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A CHARACTERIZATION OF THE WEIGHTS IN A
DIVIDED DIFFERENCE

D. J. NEWMAN AND T. J. RIVLIN

Given points xOf xlf •••,»» of the real line which satisfy x0 <
x1 < < xn put

w(u) = (u — x0) (u — xn) .

If function values f(x0), , f(xn) are given, the divided difference
of / with respect to x0, , xn may be defined by

(1) fix x ) = Σ .
i=o /£(/(ίEί)

If we p u t

( 2 ) at = -±—, i = 0, . . - , %
w'(aJί)

we call α0, , αΛ the weights of the divided difference. Our problem
is to characterize the vectors a: (α0, * , α j which satisfy (2) for
some x: (xOf •••,«») and to show that such a correspond to an es-
sentially unique x.

Note that

( 3 ) w'(Xi) = (Xi — xQ) (a?< — Xi~i)(%i — ^i+i) * (Xi — xn) y

so that translating the point x leaves a unchanged. Therefore we
add the further (normalizing) assumption that x0 = 0. We can now
state our result.

THEOREM. If n > 0 (2) holds for unique x0, , xn satisfying
0 = χ0 < χt < < χn if, and only if,

( i ) ( - l r x x ) , ί = o, ••-,«
( ϋ ) Σ?=o«« = 0

(iii) ( - i r - Σ?=i α£ > 0, j = 1, , w.
iVbίe ίfeαί ίfeis theorem may be viewed as characterizing the

slopes at its zeros of a polynomial w(u) = u(u — xλ) - - - (u — xn).

Proof (a) Suppose x09 , xn satisfying 0 = x0 < x1 < < xn

are given, (i) follows immediately from (3). Since f(x0, , xn) = 0 if
/ is a polynomial of degree < n, taking / = 1 in (1) yields (ii). As
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for (iii) consider the fundamental polynomials of Lagrangian inter-
polation in x0, , xn

w ( f ί = 0, " ,n.
{x - x,)vf

Put

Σ
i=0

) = Σ h(x) , 3 = 0, , n - 1 .
i0

Then pό(x%) = 1, ί = 0, , j , pά{x%) = 0, i = j + 1, , n and so ps

is of positive degree. If cs is the coefficient of xn in p^ then

Now p) is of degree at mast n — 1 and by Rolle's theorem has j
zeros in (x0, xd) and n — 1 — j zeros in (%+1, α?J which accounts for
all its zeros. Thus cs Φ 0 and, since the behavior of pό{x) at °o
determines the sign of cjf this sign is that of p'j(xn). We proceed
to determine that sign. To this end note that p'3(x5) ^ 0 . If pJOfy) > 0
then since Pβ{x3) = 1 and Pj(xj+1) = 0, pj(a?) has a zero in (xjf xj+1),
implying that pό = 0, and contradicting the fact that p3- is of posi-
tive degree. Thus p](Xj) < 0 which implies that pJOfy+i) < 0 and
hence that pJ(a?J has the sign ( —I)"1"5'. We have shown that

and hence for j = 0, , n — 1

n

in view of (ii), from which (iii) follows.
(b) We prove next that for each a satisfying (i), (ii), (iii) there

exist unique x0, , xn satisfying 0 — x0 < < xn such that (2)
holds.

Let K denote the convex set in Rn defined by the inequalities

(4) (—l)n~% > 0 , ΐ = 1, "-fn,

and

(5) ( - i ) - ' Σ t * > o , i = i, - . . , * .

In view of (i) and (iii) K is not empty. Let S be the convex set of
all (xlf - , xn) 6 Rn such that 0 < x1 < a;2 < < xn. Let ^ be the
continuous mapping of S into K defined by
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φ:(xl9 •••, xn) >(alf •••, an)

where the at are as defined in (2) with x0 = 0. We intend to show
that φ is a grobal homeomorphism of S onto K. If this were so
then given α0, , an satisfying (i), (ii) and (iii), (al9 , an) is in K
and its unique preimage (xu , xn) satisfies 0 = xQ < xx < < xn

and α* = (w'{x%))-1, i = 1, , n. But then in view of (ii)

n n ί 1
0o = ~ ~ Σ 0* = — Σ —77-

i i w (X
i) W (Xo)

and the proof of the theorem would be complete. It remains, there-
fore, to show that φ is a homeomorphism of S onto K.

