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A UNIQUENESS THEOREM FOR NAVIER-STOKES
EQUATIONS

CHUN-MING MA

In this paper we consider the initial boundary value prob-
lem for the Navier-Stokes equations in several types of un-
bounded three-dimensional domains Ω. We prove uniqueness
within a class of solutions, which we call "weak class Ho solu-
tions", whose members satisfy the integrability conditions Vu,
JU<ΞL2(0, T; L2(Ω)). Moreover, the solutions are shown to de-
pend continuously on their initial values. The results are
based, primarily on establishing a simple characterization of a
certain space H0(Ω) of solenoidal functions.

For exterior domains, we have already given such a characteri-
zation of the space H0(Ω) in Ma [14]. However, the proof given
here is simpler and more direct and yields the result for "aperture
domains" as well (i.e., for domains considered by Hey wood [8] in
studying flow through a hole in a wall).

Our uniqueness theorem should be compared with one given
recently by Heywood. In [9], Heywood used our original characteri-
zation of the space Ho to prove uniqueness in exterior domains for
solutions satisfying the integrability conditions Fu, An e L2(0, T; L\Ω))
and Vut e L2(ε, T; L\Ω))9 for all positive ε < T. Here, we are able
to drop the integrability condition for Vut by using a technique
introduced in the context of "finite energy" solutions by Prodi [15];
see also Serrin [17]. The main advantage in giving the uniqueness
theorem as we do here, without Heywood's integrability condition
for VutJ is that one can then consider a larger class of forces. If
one considers arbitrary forces, with FfeL\0, T;L\Ω))9 the integra-
bility condition for Vut is not known, and quite possibly does not
hold; see [10], However, for such forces, generalized solutions
satisfying the conditions of our uniqueness theorem do exist. This
is proved in the concluding section of the present paper.

Our results should also be compared with a remarkable new
uniqueness theorem of Fabrizio [3], which appeared as we were
finishing this work. This theorem (Theorem 1 in [3]) requires even
less than ours in the way of integrability conditions; it is merely
required that the difference of two solutions should belong to
L\Ω x (0, T))9 for some s > 1. On the other hand, it is apparently
given only for an exterior domain (though this is not really made
clear) and does not provide the continuous dependence of solutions on
their initial values. Further, Fabrizio's theorem is based on several
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unproven preliminary results, Observation 1 and Lemma 1. In
particular, Lemma 1 is the extension of Lp estimates for the non-
stationary Stokes equations given by Solonnikov [18] in bounded
domains, to the case of unbounded domains and nonconstant coefficients.
Our preliminary results for the space Ho are much simpler and given
in detail.

The reader may also wish to consult the references [5, 16]
where other uniqueness theorems are given.

2* The function space H0(Ω). Let Ω be an open set of
R\n ^ 2). Let J0(Ω) denote the completion of D(Ω) = {φ:φe C0°°(i2)
and V φ = 0} in the norm associated with the inner product

(Fφ, Fψ) = \ Fφ: Fψdx ,
JΩ

where φ and ψ are unvalued functions, and Fφ: Aψ = Σ ΐ , i = i ^ A

dψjdxj. Let K0(Ω) be the set of all u e J0(Ω) such that I Fu: Fφdx =

- ( /• φdx for some feD(Ω) and all φe J0(Ω). Here f φ = Σ L i / ^
JΩ ^ „•

We define a map Δ\ K0(Ω) —> J(Ω) by setting Δu = f, where J(Ω) is
the completion of D(Ω) in the norm associated with the inner product
(φ, ψ) = 1 φ ^dx. Clearly, J i s well defined and closable. The space

JΩ

H0(Ω) is defined as the completion of K0(Ω) in the norm || ||ffo

associated with the inner product {Fφ, Fψ) + (Δφ, Δψ). Note that
H0(Ω) may be regarded as a subset of J0(Ω). The extension of 3
to H0(Ω) is again denoted by 3. It can be shown that
(1) (Fφ,Fψ)= -(Δφ,f)

holds if φeHQ(Ω) and ψeJ0(Ω) ΓιL2(Ω). We refer the reader to [6]
for details.

For several types of unbounded domains Ω, we shall show the
space H0(Ω) contains the set H£(Ω) = {u: ue J0(Ω) and ΔueL2(Ω)}.
Our proof is based on the following proposition.

PROPOSITION 1. Let Ω be an open set of R\n ^ 2). Then a
condition sufficient to ensure H*(Ω)czH0(Ω)9 is that the only element
w in J0(Ω) satisfying

( 2) ( Fw: Fφdx = - \ w φdx = ( /• φdx ,
JΩ JΩ JΩ

for some feL\Ω) and all φeD(Ω), is w = 0.

Proof. Let ueH*(Ω). Define a linear functional F on H0(Ω)
by setting F(φ) = (Fw, F#) + (Pz/w, Δφ) for φeH0(Ω), where P is the
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projection of U(Ω) onto J(Ω). Clearly, F is bounded on H0(Ω). Thus,
the Riesz representation theorem gives a unique element v of H0(Ω)
such that

(3) (Vv, Vφ) + (Jv, Jφ) = F(φ) ,

for all φeH0(Ω). Since (Vψ,Vφ)= — (f,Jφ) holds for all <χjreJ0(Ω)
and all φeKQ(Ω), (3) implies

S [(v — u) — (J# — PAu)] 0d# = 0
Q

for all φeD(Ω); remember here than D(Ω) is the image of K0(Ω)
under J. Let w = v — u. Then, for all φ e D(Ω),

/ x f f ~ f
( 4 ) \ w φdx = \ (Jv — PAu) - φdx = — I Vw: Vφdx .

