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ON ISOMETRIES OF HARDY SPACES ON
COMPACT ABELIAN GROUPS

JUN-ICHI TANAKA

Let Hp(m), 0 < p ^ oo, be the Hardy spaces on a
quotient K of the Bohr group. In this paper we completely
determine the isometries of Hp{m), p Φ 2, onto itself. Our
result is a generalization of a recent work of Muhly who
determined the isometries of Hp(m) onto itself under the
assumption that the dual group of K is countable, and it
may be regarded as a partial answer to a question posed
by Muhly.

1* Introduction* Many results have been obtained concerning
isometries of Hardy spaces in the theory of uniform algebras. The
most fundamental result in this direction is due to de Leeuw, Rudin,
and Wermer [2], which states that an automorphism of the classical
Hardy space H°°{T) is induced via composition with the unit circle
T of a fractional linear transformation of the unit disc onto itself.
Their work was carried on independent of Nagasawa [13], who also
described the isometries of ίίoo(Tr) onto itself. On the other hand,
Arens [1] completely determined the automorphisms of the uniform
algebra of analytic functions on a compact abelian group K whose
dual group Γ is archimedean ordered (cf. [11]). This result was
extended by Muhly [11] to the uniform algebra of analytic functions
induced by a flow which has no periodic orbits. Moreover Muhly [12]
has recently given, among other things, the following interesting
generalization of this result of Arens to the case of isometries of
Hardy spaces Hp(m), p Φ 2, on K: Under the assumption that Γ is
countable, every isometry of Hp(m), p Φ 2, is induced via composi-
tion with an affine map of K such that the adjoint of the additive
factor of this map preserves the order of Γ. The purpose of this
paper is to remove the assumption on Γ. This result provide a
partial positive answer to the following question posed by Muhly in
[12; §5]:

Is it possible to describe the isometries of ergodic Hardy spaces
onto itself without the separability assumptions on phase spaces'!

The difficulty is that, in the absence of separability assumptions
automorphisms of measure algebras may not have point realizations.
On the other hand, although our proof rests on some techniques
which were first investigated by Muhly [11], [12], and is given in
the context of almost periodic setting, one will find some improve-
ments of the proof given in [12; §3].
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In the next section we present some preliminary material which
we shall need, and state our main result. In §3, we show that
under the assumption that K is metrizable, the automorphisms of
H°°(m) onto itself are induced via composition with certain Borel
isomorphisms. This will be used in §4 for the proof of our theorem
stated in §2. In §5, we close with some remarks.

The author would like to express his sincere gratitude to
Professors Yuji Ito and Junzo Wada for their useful advices.

2* Notations and the main theorem* Let if be a compact
abelian group, not a circle, dual to a subgroup Γ of the discrete
real line Rd. For 0 < p ^ °o, Lp{m) is the Lebesgue space based on
the normalized Haar measure m on K, and C(K) is the space of all
complex-valued continuous functions on K. Let 9ί be the uniform
algebra of all analytic functions in C(K), i.e., the family of all
functions / in C(K) whose Fourier coefficient

= \ Xι(x)f(x)dm(x)

vanishes for all negative λ in Γ, where Xλ(x) denotes the continuous
character on K defined by setting Xλ(x) = x(x) for any x in K. The
Hardy space, Hp(m), 0 < p < °o, is the closure of Sί in Lv{m), while
H°°(m) is defined to be the weak-* closure of Sί in L°°{m), Let {Tt}teR

be the transformation group on K such that, for any x in K,

Tt(x) = x + et

where et is the element of K defined by et(X) = eίtλ for all λ in Γ.
When it is convenient, we will often write Tt(x) for x + t. Recall
that the map t —> et embeds the real line R continuously onto a dense
subgroup Ko of K. A straightforward Fourier series argument
shows that the flow (K, {Tt}teR) is strictly ergodic, i.e., the normalized
Haar measure m is the unique probability measure which is invariant
under the action of {Tt}teR. We refer the reader to Helson's mono-
graph [7] for an up-to-date account of the theory of analyticity on
compact abelian groups.

