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TOPOLOGIES ON THE RING OF INTEGERS
OF A GLOBAL FIELD

Jo-ANN COHEN

A characterization of all nondiscrete, locally bounded ring
topologies on the ring of integers of an algebraic number field
and all those on the ring of integers of an algebraic function
field for which the field of constants is bounded is given. As
a consequence of these results we obtain Mahler's classic de-
scription of the seminorms on the ring of integers of an
algebraic number field.

1* Introduction and basic definitions* Let R be a ring and

let T be a ring topology on R, that is, T is a topology on R
making (xf y) -> x — y and (x, y) -> xy continuous from R x R to R.
A subset A of R is bounded for T if given any neighborhood U of
zero, there is a neighborhood V of zero such that AVS= U and
VA C U. T is a locally bounded topology on R if there exists a
bounded neighborhood of zero for T.

We recall that a seminorm || II o n a rin& R *s function from
R to the nonnegative reals satisfying \\x\\ = 0 if x — 0, \\x — y\\ ^
\\x\\ + \\y\\ and \\xy\\ ^ | | # | | ||τ/|| for all x and # in R. A seminorm
on R is a norm on 12 if ||cc|| = 0 implies x = 0.

If || || is a seminorm on R, for each ε > 0 define Be = {r e 12:
| | r || < ε}. Then {l?ε: ε > 0} is a fundamental system of neighborhoods
of zero for a locally bounded topology Tπ..n on 12. Two seminorms
on 12 are equivalent if they define the same topology.

An algebraic number field is a finite extension of the rational
field Q. An algebraic function field is a finite extension of the
field F(x) of rational functions over the field F. A global field is
either an algebraic number field or an algebraic function field.

Weber gave a complete description of the locally bounded topo-
logies on the rational integers Z [12] and Mahler characterized the
normed topologies on the ring of integers of an algebraic number
field [7]. A description of the locally bounded topologies on the
ring of integers of Q{V—d) where d is a positive, squarefree inte-
ger was obtained by Wieslaw [14]. In this paper we use Weber's
description of the locally bounded topologies on global fields ([11,
Theorem 3.3] and [13, Theorem 4.4]) to characterize all the locally
bounded topologies on the ring of integers of an algebraic number
field and also those on the integral closure of F[x] in K for which
the subfield F is bounded where K is an algebraic function field.
The results of Weber [12], Mahler [7], and Wieslaw [14] are a
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consequence of this characterization.

II* The ring of integers of a global field* If K is an
algebraic number field, let R be the integral closure of the rational
integers Z in K, P the set of nonzero prime ideals of R, and let
Poo be a set of archimedean absolute values on K such that each
archimedean absolute value on K is equivalent to exactly one
member of Poo. Then R is a Dedekind domain properly contained
in K [5, Theorem 6.1, p. 23], K is the quotient field of R [10,
Theorem I, p. 74] and Poo is a finite set [5, Proposition 1.4, p. 81].
Denote P U Poo by P\

If K is a finite extension of F(x), let Z be F[x], R the integral
closure of Z in K, P the set of nonzero prime ideals of R, Vo* the
valuation on F{%) defined by, Voo(f/g) = degg — deg/, {vu , vn} a
complete set of extensions of ^ to K [1, Definition 3, p. 140; and
Theorem 1, p. 143], and let P«> = {| |,: i e [1, n]} where for each
i e [ l , n], \vl = 2~v^y) for all y in K. Then R is a Dedekind domain
properly contained in K and if is the quotient field of R [5, Theorem
6.1, p. 23; 10, Theorem I, p. 74]. As before, denote P U Poo by P'.

If K is a global field, R is called the ring of integers of ϋΓ.
Each peP defines a p-adic valuation vp on iΓ (and hence on R) and
furthermore, for each a in if\{0}, vp(a) = 0 for all but finitely many
p in P [2, p. 25]. Let Tp denote the topology on R associated with
the valuation vp. Then {pm: m ^ 0} is a fundamental system of
neighborhoods of zero for Tp. For each p e P and each m ^ 0, let
T^m be the topology on R for which {pm} is a fundamental system
of neighborhoods of zero. We note that Tpm is the topology on R
defined by the seminorm || |L» where

0 if r e f

Finally, for each | |ePoo, let T\..{ be the corresponding absolute
value topology on R.

Henceforth, let K be a global field and define Z, R, P, Poo and
P' as above. We denote topologies on R by T or Γ' and those on
Khy f.

LEMMA 1. Let T be a ring topology on R and let | | e P«>. //
{yeR: \y\ < M} is a T-neighborhood of zero for some M > 0, then
T 2 Γ,..,.