JΩ JΩ JΩ

The second identity in (4) holds because (1) implies (Jv, φ) = — (Vv, Vφ),
and because, through an integration by parts, (PAu, φ) = ~-(Vu, Vφ).
Thus, by assumption, w = 0 and so u = v e H0(Ω).

Before proceeding further, we recall the various Sobolev spaces
to be used throughout the paper. The space W?(Ω) is the set of all
unvalued functions which belong to LP(Ω) and possess generalized
derivatives up to order m in LP(Ω). Its norm is

(5) INL? = ( Σ ί

where a = (au a2, , α j , | α | = aλ + α2 + + an, and \Dau\p =
Σ?=i |3 α i + ~+a*uJdx?i ••• dx^\p. The space W?(Ω) is the completion
of C™(Ω) in the norm (5). Finally, we let Jλ(Ω) denote the comple-
tion of D(Ω) in the norm || ||^i, and let J*(Ω) = {φ: φ e W}(Ω) and
V • ^ = 0}. Also, J0*(i2) - {φ: Φ e WΌ(Λ) and V - φ = 0}, where TΓ0(β) is
the completion of C~(Ω) in the norm | | F ^ | | = (Vφ, Vφ)1/2. We proved
the following lemma in [14], by considering an expansion in spherical
harmonics.

LEMMA 1. Let Ω be an exterior domain in Rn (n > 2) for which
J*(Ω) = JX(Ω). If q is a function in L\OC(Ω) such that Vq = u + v,
where u e J*(Ω) and v 6 J(Ω), then u e JX(Ω) and, further, Vq = 0 in
Ω.

The next lemma, due to Heywood [10], is based on a regularity
theorem of Catabriga [2], or of Solonnikov and Scadilov [19] in the

case of C3 boundaries. We set \\Vw\\p = (Σι«ι=i \ \Daw\pdx)1P and
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( C \ί/p

Σι«ι=2 \ \D"w\pdx) , and suppress the subscripts when
JΩ I

LEMMA 2. Let Ω be an open set of i?3, with boundary dΩ

uniformly of class C\ Suppose weJo(Ω) satisfies \ Vw Vφdx =

S JΩ
f- φdx for some fe L2(Ω) and all φ e D(Ω). Then w possesses second

Ω

order derivatives D2w e L2(Ω) and the following inequalities hold:

(6)

(7) \\Fw\U ί£ C3(\\Pf\n\Γw\\1/2 + \\rw\

(8)

where constants Cd depend only on the C2-regularity of dΩ (but not
on the 'size' of dΩ or Ω).

PROPOSITION 2. Let Ω c J23 be an open set with a uniformly C2

boundary. Then the condition in Proposition 1 is necessary as well
as sufficient for H*(Ω) aH0(Ω).

Proof. Let weJ0(Ω) satisfy (2). Lemma 2 implies D2weL2(Ω).
Integrating by parts in the first integral of (2), and remembering
that Δ(KQ(Ω)) = D(Ω), one obtains

I PΔw Δφdx = I w Δφdx = — 1 Vw\ Vφdx ,
}Ω }Ω JΩ

for all φeK0(Ω). Since w e Hί(Ω) c H0(Ω) and K0(Ω) is dense in H0(Ω),
i t follows t h a t PΔw = Δw and | | F w | | 2 + \\Δw\\2 = 0. Thus w = 0 in

Ω.

REMARK 1. It follows immediately from Lemma 2 that the
inverse inclusion H0(Ω) c H*(Ω) holds if Ω c iϋ3 and dΩ is uniformly
C2. In this case, Δu = PΔu if ueH0(Ω).

REMARK 2. If Ω is a domain in which Poincare's inequality
holds, i.e., | |0 | | <; CΛ | |F^| | ίoτ some constant CΩ and all φeC~(Ω),
the condition in Proposition 1 is automatically satisfied; hence H*(Ω) c
HQ(Ω).

REMARK 3. The inclusion H?(Ω) c HQ(Ω) fails to hold if Ω is a
two-dimensional exterior domain with a smooth boundary. Indeed,
let b be an infinitely differentiate solenoidal (F b — 0) vector field
in J2 such that 6 = 0 near dΩ and b = (1, 0) in a neighborhood of
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infinity. Then beJ0(Ω) (see Hey wood [7]). Now consider the func-
tion f~b—Vq — Δb where q = xlm Since feL\Ω), there is a unique
element 6 e JX(Ω) such that

( 9 ) \ Vb\ Vφdx +\ b- φdx =[ f ώdx,
}Ω JΩ JΩ

for all φ 6 D{Ω). Using regularity results of Heywood [8, p. 82] and
Friedmann [4, p. 66] (see also Amick [1, p. 704]), we can showz/δe
L\Ω). Thus b — beH*(Ω), and an integration by parts in (9) gives

( (b~b)-φdx=[ Δ(b - b) φdx ,
}Ω )Ω

for all φeD(Ω). Now if H*(Ω)ciH0(Ω), we can argue as in Proposi-
tion 2 to show 6 = 6, which is impossible.