In order to state our main result, we require a little more
terminology. For ί = 1, 2, let Kίf Γit At and ra£ be as above, and
let Si be the Borel field on i^. A set E in S3< is called conull if
mi(Ec) = 0. We say a map σ from Kx onto K2 is an affine map if
σ may be factored as σ = σ^σ2 where σ2 is a continuous group iso-
morphism from Kx onto K2 and σx is the translation by an element
of K2. Let Γt be the subsemigroup of nonnegative elements in /Y
Then we say also that the affine σ is order preserving if the adjoint



ON ISOMETRIES OF HARDY SPACES ON COMPACT ABELIAN GROUPS 221

σ* of σ2 carries Γ} onto Γt. We denote by (33*, m*) the measure
algebra of Borel field 33* associated with mi9 i.e., (33*, m<) is the
Boolean sigma-algebra of 33* mod m*-null sets. For Et in 33*, a map
τ is called a ifor̂ Z isomorphism from £Ί to 2£2 if τ is one to one,
onto, and both τ and τ~x are Borel maps. It is well-known in ergodic
theory that, under the assumption that both Kx and K2 are compact
metric, any sigma-isomorphism σ from (33̂  mλ) onto (332, m2) has a
point realization, i.e., there exist conull sets K[ and K[ in 33j and
332, respectively, such that σ may be considered as a Borel isomor-
phism from K[ onto ϋΓ2 (see [17]). Let T be a map from Kx to if2.
For any function / on K2, we define (Tf)(x) = /(Γa?) for & in ί^.

We may now give the statement of our main theorem which is
an analogue of [12; Theorem IV]. It will be proved in §4.

THEOREM 2.1. For i = 1, 2, let Γt be an arbitrary dense sub-
group of the real line R, but endowed with the discrete topology,
and let Kif mi9 and Hp{m%), 0 < p ^ ©o, be as before. If Ψ is an
isometry mapping Hp{m^) onto Hp{m2)> p Φ 2, then there exists a
constant c of modulus one and an order preserving affine map σ
from Kλ onto K2 such that

(2.1) ψf=c(foσ-ί)

for all f in Hp{m^). Conversely, such a constant c and an affine
map σ determine an isometry via this equation.

By virtue of Lowdenslager's theorem [7; Ch. 2. §2], this theorem
may be regarded as an extention to Besicovitch almost periodic
functions of a theorem of Arens about isomorphisms of algebras of
ordinary analytic almost periodic functions.

In our discussions in the forthcoming sections, we frequently
use the following lemma, which is a weak version of the statement
in [12; §3. Step. 2].

LEMMA 2.2. For i = 1, 2, let Γίf Kίf m* and (33*, m<) be as

before. Suppose that Ψ is an algebra isomorphism from H°°(m^
onto H°°(m2). Then there is a sigma-isomorphism σ from (33̂  mj
onto (332, m2) such that

(2.2) \ Ψ(f)dm2 = \ fdmι
JE Jσ~1(E)

for any f in H°°(mΐ) and any E in (332, m2). In particular,
— m2{E) for any E in (332, m2). Moreover, if Γ1 and Γ2
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are countable, then σ has a point realization.

