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A SUB-ELLIPTIC ESTIMATE FOR A CLASS OF
INVARIANTLY DEFINED ELLIPTIC SYSTEMS

L. M. SlBNER AND R. J. SlBNER

We consider a certain invariantly defined nonlinear
system of partial differential equations on a Riemannian
manifold. Since a special case describes a steady, irro-
tional, compressible flow on the manifold, it is natural to
refer to the (square of) the pointwise norm of the solution
as the speed of the flow and to the density of the flow.
Under appropriate restrictions on the density, the system
is elliptic and we obtain a sub-elliptic estimate and a max-
imum principle for the speed of the flow in terms of the
curvature of the manifold.

Introduction* Let M be an ^-dimensional Riemannian manifold,
and ΛP(M) the space of smooth p-forms on M. For ω e ΛP(M), xeM,
let Q(ω) = (α>, ω){x) = *(ω/\*a>)(x) denote the pointwise norm of the
form ω. Let p: C°°(Λf) —• R be a given bounded smooth strictly posi-
tive function which we call the density function.

In the following, we consider the invariantly defined nonlinear
system of equations for ωeΛp(M):

dω = 0
( 1 ) δ(p(Q(ω))ω) - 0 .

If p = l, this system describes the motion of a compressible fluid
on M and reduces to a single second order equation for the potential
function. If the metric is Euclidean and p(Q) = (1 - (7 - l)l2Q)Ur~\
it becomes the gas dynamics equation for poly tropic flow in Rn. If
p = 1, one obtains the Laplace-Beltrami equation.

To be more explicit, if ω is a solution of (1), then it is also a
solution of a homogeneous second order quasi-linear system, Aβ) — 0.
In local coordinates, let

ω - ωh...ίpdxhΛ Adx*> , ωh~J> = ghh firiΛα)<r..<p ,

and assume p = p(Q(ω)). Then, A: ΛP(M) —> ΛP(M) is given by

+ lower order terms.

(We will observe the usual summation convention wherever possible.)
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A computation shows that the system (1) is elliptic for ω e ΛP(M)
if and only if

(2) -A- (p2Q) > 0 for all x e M .
dQ

If ilf is compact and (1) is elliptic, there is a unique weak solu-
tion in each cohomology class (Sibner [7]). The question of smooth
solutions is unresolved except in the case p = 1 ([7]) or if the metric
is Euclidean (Uhlenbeck [10]).

Assuming that the system (1) is elliptic, we shall derive an in-
quality for the function Q, of the following kind:

(3) LQ + B(ω) ^ 0

where ω is a solution of (1), L is a single second order elliptic ope-
rator with no zero order term, and B is a quadratic form whose
sign depends upon the curvature tensor. Such an inequality leads
to a maximum principle and is perhaps a step in the direction of
elliptic regularity for the system (1) (see [10]). An inequality of
the form (3) and a maximum principle were previously proved by
the authors for 1-forms on surfaces (n = 2) (see [9]).

1* The inequality satisfied by Q. Let / = ix ip, J = j1 * - jp

be multi-indices and set gTJ = ghh g'p**. Then, Q(ω) = gJ1ωJωI in
this notation. In terms of the Riemannian metric, let | Fα> |2 =
gklgJψkωJFιωI. Define the curvature form (Lichnerowicz [5, 6])

/ V l' P

l s=l S P t<s

Computing the Laplacian of Q, one obtains

and using the formula for Jω([lΐ]) one obtains the fundamental
identity for Q:

(1.1) - — ΔQ = \Fω\2 + K(ω) - p\(ω, ω) .
Δ

Next, let ω be a solution of (1) and replace ω in (1.1) by pω.
Using the fact that δpω = 0, one obtains

(1.2) ~^-Aρ2Q) + pliddpω, pω) = p2K(ω) + \V(pω)\2.
Δ

We shall show that the left hand side is a second order differ-
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ential operator on Q, LQ — LXQ + L2Q, and will compute its principal
part.

LA^-^ΔtfQ) = ±-(p2 + 2ppfQ)gίi^§-τ + first order terms .
Δ Δ uX uX

Using the fact that dco = 0,

Therefore,

L2Q = pl(δdρω, pω)

+ first order terms

Combining coefficients of

L2Q = i-gjiρρ'Q + p

and

LQ = I —g3ίp2 + IO^Ό

PROPOSITION 1.1. // ί/̂ e system (1) is elliptic at a solution co,
then L is an elliptic operator.