Proof. Let ε > 0. Then there exists a c in R such that \c\>
M/ε. Indeed, if R is the ring of integers of an algebraic number
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field, let c be a positive integer such that \c\> M/ε and if R is the
ring of integers of an algebraic function field, let c = xn where n
is a positive integer such that | xn | > M/e. As y —>yc is continuous
at zero, there exists a T-neighborhood U of zero such that Uc £
{yeR: \y\ < M}. Then for all w in U, \u\ \c\ < M and hence \u\ <

ε. Consequently, {y eR: \y\ < ε} is a T-neighborhood of zero and so

Γ 2 Γ , . . ,
We recall that a subset /of a field F is an almost order of i*7

if (1) 0, 1 e I, (2) - ! £ / , (3) J l £ l , (4) there exists a nonzero element
h in / such that fe(J + / ) £ / , and (5) for each a? in i*7*, there exist
y and £ in /* such that x = 2/2~\ If Γ is a nondiscrete, locally
bounded ring topology on F, then there is an almost order I oί F
which is a T-bounded neighborhood of zero. Conversely, if I is an
almost order of F, then there exists a unique nondiscrete, locally
bounded ring topology Tτ on F for which J is a bounded neighbor-
hood of zero. Furthermore, T7 is Hausdorff if and only if IΦ F
[6, Theorems 5 and 6].

We note also that if Z7 is a bounded neighborhood of zero for
a topology T on a field F, then {aU: a Φ 0} is a fundamental system
of neighborhoods of zero for T [3, Exercise 20b, p. 120]. Con-
sequently, if U and V are two T-bounded neighborhoods of zero,
then there exist nonzero elements a and b such that a U £ V and
bVQ U.

LEMMA 2. If T is a nondiscrete, locally bounded topology on
R, then there exists a T-bounded neighborhood H of zero such that
H is a proper almost order of K. Furthermore, if a subset A of
R is T-bounded, then A is a TH-bounded subset of K as well.

Proof. Let V be a T-bounded neighborhood of zero such that
1 6 V and - V £ V. Define H by, H = {r e R: r V £ V}. H clearly
satisfies properties 1 — 3 in the definition of an almost order. Since
V is a T-bounded neighborhood of zero, H is a T-neighborhood of
zero and as 16 V, H £ V. H is therefore T-bounded as well. Con-
sequently, H + H is T-bounded and so as T is nondiscrete, there
exists a nonzero element h in H such that h(H + H) £ H. H is a
proper subset of K since H £ R. So it suffices to show that if d
is a nonzero element of K, then there exist nonzero elements y and
z in H such that d = 2/2"1. Let s and t be nonzero elements of R
such that d = st~\ As the mappings w —>sw and w —>tw from ί?
to i2 are continuous at zero, there exists a nonzero element w in H
such that SM and tu are in iϊ. Then d=yz~x where y — su and z — tu.

To prove the final assertion of the lemma, we note that if A
is T-bounded, then there exists a nonzero element h in H such that
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hA £ H as T is nondiscrete. Hence A is bounded for TH as well.
For each nonempty subset S of P', define O(S) by,

O(S) = {yeK: vp(y) ^ 0 for all p e S n P

and

l l H ^ l for all | . . | eSnPoo} .

We note that O(Poo) Π Z is the set {0, ±1} if if is an algebraic
number field. Therefore, if T is a locally bounded topology on the
ring of integers of an algebraic number field, then O(Poo) Π Z is
bounded for T. We note further that if K is an algebraic function
field, then O(Poo) Π Z is the field F of constants.

Weber proved that if f is any Hausdorff, nondiscrete, locally
bounded topology on a global field K for which O(Pco) Π Z is bounded,
then there exists a nonempty, proper subset S of P ' such that f
is the topology defined by the almost order O(S) [11, Theorem 3.3
and 13, Theorem 4.4]. (S must be a proper subset of P'. Indeed,
if K is an algebraic function field, then as O(Pr) is contained in the
set of elements of K which are algebraic over F [4, Corollary, p.
12], O(Pr) fails to satisfy property 5 in the definition of an almost
order. If K is an algebraic number field, then O(Pr) is finite [9,
Theorem 33: 4, p. 69] and so once again, property 5 does not hold.)
We use this result and the following lemma due to Seth Warner.

LEMMA 3. If A is a Hausdorff topological ring with identity
1 that has a bounded subfield D containing 1 such that the left D-
vector space A is finite dimensional, then A is discrete.