If w is an element of J*(Ω) satisfying (2), then w e C°°(Ω) and

(10) Aw — w = Fp

holds for some harmonic function p; see for example Heywood [8].
Thus, in view of Propositions 1 and 2, the question of whether
H*(Ω) c H0(Ω) for a given unbounded domain Ω can be reduced to
that of whether there exist nontrivial solutions w of (10) satisfying:

(11) V - w = 0 in Ω ,

(12) w = 0 on 3Ω ,

(13) w(a?) > 0 as | x | > oo .

We call an element w of J*(Ω), which satisfies (2) for some feL\Ω)

and all φeD(Ω), a, weak solution of the problem (10)-(13). Note

that, if ΩdRn{n > 2), elements of J*(Ω) satisfy (13) in the generalized

sense I \w(x)\2/\x\2dx < oo.
JΩ

The next theorem, concerning the uniqueness of problem (10)-(13)
in an exterior domain Ω, is proved under the assumption that
J?(Ω) = JX(Ω). This relation, and also the relation «7?(β) = J0(Ω),
were established by Heywood [8] for several types of domains,
including exterior domains with Lipschitz boundaries. Ladyzhenskaya
and Solonnikov [13] have extended these results by weakening the
assumptions on the boundary regularity.

THEOREM 1. Let Ω be an exterior domain in Rn(n > 2) for which
Jf(Ω) = JX(Ω). Then the only weak solution of problem (10)-(13) is
w = 0; hence H*(Ω)czH0(Ω) by Proposition 1.

Proof Let w be a weak solution of (10)-(13). Since 1 w φdx =
JΩ
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— 1 f-φdx holds for some feL\Ω) and all φeD(Ω), there exists a
JΩ

scalar function q, with q, qH e L2

loc(Ω), such that

w + Pf = Vq

see Ladyzhenskaya [12], and also Heywood [6]. Thus, it follows
from Lemma 1 that w belongs to Jλ(Ω). Because D(Ω) is dense in

JX(Ω), the first identity of (2) implies I (Fw: Fw + w w)dx = 0; thus

w = 0.
In the case of a half space, we prove uniqueness for problem

(10)-(13) using Fourier transforms. The method is a modification of
one used in [8].

THEOREM 2. Let Ω = {xeRn:x1> 0} (n^2). Then the only
weak solution of problem (10)-(13) is w Ξ= 0; hence H*(Ω)c:H0(Ω) by
Proposition 1.

Proof. A weak solution w of (10)-(13) satisfies I Fw: Fφdx —

S JΩ
f-φdx for some fe L\Ω) and all φ e D(Ω). Thus, letting Ωε={xe Ω:

Ω

xt > ε}, Lemma 9 of [8] implies D2w e L\Ωε), for every ε > 0.
FDaw: Fφdx = — I Daw - φdx for all φ e D(Ω), an

Ω JΩ

induction argument gives Daw eL2(Ωε), for all a with | α | ^ 1. Also,
since weJ*(Ω), we have

S w2dx ^ α2 I |Fw|2dα; ,

0<α;1<α Jθ<ίc1<α

for every a > 0.
Now equation (2) implies there exists a harmonic function p

such that Jw-w = Fp in 42. Clearly, ( (Fpfdx < oo if 0 < ε < α.
Je<ίc1<α

Hence one can take Fourier transforms with respect to x = (x2, - -, xn)
of equation Λ(dp/dx.) = 0, obtaining

Here h = h{x,, ξ) = (2τr)-"ί-1)/2 ( h(xu x)e-iZίdx, where ζ = (f2, -,£„),

and |£|2 = £| + + ^ . The general solution of this equation is

Since dty/dXjdXt = —dwJdXi + djdxiAw1 and DzweL\Ω,), we have
dfy/dxβxt G I/2(i2£) for every ε > 0. Thus, in virtue of ParservaΓs
identity
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π i ( ^ d2p dx <

we see that βt(ξ) (i = 1, , n) vanishes almost everywhere.
For every i — 1, 2, , n, taking Fourier transforms of the equa-

tion ΔWi — Wi — dp/dxi9 one obtains

(14)

The general solution of (14) can be found, by the method of varia-
tion of parameters, to be

(15) Wi =

where

i - l f l

Again, using ParservaΓs identity

ί
J B n-l

2dξdXl = < - ,

we find &,(£) = 0.
Finally, the Fourier transform of V w = 0 is

and so the boundary conditions t?), (0, ζ) = 0 (i = 2, , n) imply
y = 0. It follows that α^f) = «i(f) = 0. Consequently

= 0 and so dp/dx1 — 0. Now the function p, being harmonic

in the variables xeRn~ι with \ \Vp\2dx < ^o, is a constant. Hence

at(ξ) = 0, which in turn implies α<(f) = 0. This completes the proof.
Finally we consider aperture domains.

THEOREM 3. Let Ω = {x e Rn: xx Φ 0 or (x2, , a?J 6 S},

n = 2 or 3 and S is a bounded open set in A = {x e Rn: xλ = 0}. Then
the only weak solution w of problem (10)-(13), with weJ0(Ω), is
w ΞΞ 0; hence H*(Ω) c H0(Ω) by Proposition 1.