We begin by showing that the Jacobian matrix of φ, J(φ) is
nonsingular in S. Given 0 = x0 < x± < < xn the divided difference
f(x0, , xn) = 0 if / is a poly nominal of degree at most n — 1 while
if / = #w, /(α?o, , xn) = 1. If we take / to be x, x2, , ccΛ succes-
sively we thus obtain

aM = 0 , i = 1, , n - 1 ,

Partial differentiation with respect to xt gives

\xΓ xl xll\

\

3x? = 0

so that,

AJ(φ) \J(Φ)

an \

= 0

Since A and B are nonzero multiplies of the Vandermonde matrix
they are nonsingular and so, therefore, is J(φ).

Next we show that φ maps the boundary of S (which includes
the point at infinity) into the boundary of K (which includes the
point at infinity) in the sense that if a sequence of points of S has
a limit point in dS then the image sequence under φ has its limit
points in dK. The boundary points of S arise either from coalescence



410 D. J. NEWMAN AND T. J. RIVLIN

of coordinates or coordinates tending to zero or infinity, or combina-
tions of these. (3) reveals that if 2 or more coordinates coalesce
with xt and stay bounded away from 0 and °o then w'(xt) -> 0 and
hence at —> oo. If • χ1 —> 0 and w\xλ) -»0, or xn —> °° and w'(xn) —> °o,
boundary goes to boundary. The only remaining possibility is that
a?! —> 0 and xn-> °° in such a way that {Iw'fo)!}, i = 1, •••, w stays
bounded away from 0 and oo. This can only happen if for some j
satisfying 2 ^ j <* n — I we have x5_x —> 0 and ajy —> ©o. But in this
case put p(a?) = #(# — α?x) (a? — #j_i) and 9(0?) = (x — α?y) (as — aO
Then on the one hand eventually

JLί
2πi J 1*1=1 = Σ-

by the calculus of residues, while on the other the integral tends
to zero since | q | —> ©o. Thus

lim Σ α i = l i m Σ α< = 0 ,
ΐ=0 < = ί

so that the image sequence again tends to the boundary of K.
We are now in a position to show that φ maps S onto K. Since

J(Φ) is nonsingular, φ(S) is open in K. Let w e 0(S)C Π i^, we claim
that some neighborhood of w lies in φ(S)c Π K. Otherwise there is
a sequence wt = ^(^J with w€ —> w. If the zt went to the boundary,
dS, then the Φ(zi)( = wi) would converge to the boundary dK and we
would have w e dK. This contradicts our assumption and we conclude,
indeed, that φ(S)c n K is open. Thus iΓ = (φ(S)c ΓlK)\J (φ(S) Π -P) is
the union of two disjoint open sets. K, being convex, is certainly
connected, however, and so we are forced to the conclusion that
φ(S) n K = K or φ{S) = K.

Thus, to sum up, we have shown that φ is a continuous map of
convex S onto convex K which is locally one-to-one and takes the
boundary of S into the boundary of K.

Next we show, following Favard (Cf. J. Favard, Cours d'Analyse
de ΓEcole Polytechnique, Vol. I, Paris, 1960, pp. 295-296.) that there
is a fixed integer k ^ 1 such that each point of K has exactly k
preimages in S.

First we observe that if t e K then t — φ(x) cannot hold for
infinitely many xeS. For if t = φ(x) for infinitely many xeS then
the set of such x cannot have a boundary point of S as limit point
since teK and φ takes dS into dK. Thus the set of solutions {x}
has a limit point in S contradicting the fact that φ is a local
homeomorphism.