Proof. For i = 1,2, let SK* be the maximal ideal space of
Hco{mι)f and let H^imϊ) — {/; / in H™(mτ)} where the hat " indicates
the Gelfand transform. Recall that H°°(mi) is a logmodular algebra
on the Shilov boundary dWlt of Wlif also recall that d9W; may be
identified with the maximal ideal space of ^ ( m j . If we set Ψ(f) =
(ψ(f)y for each / in uP^mO, then there is a homeomorphism σ
mapping 2^ onto 9K2 such that #(/) = / σ~λ and ^(32^) = dM2 (see
[13] and [11; §4] for details). Let m, denotes the Radonization of
mt. Then we have that m^U) > 0 for all nonempty open sets U
of dUli ([4; Ch. I, Corollary 9.2]). Since any nonzero E in (33,, m*)
corresponds to a nonempty open and closed subset E of 33J?*, it can
be seen that σ determines a sigma-isomorphism σ from Q8U mλ) onto
(332, w2) such that

\ W(f)dm2= \
JE Jσ~1(E)

for any / in H^mJ (cf. [4; Ch. I, §9]). On the other hand, it is
easy to see that m1 and m2<>σ are mutually absolutely continuous
representing measures of the uniform algebra 8ile This implies that
m1 and m2<>σ belong to a same Gleason part. So, since {mj is a one
point part by [4; Ch. VII, §4], we have m1 = m2<>σ. Together with
the above equation, we obtain the equation (2.2). When Γλ and Γ2

are countable, both Kλ and K2 are compact metric spaces. Hence,
by the remark above, σ may be identified with a Borel isomorphism
from a conull set K[ in 33χ onto a conull set K'2 in 3S2. This concludes
the proof.

3* Isomorphisms of Hardy spaces on metric groups* In this
section we study the properties of Borel isomorphisms which
determine isomorphisms of Hardy spaces. Throughout this section
we assume that, for i = 1, 2, Γt is a countable dense subgroup of R.

The following proposition is a consequence of [12; Theorem I].
However, we provide here an elementary proof.

PROPOSITION 3.1. For ί = 1, 2, let Γt be a countable dense sub-
group of R and let Kίf mi9 33*, {T^he*;, and H°°(mi) be as in §2.
If Ψ is an isomorphism from H°°{m^ onto £Γ°°(m2), then we may
find a constant β > 0, a conull set K[ in S3*, and a Borel isomor-
phism σ mapping K[ onto K2 such that

(3.1) r / ^ / o α - 1 , for each f in H~(md

(3.2) m^E) = m2(σ(E Π K[)) , for each E in ^ and
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(3.3) {σ-ιT?)σ)f{x) = TSlf(x) , m.-a.e. x

for each t in R and each f in H^ίm^. Conversely, such a a
determines an isomorphism from H°°{m^ onto H°°(m2) via the equa-
tion (3.1).

In order to prove Proposition 3.1, we need some lemmas. By
Lemma 2.2, there exists a conull set K[ in 33*, i = 1, 2, and a Borel
isomorphism σ mapping K[ onto Kf

2 which satisfies the equations
(3.1) and (3.2). So it suffices to show that this Borel isomorphism
a satisfies the equation (3.3).

We recall that 8ί< is the uniform algebra of all continuous analy-
tic functions on Kt for i ~ 1, 2, and note that, since Γt is countable,
% is separable. For x in Kt and s > 0, we denote by mix, s) the
regular Borel measure on Kt defined by the equation:

[ φdm(x, s) = — ί°° φ(x + ί) dt
2s2 +

for any φ in C(Kt). Since the domain ϋΓί of σ is conull, it follows
from Fubini's theorem that there is a null set iVsuch that, for each
x in K^N, m(x, s) is supported on K[. Hence, for x in K\N> we
can define the measure m(x, s) o σ~λ on K2 by the equation:

m(x, s) o σ~\E) = m(x, s)(σ-\E n K'2))

for each E in 3S2. Let H°°(R) denote the Hardy space of boundary
values of bounded analytic functions in the upper half-plane.

LEMMA 3.2. There exists an invariant conull set So in 35X which
has the following properties: For any fixed x in SQ,

( i ) m(x, s) is concentrated on the domain K[ of σ,
(ii) the family {φoσ(x + t); φ is in Sί2} of functions of t is

weak-* dense in H°°(R)f and
(iii) there is a sequence {sn} with sn —> °° such that

(3.4) \ φ o σdm1 = lim I φ o σdm(x, sn)
JK1 W ĉo J ^JK1

for each φ in St2.