Proof. Consider first the case n — 3. Suppose w e J0(Ω) is a
weak solution of (10)-(13). Let BB be a ball of radius ϋ? centered
at the origin (assumed to lie in S) such that SaBBΠ A. Since
w e J0(Ω), one can show I w mϋs = 0, where n is the unit normal

JS
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to the surface S; see [8, p. 93]. By Corollary 2.3 of [13], there
exists a solenoidal vector vr in W}(B'B)f where BB = {xe BB: xλ > 0},
such that vf = w on S and v' = 0 on dBR\S. Likewise, there exists
a solenoidal extension v" e Wl(B") of w on Sf where BE = {x e !?#:
«! < 0}. Let v be a vector defined in BB Π <£?, with v = w on J5Λ n -A,
such that v = 1;' in I?i and v = v" in j?£. Then v belongs to
Jt{BB Π Ω) and thus to J^B* Π Ω); see [13], and also [8].

We extend vr to Ω', where Ω' = {xe Ω: x1 > 0}, by setting it
equal to zero outside of B'R. For every φ e JX(Ω'), let F(φ) =

— 1 (v' ^ + Vv': Fφ)dx. Then JP defines a bounded linear functional

on Jχ(ώ') and so the Riesz representation theorem gives a unique
vector v! in JSβf) such that

I (uf φ + Fur: Fφ)dx = F(^) ,
j Ω'

for all φeJx{Ωr). Let w = w' — (%' + v')9 where w' is the restriction
of w to Ω\ We can easily show w e TFO(42')> F w = 0 and

f 7 f f / Λ /

I Fw: Fφdx = — I w 0<x# = I (/ + u + ΐ/) c£c?x ,

for all ^ e D(Ω'). Thus Theorem 2 implies w = 0 in i2', and so w' =
π' + v' in i2'. Similarly, if w" is the restriction of w to i2", where
Ω" = {xeΩ .XiK 0}, then ^ " = v," + v" for some u" e J&Ω"). Hence
w = w' + w" = vf + w" + t; belongs to J^fl), because «/i(β')> Ji(Ω")
and J^BjtOΩ) are all subspaces of J2(β). By letting ^ tend to w in

(2), we obtain \ (w w + Fw: Fw)dx = 0, which implies w = 0.
j Ω

For ^ = 2, let Br be a bounded open subset of the right half
space Ωf such that dBr f] A = S and dB' is smooth. Using a method
given in [12, p. 27], one can construct a solenoidal vector vf e TFϊCB')
which equals w on S and zero on dB'\S. Similarly, construct B"
and v" in the left half space Ω". Proceeding now as in the three-
dimensional case, we can show w = 0.

3* Uniqueness and continuous dependence* Let Ω be a
domain in iϋ%(w ^ 2). The initial boundary value problem for the
Navier-Stokes equations in the space-time cylinder Ω x (0, T) is to
find a pair of functions u, p which satisfies

(16a)

(16b)

(16c)

ut + u-

F

u(x

ψu = —Fp

- u = 0

, 0) - a{x)

+ vΔu + in

in

for

Ω

Ω

X

X

X

€

(0,

(0,

Ω,

T),

T),
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(16d) u(x, t) = b*(x, t) for (a?, t)edΩ x (0, Γ) ,

(16e) if Ω is bounded, u(x, t) -> &£(t) as \x\ -> oo for t e (0, Γ) ,

(16f) if Ω is a domain for which J*(Ω) Φ J0(Ω), auxiliary conditions
in the sense given in [8] are imposed to determine, for every
t, a specific coset of J$(Ω)/J0(Ω).

Here, u represents the velocity vector, p the pressure, / the external
force, and v the constant kinematic viscosity. We assume the
boundary values 6* can be extended continuously into Ω x (0, T) as
a solenoidal function b e C\Ω x [0, T]) which satisfies (16d), (16e),
(16f) and the following conditions:

(17a) sup ||Fδ(ί)|| < oo , Γ \\D*b(τ)\\*dτ < oo for 16(0, T) ,
ίe[0,Γ] JO

bt(x, t) > b*t(t) as |x|
(17b) ft

\ | |F6 i(r) | | 2ίίr< - for t e (0, T) ,
Jo

(17c) Γ sup I δ(r) \*dτ < oo for te (0, T) ,
JO Ω

(17d) α - δ ( ,0)

(17e) the forcing term g = f — bt + vAb —b-Vb admits the decom-
position g=f1 + f2+Pq, where /lel^O, ί; J0W) and /2eL2(0, ί;

for all ί 6(0, Γ), and where g, qXieL2

loe(Ω X (0, Γ)).

Any such extension b of the boundary values is said to be admissible.
We note, if dΩ is of class C2, that condition (17a) implies

(17f) Γ l | F 6 ( τ ) | | 2

3 d τ < - for t e ( 0 , Γ ) .
Jo

This is proved by substituting Fb for φ in the Sobolev inequality

which is valid for all φ e W&Ω) with a constant Cd dependent only
on the C2-regularity of dΩ; see Friedman [4, p. 27], If, further-
more, Ω is an exterior domain in R* with a class C2 boundary, then

( i ) (17a) implies (17c) provided Γ|δί(*)|2d£ < oo, and
Jo

(ii) every vector field g(x), with I (Fgfdx < oo, can be express-
JΩ

ed as a sum described in (17e) above;
see [9] and [10].

