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LOCATED SETS ON THE LINE

MARK MANDELKERN

Located sets are sets from which the distance of any
point may be measured; they are used extensively in modern
constructive analysis. Here a general method is given for
the construction of all located sets on the line. It is
based on a characterization of a located set in terms of the
resolution of its metric complement into a union of disjoint
open intervals. The characterization depends on a strong
countability condition for the intervals, called the locating
condition. Included as a special case is the characterization
and construction of compact sets. The techniques used are
in accord with the principles of Bishop's Foundations of
Constructive Analysis, 1967.

In many situations it is desired to measure the distance

ρ(x,G) = mΐ{p(x,y):yeG}

between a point x and a set G in a metric space. However, this is
not always possible constructively. By this we mean that a counter-
example exists in the sense of Brouwer; discussions of these are
found in [1] (and [4]). The italicized word "not" will also be used
below in this sense.

Brouwer [2] introduced the concept of located set, for which
the above distances always exist. Here the concept of located set
on the line is reduced to the concept of number. The construction
of an arbitrary located set is reduced to the construction of two
sequences of real numbers with certain properties.

The metric complement of a located set G is the set

-G = {x:p(x,G)>0}.

Such a set is said to be colocated.
The characterization of a located set G on the line is obtained

by means of the resolution of its metric complement — G into a
countable union \JnIn of disjoint open intervals, given in [4]. It
is shown in [3] that only the closure of a located set G may be
recovered from its metric complement —G. Thus we characterize
closed located sets. Arbitrary located sets are precisely the dense
subsets of these.

The characterization theorem below involves four conditions on
the sequence {/J of open intervals. Briefly, these are the following.

(1) The intervals are fixative, i.e., each is either void or fixed
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(contains some point).
(2) The intervals are disjoint.
(3) The locating condition. This limits the number of inter-

vals of a given size which intersect a given bounded segment, and
locates them in the sequence of intervals.

(4) The representation of G as an intersection of notched lines
(i.e., lines with an interval removed), complementary to the resolu-
tion of - G as a union of intervals.

The essential property of located sets is expressed in the locat-
ing condition (3). For any point x on the line and for any ε > 0,
this condition specifically locates the finitely many intervals in
the sequence {In} which might contain x and have length more
than ε.

The set G is formed by notching out from the line the succes-
sion of open intervals. From the point of view of a given point
x, the distance p(x9 G) seems to be 0 during this process, until,
perhaps, x is notched out. When the notch In is taken, any finite
endpoint of this interval is assured a permanent place in G, because
under the disjointness condition no succeeding notch can remove it.
Thus the exact distance is known as soon as x is notched out;
however, whether this happens might not be predictable. There-
fore, an estimate of the distance requires a prediction giving the
specific location of those intervals which might remove x and also
be large enough to produce a large distance. Thus, if finitely many
intervals have been considered, and a prediction is given that the
remaining intervals either stay clear of x or are of length less than
ε, then p(x, G) may be calculated to within ε.

It is easily concluded that only finitely many disjoint intervals
of length greater than 1/jfc can meet (—ft, k)9 by considering their
total length. However, such methods will not suffice here, for
their location in the entire sequence {In} of intervals is not deter-
mined. The locating condition (3) actually lists a finite number Mk

of intervals which includes all those in question.
To construct a closed located set G on the line using the char-

acterization below, proceed as follows.
I. First choose any finite number M1 of open intervals In =•

(α», K) of any length, satisfying (1) and (2). To satisfy the fixative
condition (1), decide whether (αΛ, bn) is to be void or fixed, and
specify (1, 0), or ensure an < bn, accordingly. To satisfy the disjoint-
ness condition (2), after m intervals have been chosen use step (x)
in the proof to examine the finitely many segments, in one of which
the next interval must be placed.

II. Next choose any finite number m2 of open intervals in the
same way, and also, to satisfy the locating condition (3), ensure
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that any of these m2 intervals which meet ( —1, 1) are of length
^ 1 . Put M2 = M, + m2.

III. Continue in this way. For example, any of the next m3

intervals which meet ( — 2, 2) must be of length <;i/2.
IV. The set G obtained is the set of all points x such that, for

each n9 either x ^ an or x ^ 6%.
An open interval is a set of the form (α, b) = {x eR: a < x < b}.

To include the unbounded intervals, a and 6 are taken to be
extended real numbers. To include also the case of an open inter-
val for which it may be unknown whether it is bounded or unbound-
ed, we use the system R°° of extended real numbers constructed in
[4, § 4], Thus it may be unknown whether an endpoint is finite or
infinite.

Allowing + co as a distance, we consider the void set to be
located. Furthermore, the extended real numbers in R°° will be
used as distances. Thus it may be unknown whether a given located
set G is void or fixed, since it may be unknown whether p(x, G) is
infinite or finite. For example, if {an} is an increasing sequence of
zeros and ones for which it is unknown whether or not some αn = l,
then the set {n: an = 1} is not fixative; yet it is located in the sense
of distances measured with extended real numbers. Although the
distances p(x, G) used in the study of located sets G are extended
real numbers, the points of G and the points x considered are
always finite real numbers.

A set on the line is compact if and only if it is closed, located,
bounded, and fixed. Thus, compact sets are characterized by the
conditions of the theorem together with the following additional
conditions:

( 5 ) (bounded) Some an = — co and some bk ~ + °°.
(6) (fixed) For each n, either an > — co or bn < + co. (See

[5, Theorem 3].)
An example in which the locating condition (3) does not hold,

and thus where the set G defined by (4) is not located, is easily
derived from [3, Example 2]. The question raised by that example,
of when a countable union of fixative disjoint open intervals is
colocated, is answered by the locating condition in the corollary
below.