Proof. Let {φn; n = 1, 2, •} be a countable dense subset of Sί2.
Then, together with above remark, we may choose an invariant
null set Nx such that, for each x in K^[N19 m(x, s) is concentrated
on K[ and the function of t, φn(x + t), belongs to H°°(R) for n =
1, 2, . It is easy to see that, since Γx is dense in R, H°°(R) is
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generated by {eίλt; λ is in Γt} where Γt denotes the subsemigroup
of nonnegative elements in Γ1 (Ch. [7; Ch. 3, §1]). Let μ be the
probability measure on R defined by the equation dμif) = dt/π(l + t2).
Since H°°(m2) is contained in H2(m2) and Zjυ © σ~x belongs to H°°(m2)
for each λ in Γt, there is a subsequence {φn) of {φn} such that

— > o w—•oo).

On the other hand, it follows from Lemma 2.2 and Fubini's theorem
that

II Άί] o σ-1 - φ%. |||2(m2) - [ I ZJ» o σ-\y) - φn,(v) \2dm2(y)

J£ [j^l^'ί* + *) -
We set

Γ + t) - ίi.= Γ
J-o

Then, since Fn> —> 0 in L\m^), we may find a subsequence {Fά} of
{FH/} with Fd(x) —> 0, mΓa.e. ». Since /Y is countable and X̂ α̂? + ί) =
Zî ίa?)̂ "*, this implies that there is an invariant null set iV2 such
that, for any x in K\N2, the family {eiλt; λ is in Γt} is contained
in the closure of {̂ o0-(# + t); φ is in %} in L\μ). We recall that
H~(R) = H\μ) Π L°°(β) where H\μ) denotes the closure H°°(R) in
L2(^). Hence the conull set Si = K^N^N^ satisfies the properties
(i) and (ii).

Let {tn} be a arbitrary sequence of positive numbers with
£»—>°°. It is well-known that if g belongs to C{K^), then (3.4)
holds uniformly for this sequence {tn} ([4; Ch. VII, §4]). Let j be
any positive integer. Then we may find g in CiK^ and s) in {tn}
such that

\\Φi°σ-g\\Lilmι) < ( 2 " 0 2 ,

and

I gdmι — I gdm(x, s)) < 2~j

for any x in Kγ. It follows from Fubini's theorem that

^ |^°α - g\dm(x, s
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Therefore, if we set E) — \x; \\Φι°σ — g\dm(x9 s1

j)^>2~j[, then

2~y, and so

2 -3(9 _L 9-Λ

K. 1 •/ A 1

for each x in Kι\E). Since Σ£=i w^C ί̂) < °° > we see that
m^lim infŷ co K\E)) = 1 by Borel-Cantelli lemma. So we may choose
a null set Niφ^σ) and an increasing subsequence {s)} of {£„} such that
φγ°σ satisfies (3.4) for each x in K^Nfaoσ). Since the right side limit
of (3.4) is invariant, Nfa-σ) may be assumed to be invariant. By
induction, it can be easily seen that if k is any positive integer,
then there exists a subsequence {skj+1} of {sj} and an invariant null
set N(φk+1oσ) for which φk+1°σ satisfies (3.4). Let sn = sj, and let So —
S1Π(-K1\U?=i-N(^»o<7)) Then, since {φn} is uniformly dense in %, SQ

and {sw} have the desired properties.

It is useful to note that the equation (3.4) can be extended to
an ergodic flow. This is an application of Wiener's Tauberian
theorem (see [12; Lemma 2.6]).