Proof. The principal symbol of Lx on a cotangent vector π =
fa, •", πj ^ 0 is

hp* + 2pp'Q)g''%πj > 0
Δ

using the ellipticity condition (2). Therefore, Lγ is elliptic.
Choose geodesic normal coordinates at a point, in which case

gi3' = S<:f, ft)7 = ft)7, and Q(α)) = Σ i (̂ >i)2. The principal symbol of L2

in these coordinates becomes:

- Σ ω*ι-..ι

If |θ' ̂  0, one sees immediately from the Schwartz inequality
that this expression is nonnegative. Therefore, if pf <> 0, the prin-
cipal symbol of L = Lί + L2 is positive definite and L is elliptic.
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If pf }> 0, the principal symbol of L in geodesic normal co-
ordinates is

±p2 ΣΣ π\ + pp'(Σ ωil...ih_ιiiJt+v..ipπiγ > 0

using the fact that p is positive. Hence, L is elliptic.
Summarizing the results of this section, we have shown

PROPOSITION 1.2. Let ω e ΛP(M) be a solution of the homogene-
ous elliptic system (1). Then Q((ι)) is a solution of the single scalar
equation

(1.3) LQ = p2K(ω) + \P(pω)\2

where L is a second order elliptic operator having no zero order
terms.

2. The maximum principle* Our main result is the following.

THEOREM. Let ω be a solution of the elliptic system (1). Then,
(a) Q = (ft), co) cannot have a relative maximum at a point xQ

where K(ω)\βQ > 0.
(b) If Q has a relative maximum at a point x0, in a neigh-

borhood N of which, K(ω) Ξ> 0 then
( i ) Q is constant on N.
(ii) K(ω) ΞΞ 0 in N.
(iii) Vω ΞΞ 0 on N.

Proof. As in [9], statements (a) and (i) of (b) follow from
Proposition 1.2 and the Hopf Maximum Principle. But if Q is con-
stant in N, then LQ ΞΞ 0 in N which gives, again by Proposition
1.2, statements (ii) and (iii).

If p = 1, the curvature expression K(ω) reduces to Ri5ωiωά

where Rίj is the Ricci curvature tensor. One speaks of R^ω^^ as
the Ricci curvature in the direction ω. In the language of gas
dynamics we have the

COROLLARY. A subsonic compressible flow on M cannot assume
its maximum speed at a point where the Ricci curvature is posi-
tive in the direction of the flow. If the maximum speed is attain-
ed at a point of a region N in which the Ricci curvature in the
flow direction is nonnegative, then the curvature must in fact be
zero, the speed Q must be constant, and the flow parallel in N (i.e.,
the covariant derivatives, Ficoj ΞΞ 0). // it is further known that
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the Ricci curvature is positive definite, then Q = 0 and hence co = 0
in N.

Added in proof. The authors, with P. D. Smith, have obtained
a regularity theorem for the system (1) using the estimate (3). It
will appear in a forthcoming paper.

REFERENCES

1. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New
York, 1958.
2. S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc, 52 (1946),
776-797.
3. 1 Curvature and Betti numbers, Annals of Math., 49 (1948), 379-390.
4. E. Hopf, Elementare Bemerkungen ilber die L'όsungen partieller Differentialgleich-
ungen zweiter Ordnung vom elliptischen Typus, Sitzber. Preuss. Akad. Wiss. Physik-math.
Kl, 1 9 (1927),147-152.

5. A. Lichnerowicz, Courbure et nombres de Betti d'une variete riemannienne compacte,
Compt. Rend. Acad. Sci. Paris, 226 (1948), 1678-1680.
6. 1 Courbure, nombres de Betti espaces symmetriques, Proc. Intern. Congr. of
Math., 2 (1952), 216-223.
7. L. M. Sibner and R. J. Sibner, A nonlinear Hodge-de Rham theorem, Acta Math.,
125 (1970), 57-73.
8. , Nonlinear Hodge theory: Applications, Advances in Math., 31 (1979), 1-16.
9. f A maximum principle for compressible flow, Proc. Amer. Math. Soc, 7 1
(1978), 103-108.

10. K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math., 138
(1977), 219-240.

11. K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York,
1970.

Received May 8, 1980. Research of the first author was partially supported by NSF
Grant MCS78-03276 and research of the second author was partially supported by NSF
Grant MCS78-03268.

POLYTECHNIC INSTITUTE OF NEW YORK

BROOKLYN, NY 11201

AND

CITY UNIVERSITY OF NEW YORK

BROOKLIN COLLEGE

BROOKLIN, NY 11210