Suppose that TeK and xa)(t), , xis)(t) are its preimages. The
inverse functions x = ^(t), -•-,$ = ?r,(t) are homeomorphisms of
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some neighborhood of t, and these neighborhoods have a nonempty
intersection. Let r(t) be the radius of the largest ball centered at
t in which Ψu •--,¥, are homeomorphisms. It is easy to see that
\r(t{1)) - r(t{2))\ ^ ||ί(1> - t ( 2 ) | |, hence r(t) is continuous in K and has
a positive lower bound on every compact subset of K. Now every
point t' contained in the largest ball of homeomorphy centered at t
has at least as many preimages as does t, i.e., β(t') ^ s(t). On the
other hand in the closed ball [\\t — t'\\ ^ r(t)/2, r(ί') has a positive
lower bound, &, and if we further restrict f so that \\t — t'\\ < b
then the largest ball of homeomorphy centered at tf contains t so
that s(t) ^ s(t'), hence s(ί) = β(t') and s(ί) is a continuous integer-
valued function of t in the convex set K, hence a constant, & ̂ > 1.

We next conclude the proof of our theorem by exhibiting an
explicit t which has a unique pre-image. To this end consider the
points

-2Ϊ-, j = 0, n

the extrema of the Chebyshev polynomial of the first kind of degree
n. An elementary computation yields

/(%, , η.) = + Σ (-W(Vi) +

n 3=0

and taking f(u) to be u, u2, , un~x sucessively yields

n

3=0

Suppose y0 < Vί < < yn has the property that,

— i = 0 ,

( 7 ) (-1)" _ (-1)' _ J

where V(u) = (u - η0) (w - %), TΓ(u) = (w - y0) (u - yn) and
we may assume, with no loss of generality, that y0 = —y%. Then
we have

Σ
i=o
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and if we put

Xi=Vi= :Cyj9 i = 0, -- , n

then

n
/ Q \ X"1" ( 1 V'τ* 0 o* 1 1

7=0 ' '

Xθ :== V0 = ~ •*• j X% '~z f]n :=~ -*•

and ^ 0 < x1 < < χΛ.

Equating the left-hand sides in (6) to the corresponding ones in

(8) yields the systems

n even or

(9b) χ\ + 7)\+ . . . + ηl^ = η\ + x* + . . . + a *_ 1, i = 1, . -, w - 1

^ odd. We claim that (9a) or (9b) implies that Ύ]i — χu i = 1, ,

n — 1. To establish this we use the following lemma.

LEMMA. / /

δi < < bk; c1 < < ck then bά = c i ? i = 1,

Proo/. Let

We assume S<(6) = S^c), i = 1, •••,&. The elementary symmetric

functions ^ ( δ ) , •• ,ίrA.(δ) a re uniquely determined by Sx(6), •• ,SA;(6)

hence σ4(δ) = ^ ( c ) , i = 1, , k. Thus (cu -•-, ck) and (δx, , bk) a re

t h e complete set of zeros of t h e same polynomial. Since they are

ordered by hypothesis, t h e lemma follows.

The lemma applied to (9a), say, implies t h a t xlf η29 •••, xn_^ is a

r e a r r a n g e m e n t of ηu x2, , ηn^. Thus in t h e sequence rjl9 , rjn_u

xly - , &„_! each of ^ , , ^n_i appears twice. But t h e n t h e monotoni-

city of t h e vectors r] and cc implies t h a t xά — ηjf j = 1, , n — 1.

The same a r g u m e n t prevails if (9b) holds. Thus we have shown t h a t

Vi = 7 7 f j = 0, > ,n .o
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But, in view of the analogue of (3), (7) implies that C = 1.
We have established that the weight vector

( i , + i , , ( i ) , ίiψ
n \2 2

corresponds uniquely to the (normalized) points

and so we may conclude that ((1 + ?]d, , (1 + Vn)) is the unique
element of S whose image under φ is

This completes the proof of the theorem.

Postscript. I. J. Schoenberg reports (Cardinal Spline Interpola-
tion, Vol. 12, Regional Conference Series in Applied Mathematics,
Philadelphia, 1973, p. 9) that S. Karlin told him that he had solved
the problem of characterizing the weights in a divided difference.
Professor Karlin has confirmed this in a phone conversation with
one of us, but not wishing to publish his solution suggested that
we present ours.
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