Next, let So be as in Lemma 3.2, and take an x in So If we
set

h(φ) = \

for each φ in Sί2, then h(φ) is a complex homomorphism of Sί2 which
lies in a nontrivial Gleason part. Since the maximal ideal space of
Sί2 is completely determined ([4; Ch. VII, Theorem 4.1]), we may
find an x in K2 and a positive number A{x) such that

(3.5) ft(0) = I ^dm(^, A(a?))

for each φ in 9ί2. Since % is a Dirichlet algebra, we have

\ fdm(x, 1) σ'1 = I fdm(x, A(x))

for all / in C(J8Γ2). This shows that m(x, l)-^"1 = m(ίf A(x)). More-
over, since m(£, A(ίc)) and m(x, 1) are mutually absolutely continu-
ous, it follows easily from Lemma 3.2 that

ί ΨL~{m{x, 1)) = L~(m(2, 1)) , and

1 ΨH~(m(x, 1)) - JEΓ~(m(ίc, 1)) ,

where Ψ(ψ) = fo^- 1 for each ψ* in L°°(m(xf 1)). In order to show
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the equation (3.3), we have to determine the Borel isomorphism a
on each orbit. This will be accomplished by applying the result of
de Leeuw, Rudin, and Wermer [2].

LEMMA 3.3. Let So, x, x9 and A{x) be as above. Then we have:

(3.7) ψ o σix + t) = ψ{β + A(x)t) dt-SL.e.

for each ψ in H°°(m(x, 1)).

Proof. For any function / on Kt and y is Ku we define

Φy(f)(t) = / ( » + «), t in R.

Since each function in H°°(m(y, 1)) is the almost every limit of a
sequence in Sϊ<, it is easy to see that Φy is an isomorphism from
H°°(m(y, 1)) onto H°°(R). We consider the following diagram:

x, 1 ) ) — - — H~(m(x, 1))

Then, according to a theorem of de Leeuw, Rudin, and Wermer [2],
there is a fractional linear transformation ax(t) of the upper half-
plane onto itself such that

for each / in H°°(R). Let φ be a function in 9ί2. Then we have

= φ(x + a x{t)) dt-a.e.

We claim that there exist real numbers p and q with p > 0 such
that ax(t) = pt + q. Suppose not. Then we may choose some real
numbers <z, δ, and c such that a~\u) = {an + b)(u + c)"1 and ac —
δ > 0. Let {sn} be sequence as in Lemma 3.2. Then, for each φ in
%, we see from (3.2) and Lemma 3.2 that

S φdm2 = I φ°σdmxκ2 )κλ

(3.8) = U r n — Γ φoσ(x + t)—ί*—dt
n-*oo *Jζ J-oo g^ -|- f?
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On the other hand, a quick calculation show that

π J-°

u)

si + f

Sn{aG " b){slί <af£ + u ) d u

π ) - ~ ψ y ^ \ u + (sic + ab)(sl + α2)-1)2 + (sn(ac - b)(sl + α2)"1)2

Since φ(x + M) is continuous as a function of u, this implies that
(3.8) equals to φ(x — c). Hence we see that m2 is the point mass at
x — c since % is a Dirichlet algebra. Thus we have a contradiction.
We may now assert that p = A(x) and q = 0. By setting v = pt + q,
it follows from (3.5) that

-£ dv = I φ(x + ax(t))—-—dt
(v — q)2 J-°° 1 + t2

S oo .ΛL«d t

A(xf + ί2

for each φ in Sί2. Therefore, since % is a Dirichlet algebra, we
obtain

p A(x)
p2 + (ί - g)2 " A(^)2 + ί2

for any £ in J?. From this equation, it is easy to see that p — A(x)
and q — 0. Thus the equation (3.7) holds for each φ in Sί2< How-
ever, since any ψ in H°°(m(x, 1)) is the almost every limit of a
sequence in 9ί2, it follows easily from (3.6) that ψ satisfies also the
equation (3.7). So the proof is complete.

We remark here that A(x) is invariant as a function of x. In
fact, for x in SQ and u in R, we have

/°o (# + u + ί) = f(x + A(ίc)t6 + A(x)ί) dί-a.e. .