Proof. Let n = dim^ A. First, A is bounded, since if {el9 e2, ,
en} is a basis of A, then A = De1 + + Den. We next show that
any neighborhood U of zero contains an open left ideal. Indeed,
let V be a neighborhood of zero such that V + + V (n times)
£Z7. As A is bounded, there exists a neighborhood W of zero
such that AWQ V. Let {alt -- ,αw} be a maximal, linearly inde-
pendent subset of W. Then m ^ n and W £ Dax + + Dam, for
if a e W\{Da1 + + Dam) then {alt , am, a} is a linearly inde-
pendent subset of W. Thus W C Ώax + + Dam £ Aax + +
Aam £ V + + F(m times) £ Z7 as m <̂  w. So Ac^ + + Aam is
the desired open left ideal contained in U.

As A is finite dimensional over D and therefore artinian, it has
a minimal open ideal J which is clearly not only minimal but the
smallest. Consequently by the preceding, J = (0) as A is Hausdorff.
So A is discrete.
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THEOREM 1. Let T be a nondiscrete, locally bounded topology
on the ring R of integers of a global field K for which O(Poo) Π Z
is bounded. Then there exists a proper subset S of Poo, a subset Px

of P and nonnegative integers n{p) for each p e P\PX such that

T = SUP (SUP Tp, SUP Γp ίp}, SUP T|..|) .
peP± pe P\P! I . I e s

In particular, if K is an algebraic number field or if K is a
finite dimensional extension of the field Fq(x) of rational functions
over a finite 'field Fq having q elements, then every nondiscrete,
locally bounded topology on R can be described as above.

Proof. Let H be a T-bounded neighborhood of zero such that
H is a proper almost order of K. Let f be the unique Hausdorff,
nondiscrete, locally bounded topology on K for which H is a bounded
neighborhood of zero. (We note that f \R 2 T.) By Lemma 2,
O(Pco) Π Z is Γ-bounded and hence by [11, Theorem 3.3; 13, Theorem
4.4], there exists a proper subset S' of Pr such that f is the
topology associated with the almost order O(S'). So there exists a
nonzero element a in K such that aO(Sf) £ H £ R. If O(S') §£ R,
let y eO(S')\R, let peP be such that vp(y) < 0 and let m > 0 be
such that vp{a) + mvp{y) < 0. Then aymea0(S') S R but vp(aym) <
0. Contradiction! So O(S') £ R = O(P) and hence O(P U S') = O(S').
Therefore, P U S' is a proper subset of P ' as O(S') is an almost
order of K and so by replacing S' with P U S', we may assume
that S' is a nonempty, proper subset of P ' and P Q S'. Consequent-
ly, the set S defined by, S = S' Π Pco, is a proper subset of Poo.

Let I I 6 S. As H is a T-bounded neighborhood of zero, there
exists a nonzero element b in K such that δ i ϊ £ O(S') £ O({| •(}).
So for each heH, \h\ <: 1/|6|. Consequently, {i/ei2: |i/| < 2/|6|} is a
T-neighborhood of zero and so by Lemma 1, Γ 2 Γ|..|.

For each peP, let w(p) = sup{n ^ 0: p* is a Γ-neighborhood of
zero}. Let P1 = {peP: n(p) = oo}. We note that for all peP\Plf pn

is Γ-open if and only if 0 ^ % ̂  (̂̂ ?) and for all p 6 Px, p
n is Γ-open

for ^ ^ 0. Clearly, T 2 sup (suppePi Tp, su$pePXPl Tpn(P), sup,..teS Γ|..|).
So it suffices to prove that T is weaker than the supremum to-
pology.

Let U be any T-closed neighborhood of zero. Then U is a t-
neighborhood of zero as well. So there exists a nonzero element a
in R such that aO(S') £ U. Let plf , pmeP be such that vp.(a)>
0 for ί 6 [1, m] and vp(α) = 0 for 2? e P\{p€: 1 ^ i ^ m} [2, p.* 25].
Consider the set F(Ί G1 where F = nΓ=:^;2)ί(α) and C, = {yeR: \y\ <
\a\ for all | - -| e JS}. If yeVf\Cl9 then a^ysOiβ') and so ye
aO{S') £ Z7. Therefore, V Π Cx £ U. Let F be the Γ-closure of V
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and define W by, W= VnC2 where C2 = {yeR: \y\ < \a\/2 for all
l leS}.