The solution of problem (16) is sought in the form u = v + 6,
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where 6 is an admissible extension and v satisfies

(18a) veL\0, T; H0(Ω)) ,

(18b) sup | | P i ; | | < oo ,
ί s (0,Γ)

\ (Fv, Fφt)dt - v \ {Δv, Δφ)dt + \ (v Fv + b-Fv + v Fb, Δφ)dt
(18c) J° J° Γ

J°

= -(F(a - δ(0)), Fφ(O)) + (g, Iφ)dt
JO

f o r a l l φ e Sτ, w h e r e Sτ = {φ: φ, φt e L 2 ( 0 , T; K0(Ω)), φ(-90)e K0(Ω) a n d

tf( , Γ) = 0}.
We call such a function u a weak class Ho solution of problem

(16).
Equation (18c) is obtained formally by multiplying (16a) by Δφ,

integrating over Ω x (0, T) and performing several integration by
parts. All integrals in (18c) make sense because Δφ has compact
support in Ω. Conversely, (18c) implies (16a) holds with some scalar
function p such that p, pXieL2

l0C(Ωx(Q, T)), provided v satisfies the
conditions (18) and also vt e L\s, T; J0(Ω)) for all positive ε < T.

In what follows, we only consider domains ΩaRz for which
H*(Ω) c HQ(Ω) and for which dΩ is regular enough (say, uniformly
C2) so that the estimates in Lemma 2 hold.

PROPOSITION 3. Suppose u = v + b is a weak class Ho solution

of problem (16), where b is an admissible extension and v satisfies

(18). Then v, after redefinition on a set of t-measure zero, satisfies

the identity

(Fv, Vφt)dz - v \ {Δv, Δφ)dz + \ (v -Vv + b Fv + v -Vb, Δφ)dz

= (Fv(t), Fφ(t)) - (F(a - 6(0)), Vφφ)) + (β, M)dτ ,
JO

for all φeST and all t e (0, T).

Proof. Let φeSτ. For any fixed tQe(O, T) and every de
(0, T - t0), let

f Φ(t) for 0 ^ t ^ to

φδ(t) = \d-\to + δ - t)φ(t0) for t o ^ t ^ t o + d

' 0 f or to + δ ^ t S T .

Then φδeSτ and can be substituted for φ in (18c). Note that
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[T(Fv, VφH)dt = \\vv, Pφt)dt - δ-1 Γ0+ί(Fv(ί), Vφ{U))dt

= Jo (Vv, Fφt)dt - (V1 ^ Fv(t)dt,

The last term in (20) converges to (Fv(tQ), Fφ(t0)) as δ -» 0 if t0 belongs

S Γ + δ

i;(*)d!ί = v(τ)

strongly in J0(Ω)}. The set ikf has the property that mes ((0, T) —
M) — 0; see for example [11, p. 88]. Next, it is easy to see, as
δ->0, that

\T(Δv, Δφδ)dt > [t0 {Δv, Δφ)dt ,
Jo Jo

\\G(V), Δφδ)dt Λ\G{v\ Δφ)dt ,
Jo Jo

Γ (g, Δφδ)dt > Γ° (g, Δφ)dt ,
Jo Jo

where we have denoted the term v Vv + b Vv + v Fb by G{v).
Thus, if toeM, (19) holds for all φeSτ.

Now let t0 be an arbitrary instant of time in [0, T) and let
{tj} c M converge to t0. Then there exists a subsequence {tjjc} and a
function V(x, t0) 6 Jo(Ό) s u cb that v(tijb) —• F(ί0) weakly in J0(Ω) as
&—> oo. Letting ί = ίifc and fc—> oo in (19), we obtain

*, Vφt) - v{Δv, Δφ) + (G(v), Δφ) - (g, Δφ)}dt

(F(α - 6(0)), Fφ(0)) ,

for all φeSτ. Clearly, if toeM, (Fv(t0), Fφ{Q) = (F7(ί0), Fφ(Q) holds
for all ^ G S Γ , and in particular, for all φeD(Ω x [0, T)). It follows
that V(x, to) = v(x, to) for xeΩ. Note also V(x, 0) = a(x) - b(x, 0).
Thus, if we redefine v(x, t) by setting v(x, t) = V(x, t) for tί M,
then (19) holds for all t e (0, T).

REMARK. The redefined function v(x, t) is weakly continuous in
JQ(Ω) as a function of t. Indeed, it suffices to observe that (19)
implies (Fv(t), Fφ) -> (Γv(t0), Fφ) as ί->ί0> for all φeD(Ω).

LEMMA 3. Suppose u is a weak class Ho solution of problem
(16), say u = v + b, where b is an admissible extension of the
boundary values and together v and b satisfy (18) with initial value
a. Let b be any other admissible extension and set v = u — b. Then
together v and b satisfy (18) with initial value a.