This shows that (x + u)" = δ + A(a?)t6 and A(x + u) = A(x).

Proof of Proposition 3.1. Let SQ be an invariant conull set as
in Lemma 3.2. For any x in So, let x and A(ίc) be as in Lemma 3.3.
Then, for each positive λ in Γlt since the function of t, Vχ\x + ί),
belongs to H°°(m(x, 1)), we see that

σ-Wfiβ + β) = X£\x + ilίfl?)-1*) dβ-a.e. ,

where α-^i" is defined by the equation σ^X^iy) = W\a-\y)). Hence
we have, for any t in ϋϊ,

ί Γ ^ σ ^ X δ + β) = ^ - ^ ( ί + « + ί)
( = XP(x + Aix)'1^ + ί))
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Let β(x) = A(x)~\ Then β{x) is invariant as a function of x by
above remark. It follows from (3.9) that, for any x in So and any
t in R,

+ 8) = σiT^iσ-'in^x + β)

= T?\σ-χX^){x + A(x)s)

= Z|υ(x + A(x)-\A(x)s + t))

= X£\x + s + /3(a?)ί)

+ β) ώs-a.e. .

Recall that Zi1}(a? + s) = eiUl£\x). So we obtain

= eιp{X)λτrλ

L\x) m Γ a . e . x ,

for each t in R and each λ in /\. We have to show β(x) is a
constant /3 as a function of x. Since the system (Kl9 ml9 {Γ^heu) is
ergodic, it suffices to show that β(x) is measurable as a function of
x. For this, we note that (σ^T™σ)Xχυ(x) is measurable with respect
to (t9 x). Hence it follows from (3.10) that eiβix)it is measurable as
a function of (t9 x). From this fact, we see easily that β(x) is
measurable. Recall that the space of all analytic polynomials on
Kγ is weak-* dense in H°°{m^). So since σ^T^σ is a measure
preserving transformation on (Kl9 mx), (3.10) implies that the equa-
tion (3.3) holds for each / in H°°{m^. This completes the proof of
Proposition 3.1.

Since H^m^ + H°°(mύ is weak-* dense in L^irn^), the equation
(3.3) assert that σ~xTl2)σ is equal to Tfl as a sigma-isomorphism
from the measure algebra (9 ,̂ mx) onto itself. However, since Kx is
metric, we may strengthen it as follows:

(3.3') σ-^Tfσix) = T$(x) mΓa.e. x .

4* The proof of main result* In this section we present a
proof of Theorem 2.1. For i — 1, 2, let Γt be an arbitrary dense
subgroup of R but endowed with the discrete topology (cf. §5,
Remark (c)). For any countable subgroup Γt of Γt9 we set H°°(mif Γt)
is the space of all functions / in H^m^ whose frequencies lie in
Γif i.e.,

H-{mif Γ<) = {feH-(mt); f - Σ a

where ΣA dxifW™ denotes the Fourier series of /.
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LEMMA 4.1. Under the assumption of Theorem 2.1, let Ψ be an
isomorphism from H°°(m^) onto H°°(m2). If Sa) is a countable subset
of Γ19 then there exist countable subgroups Γ1 and Γ2 of Γt and Γ2,
respectively, which have the following properties:

(4.1) ΛDS 1 1 1 ;

(4.2) both /\ and Γ2 are dense in R; and

(4.3) Ψ(H~(mlf f 0) = H~(m2, f2) .