We next show that W Q U. Let weW and let W be any T-
neighborhood of zero. As Γ,.., £ Γ for all | | e S , we may assume
that w' 6 C2 for all w' e W. Since w e V, there exists w' e TF' such
that w + w' e V. Furthermore, \w + w'\ ̂  \w\ + |w'| < |α|/2 +
|α|/2 = |α | [for all | | e S and so w + w'eVΓiC^ Therefore, w is
in the Γ-closure of V Π Cx. But V Π Cx £ £/", a Γ-closed set. Hence
w eU and consequently TΓ £ ?7.

To complete the proof of the theorem, it suffices to show that
W is open for the supremum topology. As V is an ideal of R, V
is also an ideal of R [3, Proposition 5, p. 77] containing V. So V—
ΠT=ίp7ί where ^ ^ vp<(α) for i = 1, 2, , m [2, p. 26]. The canon-
ical epimorphism φ from R to R/V then defines a Hausdorff ring
topology on R/V [3, Proposition 18, p. 25]. If K is an algebraic
number field, R/V is a finite ring [9, Theorem 33:2, p. 67] and the
topology on R/V is therefore discrete. If K is an algebraic function
field, as φ is open and continuous, φ(F) is bounded. Furthermore,
R/V is finite dimensional Jover φ(F) [4, proof of Theorem, p. 23].
Therefore, by Lemma 3, R/V is discrete. So in both cases, V is
open for T. Thus for 1 ̂  i ^ m, pp is T-open and so nt ^ n(pt).
Hence W is open for the supremum topology.

COROLLARY 1. If P™ has exactly one element, then the follow-
ing statements are equivalent.

1°. T is a nondiscrete ring topology on R for which the T-open
ideals form a fundamental system of neighborhoods of zero.

2°. T is a nondiscrete ring topology on R for which R is
bounded.

3°. T is a nondiscrete, locally bounded topology on R for
which O(Poo) Π Z is bounded.

Proof. Clearly 1° implies 2° and 2° implies 3°. To prove that
3° implies 1° we need only notice that as the set S defined in
Theorem 1 is a proper subset of Poo, S = 0 .

COROLLARY 2 [12, Theorem 1.5; 14, Theorem 1]. // R is Z,
Fq[x], or the integral closure of Z in Q(~[/ — d) where d is a positive,
squarefree integer, then statements 1°, 2°, and 3° are equivalent.

Proof. Corollary 2 follows from Corollary 1 and the observation
that Poo has exactly one element. (The proof for QiV^d) is the
same as the proof of Corollary 3 to Theorem 3 of [8].)
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THEOREM 2. Let K be a global field and let R be the ring of
integers of K. If T is a nondiscrete ring topology on R, then the
following statements are equivalent.

1°. There exists a proper subset S of Poo, a finite subset P1 of
P, a finite subset P2 of P\Pλ and positive integers n{p) for peP2

such that ϊ 7 = sup (suppePi ϊ7^, sup p β P 2 ϊϊ»<*>, supι..|β5 ΓIβ.|).
2°. T is defined by a seminorm which is bounded on 0(Poo)Γ\Z.
3°. T is a locally bounded ring topology on R for which

O(Poo) Π Z is bounded and there exists a nonzero element c in R
such that cn —• 0 in T.

Proof We first show that 1° implies 2°. If S{JP1ΌP2= 0 ,
then T is defined by the seminorm || || where | | r | | = 0 for all r in
R. If S U Pi U P2 Φ 0, then T is defined by the seminorm

sup (sup I--U supH IU^, sup | |)
P e P χ j )eP 2 i ! e S

where for each pePlf \r\p = 2~Vr) for all r in R.
Since T is nondiscrete, if T is defined by a seminorm || ||, then

there exists a nonzero element c in R such that | |c | | < 1. There-
fore, cn->0 in T and so 2° implies 3°.

To prove that 3° implies 1°, first notice that if cmep for some
m > 0, then vp(c) > 0. Define n{p), Pι and S as in Theorem 1.
Then {p e P: n(p) > 0} £ {p e P: vp(c) > 0}, a finite set [2, p. 25]. So
P1 is finite. Clearly T = sup (supp6Pl Tp, supί,eP2 2>w, sup|..,e<s Γ|..ι)
where P2 = {p e PV^: w(p) > 0}.

COROLLARY [7, p. 328]. If || || is α seminorm on the ring of
integers R of a global K for which O(Poo) Π Z is bounded and if
\\r\\ Φ 0 for some r in R, then || || is equivalent to the supremum
of finitely many p-adic absolute values, finitely many seminorms
|| ||pn defined by the nonzero ideals pn of R, and finitely many
absolute values from Poo.
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