Proof Clearly v = v + b — b. Hence if b — b satisfies (18a) and
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(18b), so does v. The assumptions on 6 and 6 imply b — beC2(Ω x
[0, Γ])f F (6 - 6) - 0 in β x (0, Γ), supί6(0,Γ) ||F(δ - 6)(ί)|| < ~, δ -
6 = 0 on dΩ x (0, Γ) and (6 — δ)(a?, t) —> 0 continuously as | sc | -> oo
for ί e (0, T). Thus (6 - 6)( , ί) e JO*(42) for t e (0, Γ) by Lemma 4 of
[8]. Since 6 and 6 both satisfy the auxiliary condition (16f), it
follows that (6 - δ)( , ί) 6 JQ(Ω) for every ίe(0, Γ). Also

Γ \\Δ(b - δ)(ί)||2dί < oo; so b - beL\0, T; Hϊ(Ω))aLX0, T; Ho(Ω)).
Jo _

Arguing as above, we show (b — 6)t( , t) e J0(Ω) for every t e (0, T).
It follows that (F(6 - δ)4, F )̂ = -((δ - b)u Δφ) for all ^ e KQ(Ω). Thus,
integrating by parts with respect to t, we obtain

Γ (Pv, Pφt)dt - Γ (Pv, Pφt)dt + Γ((δ - b)t, Δφ)dt - (F(δ(0) - 6(0)), F (̂0))
Jo Jo Jo

for all φeSτ. Also, a simple calculation gives

v Pv + b Pv + v Pb = v - Pv + b - Pv + v Fb + (b Pb — b - Pb) .

It follows easily now that v and 6 satisfy a similar identity to (18c)
with g = / — 6t + vΛ6 — 6 F6.

We now proceed to prove the continuous dependence and uni-
queness of solutions of problem (16). Suppose u and ΰ are two weak
class HQ solutions of (16), having the same boundary values but
possibly different initial values a with a respectively. Let a — a e
J0(Ω) and let 6 be an admissible extension of the boundary values,
with a - δ( , 0) e J0(Ω). Then a - 6( , 0) = ά - a + a - 6( , 0) also
belongs to J0(Ω). By Lemma 3, v = u — 6 and v ~ ύ — b both satisfy
conditions (18) with the same extension 6, and with initial values a
and ά respectively. Our first objective is to show that the difference
w •= u — u satisfies the identity

±\\Pw(t)\\2 + v \[ \\Δw(τ)\\2dτ = l | | F ( α - α) | | 2

(vPv — v- Pv, Δw)dτ

0

S t „

(b-Fw + w Pb. Δw)dτ ,
0

for every t e (0, T).
Since v eL\0, T; H0(Ω))f there exists a sequence {vfc} in

27(0, Γ; JΓ0(β)) such that

as &-> oo. For fixed te(O, T) and every &, let
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vk

p(x, τ) = Γ ωp{τ - η)v\x, η)dη ,
Jo

where ωpeC~(R) is a kernel with support contained in {τ: \τ\ < p <

min (t, \τ — 11)} such that ωp(τ) = ωp(—τ) and I ωp{τ)dτ = -1. Clearly
J_oo

every vk

p belongs to ST, and can therefore be substituted for φ in
(19). Since coP(τ) = —ωp(—τ), an application of Fubini's theorem
yields

(22) Γ {Vv{τ\ VvUτ))dτ = - Γ (F^ t (r), Fΐ7*(τ))dr ,
Jo Jo

where vp(x, τ) — \ ωp(τ — η)v(x, rj)d/η. The right side of (22) converges

S i _ Jo r« _

(Pvptt Vv)dτ = I (Ft;, Fvpt)dτ, as fc—> oo. Using conditions (17)
and (18a), we can show v Pv, b-Pv, v PbeL2(0, Γ; L\Ω)). For
instance, applying Holder's inequality, Lemma 2, and the well-known
Sobolev inequality

(23) \\v\\β ̂  C\\Fv\\ ,

valid for veC^iR*), we have

\\vPv\\ 5Ξ ||t>||.||Fi;||, ^ C\\Fv\\(\\Fv\n\Iv\r + \\M\)

Here, the term | |Fv | | 3 / 2 | | iv | | l / 2 was estimated using Young's inequality:
ab ^ ap/p + b"lq with p = 4/3 and g = 4. Now (?(-!;) = v Fv + b Fv +
v Fbe L\0, T; L\Ω)) and it follows that

(G(v), Δvp)dτ > \ (G(v), Δvp)dτ
o Jo

as k —> oo. Thus the following identity is obtained by letting φ = vk

and & -^ oo in (19):

(Fv, VvPt)dτ — v I (z/'y, Δvp)dτ + I

o Jo Jo

= (Ft (t), Ff,(ί)) - (F(a - 6(0)),

If we add this identity to a similar one with the roles of v and v
interchanged, and note that

Γ (FVf Pvpt)dτ = - Γ (Γv, VvPt)dτ ,
Jo Jo

the result is
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-v[ {{Δv, ΔvP) + (Δv, ΔvP)}dτ + [ {(G(v), ΔvP) + (G(v), ΔvP)}dτ
Jo JO

(24) = (Fv(t), FvP(t)) + (Fv(t), rvP(t)) - (F(a - 6(0)), FvP(0))

{-(Ffu Fvp+FvP) + (Λ, ΔvP + ΔvP))dτ.

We study the behavior of each of the integrals in (24) as p—>0.