Proof. We may easily find a countable subgroup DP of Γx such
that S(1) c DP and DP is dense in R. Recall that if / belongs to
L\m2), then the nonzero Fourier coefficients of / are at most
countable. So we may find a countable subgroup DP of Γ2 such
that DP is dense in R and ΨIP belongs to H°°(m2, DP) for each λ
in Dp. On the other hand, it follows from Lemma 2.2 that Ψ is
continuous with respect to weak-* topology. Hence we have
W(H°°(ml9 DP)) c H°°(m2, DP). Similarly, it can be seen that there is
a countable subgroup DP of Γx such that DP c DP and H°°(ml9 DP) Z)
Ψ"1{HO0{m29 DP)). Repeat the procedure to find a countable subgroup
DP of Γ2. We continue in this way infinitely, if necessary. Then
we obtain increasing sequences {DP} and {D{2)} of countable sub-
groups of Γx and Γ2 which satisfy

Ψ(H~(mu DP)) c H~(m2t D™) ,

and

for any positive integer n. Let Γ, = Uϊ=i DP and let f2 = JJSU D{2\
Then we see easily that Γ1 and Γ2 have the desired properties, and
the proof is complete.

The following lemma makes essential use of the results in [15]
and is proved in [12; §3, Step 1]. However, we give here the sketch
of the proof for the shake of completeness.

LEMMA 4.2. Under the assumption of Theorem 2.1, let Ψ be an
iso.netry mapping Hv{m^) onto Hp(m2), p Φ 2. Then the restriction
of Ψ to H°°{m^) is a constant multiple of an algebra isomorphism
from H^im^ onto H°°(m2).

Sketch of proof. We set g = ^(1), and let dv = \g\pdm2. Then,
since g is a nonzero function in Hp{m2), we have L°°(v) = L°°(m2).
Define A(f) = g~Ψ(f) for each / in H^m^j. Then, as Rudin shows
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in [15; Theorem 2], A is an algebra homomorphism which is isometric
in the supremum norm, mapping H^m^ into L^irn^. The properties
of weak-* Dirichlet algebras imply that A carries H^imj) into H°°(m2).
Similarly since Ψ'1 has the same properties as Ψ, we find a g' in
Hp(m1) and an algebra homomorphism Af mapping H°°(m2) into H^irn^)
such that ψ-\f) = g'A\f) for all / in if°°(m2). On the other hand,
it follows from the definition of A! that Ψ~\φg) = A\φ)Ψ~\g) for
each φ in Hco(τn2) and the above g in Hp(m2) since A! is a homomor-
phism and Ψ'1 is continuous. Hence, since Ψ^ig) = 1, if we set
/ = Ψ~\φg), then / belongs to H^mJ and A(f) = g-Ψ(f) = φ. So A
maps H^irn^) onto H°°(m2). By Lemma 2.2, there is a sigma-isomor-
phism σ from @blf mλ) onto (852, m2) satisfying the equation (2.2) with
Ψ replaced by A. This implies that A may be extended to an
isometry mapping Hp{m^) onto Hv(m2). Since ΨA~ι is an isometry
mapping Hv{m2) onto itself, it is shown that g is a unimodular
constant. So the restriction of Ψ to H°°{m^ has the desired form.

Proof of Theorem 2.1. We attend only to the direct half since
the converse is straightforward. By Lemma 4.2, it suffices to prove
under the hypotheses that p ~ oo and the isometry Ψ is an algebra
isomorphism from H^im^ onto H°°(m2). So it follows from Lemma
2.2 that Ψ holds the equation (2.2) for some sigma-isomorphism σ
from (35lf mj onto 0B2, m2). For any λ in Γ19 we set S(1) = {λ} in
Lemma 4.1. Then it can be seen that there exist countable sub-
groups /\ and Γ2 of Γ1 and Γ2, respectively, which satisfy the
properties (4.1), (4.2), and (4.3). For i = 1, 2, let K, be the dual
group of Γi9 and let mt and {Tli)}teB be the objects associated with
Kt as in §2. Recall that Kt is isomorphically homeomorphic to the
quotient group KJΓl where /Y denotes the annihilator of Γt (cf.
[14; 2.1.2]). We denote by pt the canonical map from Kt onto
KiJΓϊ. Since H°°(mi) m a y b e identified with H°°(mif Γt), it follows
from (4.3) that Ψ defines an isomorphism Ψ from H°°{m^ onto H°°(m2).
Since r< is a countable dense subgroup of R, we see from Proposition
3.1 that there is a positive constant β such that, for each v in /\
and t in i2,

(4.4) ψ-ιT?Ψ(l^p^){x) - ΓJΫCZ^/OΓ1)^) mΓa.e. 2 .

