$, $1 \le p \le \infty$.

DEFINITION 3. Let \mathfrak{M} be a closed subspace of $L^p(M, \tau)$, $1 \leq p \leq \infty$.

- (1) \mathfrak{M} is said to be left (resp. right) doubly invariant if $(H^{\infty} + H^{\infty^*})\mathfrak{M} \subseteq \mathfrak{M}$ (resp. $\mathfrak{M}(H^{\infty} + H^{\infty^*}) \subseteq \mathfrak{M}$).
- (2) \mathfrak{M} is said to be left (resp. right) simply invariant if $[H_0^{\infty}\mathfrak{M}]_p \subsetneq \mathfrak{M}$ (resp. $[\mathfrak{M}H_0^{\infty}]_p \subsetneq \mathfrak{M}$).
- By [5, Theorem 4.1] and Theorem 1, we have the following theorem.

THEOREM 2. Let \mathfrak{M} be a closed subspace of $L^p(M, \tau)$, $1 \leq p \leq \infty$. Then \mathfrak{M} is a left (resp. right) doubly invariant subspace of $L^p(M, \tau)$ if and only if there exists a projection e in M such that $\mathfrak{M} = L^p(M, \tau)e$ (resp. $eL^p(M, \tau)$). In [3], Kamei has shown the simply invariant subspace theorem for antisymmetric finite subdiagonal algebras in case p=1,2. Also, in [5], we characterized the simply invariant subspace for H^{∞} in $L^p(M,\tau)$, $1 \leq p \leq \infty$, when H^{∞} is determined by a trace preserving ergodic flow. However, by Theorem 1 and [3], we have the following theorem.

THEOREM 3. Let \mathfrak{M} be a closed subspace of $L^p(M, \tau)$, $1 \leq p \leq \infty$. If H^{∞} is antisymmetric, that is, D = C1, then \mathfrak{M} is a left (resp. right) simply invariant subspace of $L^p(M, \tau)$ if and only if there is a unitary operator u in M such that $\mathfrak{M} = H^p u$ (resp. uH^p).

REFERENCES

- 1. W. B. Arveson, Analyticity in operator algebras, Amer. J. Math., 89 (1967), 578-642.
- 2. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 3. N. Kamei, Simply invariant subspaces theorems for antisymmetric finite subdiagonal algebras, Tôhoku Math. J., 21 (1969), 467-473.
- 4. M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc., 248 (1979), 381-409.
- 5. K. -S. Saito, On non-commutative Hardy spaces associated with flows on finite von Neumann algebras, Tôhoku Math. J., 29 (1977), 585-595.
- 6. _____, A note on invariant subspaces for finite maximal subdiagonal algebras, Proc. Amer. Math. Soc., 77 (1979), 348-352.
- 7. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.

Received September 11, 1979.

NIIGATA UNIVERSITY IKARASHI 2-8050, NIIGATE 950-21, JAPAN