Using the fact that limσ_0 Γ \\v{τ + σ) - v(τ)\\2

HΛτ = 0 (c.f. [11, p.
Jo ft °

86]), one can show lim^o \ \\vP — v\\2

Hndτ = 0. This implies
(Av, Δvp)dτ —> \ (Δv9 Δv)dτ as p —> 0, and also the convergence of

o Jo

all other integrals with respect to t in (24). Next, to show

(25) (rv(t),FvP(t)) >\{Vv{t\Vv{t)) as p >0,
Δ

we recall that v is weakly continuous in J0(Ω) as a function of t.
Thus,

(Fv(t), VvP{t)) - \Pωp{η)[{Vv{t\ Vv{t)) + efo)]*? ,

Jo

ωp(η)dη = 1/2.

0

The convergence of the remaining terms in (24), as p -> 0, is handled
similarly. Now, letting p —»0 in (24), we obtain

-2i> Γ (/v, iiJ)dτ + [ {(G(v), Iv) + (G(v), Δv)}dτ
Jo Jo

(26) = (Fv(t), Fv{t)) - (F(a - b(fi)\ F{a - 6(0)))

+ Γ {-(Vfu V{v + v)) + (/„ I(v + v)))dτ .
Jo

Replacing v and a in (26) by v and α, respectively, and vice versa,
we find

-v Γ \\Δv{
Jo

τWdτ

and a similar identity for v. Adding these identities for v and v,
and subtracting (26), gives the identity (21).

Since vFv — v Fv = w- Fw + w Fv + t; Fw, (21) can be rewrit-
ten as
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\\Iw(τ)\\2dτ = ̂ \\F(a-m2+[\^'^, Δw)dτ
2 Jo

+ I ((v + b) - Vw + w P(v + 6), Δvήdτ .
Jo

(27) ώ 2

The second term on the right side of (27) can be estimated using
Holder's ineguality, (7), (23) and Young's inequality:

\{w P w , Δ w ) \ £ \ \ w \ \ t \ \ P w \ \ z \ \ Δ w \ \
^ Cd\\Fw\\(\\Fw\\1/2\\Δw\\1/2 + | | F /

Here, Cd)CC denotes a constant dependent only on a > 0 and the
regularity of dΩ. The last term on the right side of (27) can also
be estimated using Holder's inequality, (7), (8), (23) and Young's
inequality:

((v + b) Pw, Δw) ̂  sup \v + b\ \\Fw\\ \\2w\\
Ω

( 2 9 ) ^ a\\Jw\\2 + C,J\\Iv\\2 + \\Fv\\* + sup |6|2)||Fw||2',
Ω

(w F(v

Setting a = vβ, we combine these estimates for terms on the right
side of (27) obtaining

(31) ||Fw(ί)||2 ^ \\F(a - άOH2 + \{h{τ)\\Fw{τW + σ\\Fw{τ)\f)dτ ,
Jo

where fe(τ) = σ(\\Δv\\2 + \\Pv\\2 + supβ | δ | 2 + | |Fδ||l), and σ is a constant
dependent only on v and the regularity of dΩ.

The function R(t) = \\F(a - a)\\2 + [ (h(τ)\\Fw(τ)\\2 + σ\\Fw(τ)\\\6)dτ
Jo

is continuous on [0, T] and absolutely continuous on (0, ϊ7), as a
function of t. Using (31), we obtain

^ + σ\\Fw(t)\\Q

It follows that

(32) R{t) ^ \\F(a - α)||2exp Γ (Λ(r) + σ\\Fw{τW)dτ ,
Jo

for all t e[0, T]. Now, suppose 22(0) = \\P(a ~ α)| |2 < A for a given
positive number A, and let [0, TA] be the largest subinterval of
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[0, T] on which R(t) ^ A. Then, for all t e (0, TA), we have
\\Fw(t)\\2 £R(jb) ^ A and, by (32),

R(t) ^ ||F(α - α)||2exp(<M2£ + #(t)) ,

where i?(ί) = Γfc(r)dr. Choose A = T~m and suppose ||F(α - α) | | 2 ^

Ae-σ~Hm. Then i2(Γ) <: A, which implies TA = Γ. We have proved

THEOREM 4. Lei ΩaR3 be a domain with a uniformly C2

boundary, for which H*(Ω) aH0(Ω). Let u and ΰ be two weak class
Ho solutions of problem (16) with the same prescribed boundary
values and forces 6*, 62, /, but with possibly different initial values
a and a respectively. Let b be any admissible extension of the
boundary values, with a — b(0)eJQ(Ω). Suppose a — aeJ0{Ω) and

\\V{a - α) | | 2 ̂  Γ-1 / 2exp(-<7 - H(T)) ,

where a is a constant dependent only on v and dΩ, and

H(t) = σ[ (\\I(u - bW + WΠu - 6)||2 + sup | 6 | 2 + | |F6||!)dτ .
JO Ω

Then, for all t e [0, T),

\\Vu{t) - Vΰ{t)\\2 £ ||Fα - W e x p ( 2 £ + H{t)) .

In particular, u = ΰ if a = α.

4* Existence* In this section, we prove a local existence
theorem for weak class Ho solutions of the nonstationary problem
(16), if the prescribed data satisfy conditions (17). Since weak class
Ho solutions need not possess a time derivative, we will not need
the rather unnatural assumption that the force f in (17e) vanishes
for some initial time interval (0, ε). This assumption was required
in a related existence theorem of Heywood [9].