We notice that ^ ϊ ? * = T^p, and that if N is mrnull set, then
pT\N) is also m rnull set. So it follows from (4.4) that

(4.5) Ψ-'TIWQC^XX) = ^(Z^Oία) mΓa.e. a? .

We note here that β is independent to Γ±. Indeed, since T^X^ix) =
Gίβytl^\x)9 it can be seen that ^ is uniquely determined from each v
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in Γx with v Φ 0. For any fixed λ' in Γu we may assume that λ'
belongs to Γ1 by setting S{1) = {λ, λ'} in Lemma 4.1. So β is in-
dependent to Γλ. Therefore the equation (4.5) holds for each v in
Γλ. Thus, we have

TΪ2\ΨU])(y) = e^iΨiniv) m2-a.e. y

for each λ in Γγ and t in R. This implies that ΨX{

λ

1] is an eigen
function for {T?]}teB with eigenvalue βX. It follows, therefore, the
map λ —> βX is a group isomorphism mapping Γx into Γ2. Similarly,
we see that X —> β^λ is also a group isomorphism mapping Γ2 into
A since (4.5) holds with Xl1] replaced by Ψ^XfK Hence X^ βX maps
Γx onto Γ2. Recall that each eigenvalue of {Tί2)}teR is simple,
meaning that if / and g are eigenfunction with same eigenvalue,
then g is a constant multiple of / (cf. [5]). So we may find a
constant Cβλ with \Cβλ\ = 1 such that

TOO/) = CβλXfl(y) m2-a.e. 3, .

Since Ψ is an algebra homomorphism, it is easy to see that Cv+ι,> —
Cv - Cu> for each v and for each v' in Γ2. This shows that v —> Cv is
a character of Γ2. There is, therefore, a τ/0 in iί2 satisfying

WVt\y) - Zfi(7/ + y0) m2-a.e. 3/ .

Let σ1 be the translation by — yQ, and let σ2 be the inverse of the
adjoint of the above map X-^βX. Then, since Xfλ(y) = X'xKσϊKy))
for y in iΓ2, we have that

Ψn\y) = Zi"^-1^/ + 2/0)) m2-a.e. 7/ ,

for each λ in Γx. This shows that the sigma-isomorphism σ may be
identified with the affine map σx σ2. Hence we see that (2.1) holds
for each / in H^irn^) with c = 1. This completes the proof.

5* Remarks* (a) Let X be a compact Hausdorff space upon
which {St}teR acts as a locally compact transformation group, and let
Sί be the uniform algebra of analytic functions induced by {Syί6iί.
We assume that X is not metric and there are no periodic orbits
in X. If K is a countable subset of Sί, then there exists a closed
separable subalgebra 21 of Sί such that KcSί and Sί is invariant, i.e.,
for any / in S, SJ(x) = f(St(x)) belongs to t . This implies that S
may be regarded a uniform algebra on a compact metric space.
From this fact, by the similar way as in §4, we can extend Prop-
osition to 3.1 the ergodic Hardy spaces induced by {St}teB.

(b) The author does not know, under the assumption of Theorem
2.1, whether one can characterize the isometries from Hp(m^) into
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Hp(m2)9 p Φ 2. Forelli [3] answered this question for the classical
Hardy spaces.

(c) By [14; 2.5.2], we see that the Bohr group contains an
infinite compact metric group. This fact implies that there exists
an uncountable subgroup Γ of Rd with Γ Φ Rd, where Rd denotes
the discrete real line.
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