We seek solutions of problem (16) in the form u — v + b, where
b is an admissible extension and v satisfies (18). We use Galerkin's
method, taking as basis functions, a sequence {ak} in K0(Ω), which
is complete in H0(Ω) and orthonormal in JQ(Ω). Let

be the solution of the initial value problem for the system

(Fvΐ, Fa1) + v(Jvn, la1) - (vn Pvn + b Vvn + vn Pb, la1)
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for t ^ 0 and 1 = 1,2, —, n, with initial conditions Ckn(0) =
(F(α - 6(0)), Fak), Jc = 1, 2, . . . , * .

Multiplying (33) through by Cln(t) and summing Σ?=i> w e obtain

(34) JL i-\\Wn\\1 + v\\Δvn\\2 = (vn >Fvn + b Fvn + vn Vb, Δvn)
2 dt

+ (Ffu Fv») - (/„ Δvn) .

For simplicity, we shall suppress the superscript n. The first term
on the right side of (34) can be estimated similarly to (28)-(30).
Thus, for any a > 0,

\{v Vv, Δv)\ ^ a\\Iv\\* + C,,a\\Fυ\\ι + C3J\Fv\\e ,

\(b-Fv, Iv)\ ^ a\\2v\\* + C3,αsup \b\*\\Fv\\*,
Ω

I(v Fb, Δv)\^a|| Δv||2 + Cs,a||Fb\\\\\Fv||2 .

The last two terms of (34) can be estimated using Holder's inequality:

2 + ~

Combining these estimates for terms on the right side of (34) and
setting a = v/8, we obtain

A||wII2 + Hl^ll2 ^ C^AWW* + ct,a\\w\\*
at

This differential inequality can be integrated to give

(35) || Vv(t) ||2 ^ F{t) and Γ || Δv(τ) fdτ ^ F(t) , t e [0, Γ*) ,
Jo

where 2̂ (4) and j^(ί) are continuous functions in [0, T*) with ^(0) =
\\V(a - 6(0))||2, and Γ* depends on ||F(α - δ(0))||, v, dΩ, A and/2; see
for example [10, Lemmas 3 and 4]. Thus one can choose a sub-
sequence of {vn}, again denoted by {vn}, which converges weakly in
L2(0, T*; HO(Ω)) to a function v. The limit v can be taken to satisfy
the estimates in (35).

Let φm{x, t) = ΣΓ=i Cι(t)aι(x)f where the coefficients Cj(ί)'s are
continuously differentiable in [0, ϊ7*) with CZ(T*) = 0, I = 1, 2, , m.
Multiplying (33) through by C^t), summing Σ H l f and integrating
over (0, ϊ7*), we obtain
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*, Δφm) - (v* Fvn + b Fvn + v* Fb, Δφm))dt
(36) J o

In the first integral of (36), one can integrate by parts with respect
to t to get

(37) t (Fv7, Fφm)dt = - \ (Fvn, FφT)dt - (Fv"(0), Fφm

Jo Jo

If n ^ m, then (Fvn(0), Fφm(0)) = (F(a - 6(0)), Fφm(O)) because

(Fv"(0), Fa1) = (F(a - 6(0)), Fa1) for all n ^ I. Thus, letting n -* oo

in (36) yields

(Fv,FφT)dt — v\ (Jv,iίJm)cίί + \ (v Fv + b Fv + v Fb, Δφm)dt

= - ( F ( α - 6 ( 0 ) ) , Fφm{

It can be shown that every φ in Sτ* can be approximated by func-
tions of the form φm in such a way that

\\Φm(t) - rtOIUo + \\ΦT(t) - & ( 0 | U 0 — > 0 ,

uniformly in t e [0, T*] as m -> oo. It follows that (38) holds for all
φ e Sτ*. This establishes the existence of a local solution of problem
(16).

It is not difficult to show the solution u = v + 6 just constructed
satisfies the initial condition in the sense that limί_>0+ \\Fu(t) — Fa\\ = 0.
Since v satisfies the first estimate in (35), we have lim supt_0+ \\Fv(t) \\ ̂
|| F(α - 6(0)) ||. Therefore, since v(t)-> a - b(0) weakly in J0(Ω) as
t -+ 0+, it follows that v(t) -+ a - 6(0) strongly in J0(Ω) as t -^ 0+.
Our assertion follows because

6(0) - F α | | ̂  ||Ft;(t) - F{a - 6(0))|| + \\Fb(t) - Fδ(O)||

G t \l/2

J\Fbt(τ)\\2dή .
Finally, we note the function v possesses second order derivatives
with respect to x in L2(0, T*; L\Ω)).

THEOREM 5. Let Ω czRz be a domain with a uniformly C%

boundary. Suppose, for the initial boundary value problem (16),
that the prescribed data permit the boundary values to be extended
into Ωx[0, T] as a solenoidal function 6 satisfying conditions (17).
Then there exists a weak class Ho solution u = v + b on some interval
(0, Γ*), with 0 < T* ^ Γ, such that F u = 0 αra£ Fw, D2ueL%0, T*;
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L\Ω)). The time interval (0, ϊ 1*) depends only on \\F(a —6(0))II, v,
et ct

the C2-regularity of dΩ, and the functions \ \\Pfi\\2dτ and I ||/2||
2eZτ.

Jo Jo

Further, l i m ^ \\Vu(t) - Fa\\ = 0.
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