Only constructive properties of the real numbers and extended
real numbers, such as are found in [1] and [4], will be admitted.
We shall need to perform certain limited algebraic operations in J?°°.
If s ΞΞ {sn} is an extended real number (where {sn} is an extended
Cauchy sequence of real numbers), and a is a finite number, then
s ± a and a — s are easily defined in i2°°; for example, s + a =
{sn + a}. Furthermore, although in general extended real numbers
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α and 6 can not be subtracted, if a < b then 6 — a is easily defined.
Thus we define the length 1(1) == b — a of any fixed open interval
I s (α, 6).

THEOREM. For any closed located set G on the line, there exist
sequences {an} and {bn} of extended real numbers such that

(1) an Φ bn, for all n.
(2) bn ^ ak or bk ^ an, whenever n Φ k and an < bn and ak<bk.
(3) There exists a sequence {Mk} of positive integers such that

n ^ Mk whenever (an, bn) meets ( — k, k) and bn — an> 1/fc.

(4) G = n . ( ( - ~ , α . ] U [ & . , + <*>))•
Conversely, whenever {an} and {bn} are sequences of extended

real numbers satisfying (1), (2) αwd (3), ίfcen the set G defined by
(4) is closed and located.

Proof. Necessity. Let G be a closed located set.
( i ) Definitions. Let

be the resolution of the colocated set —G into a countable union
of fixative disjoint open intervals, as obtained in [4]. The intervals
(an9 bn) are called notches. When the notch (αΛ, 6J is fixed, the
numbers an and bn are called endpoints. Clearly, all finite endpoints
lie in G. For each n, the set

is called a notched line. Clearly, each set iϊ^ is located and for
any xeR,

p(x, Hn) = ((a? - α J Λ (6. - x)) V 0 .

For each m, the set

is called a finitely notched line. The theorem expresses a located
set as an infinitely notched line.

(ii) Condition (1) is satisfied.
For any w, if (αΛ, δ j is fixed, then an < 6W, while if (an, bn) is

void, then redefine an Ξ 1 and 6W Ξ 0.
(iii) Condition (2) is satisfied.
Either 6W < bk or δw > ak. It follows from the disjointness of

the intervals that in the first case bn ^ ak and in the second case
bk ^ an.
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(iv) Condition (4) is satisfied, and thus

Since -HnQ -G it follows that G £ Hn for all n. Now let
xeQnHn. From xe ~G it would follow that xe-Hn for some n;
hence xeG.

(v) iίαefc seί Gm is located, with

p{x, Gm) = V M # J

for all xeR.
Let p be the indicated maximum. Clearly p is a lower bound

for the set of numbers \x — y\, with yeGm. To show that p is
the infimum of this set it must be shown that whenever p < σ
there exists yeGm such that | x — y \ < σ. Equivalently, when
p < + oo and ε > 0 we must construct y eGm such that \x — y\ <
p + ε. Either p(x, G) < ε or p(«, (?) > 0. In the first case construct
yeG so that |a? — i/| < ε. In the second case choose n so that an<
x < δ%. In the subcase n > m, put y = x. In the subcase w ^ m,
then jθ(α?, G) = p(x, Hn) = p; construct yeG such that \x — y\<p + e.

(vi) i^or any finite interval J and any ε > 0 there exists m
such that

\p(x,G)-p(x,Gm)\ <ε

for all x in J. In this way a located set is approximated by
finitely notched lines.

First consider the case in which J consists of a single point x.
Either p(x, G) < ε or p(x9 G) > 0. In the first case p(x, Gx) < ε
because G £ Glf so it suffices to put m Ξ 1. In the second case
choose m so that xe(am, 6J. Then p(x, G) — p(x, Gm). Thus, in
either case, | p(x, G) — p(x, Gm) \ < ε. Note that although in general
extended real numbers s and t can not be subtracted, even when
s ^ t, the indicated difference here is meaningful because the
numbers involved are either finite or equal.

, We may assume J is fixed, and construct a finite ε/3 approxi-
mation A to J. For each a in A construct ma so that | p{a, G) —
p(a9 Gma) I < ε/3. Put m == max {ma: aeA}. To show that the finitely
notched set Gm approximates G to within ε on J, consider any point
x in J and construct a in A such that \x — a\ < ε/3. It suffices to
consider the second of the cases p(x, G)<ε and p(x, G)>2ε/3. Choose
n so that xe(an, δ j . Then also ae(ant bn) and p{a, G) > ε/3; hence
p(a, GmJ > 0. Thus n ^ ma, so n ^ m and p(x9 G) = (̂aj, GJ.

(vii) Γfeβ locating condition (3) obtains.
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Consider any ft and choose Mk so that

\p(x,G)-p(x,GMk)\<l/2k

for all x in (—ft — 1, k + 1). Let (an, bn) meet (—ft, k) with bn—an>
1/fc. Since the length of the interval / = (αΛ, δ j Π ( —ft — 1, ft + 1)
is greater than I/ft, the midpoint x of / has a distance |θ(#, G) >
l/2ft. It follows that w ̂  Λffc.

Sufficiency. Now let the sequences {αj and {δj satisfy condi-
tions (1), (2) and (3), and let G be defined by (4).

(viii) Definitions. Define the sets Hn and Gm as in (i) above.
It follows that G = Γ\nHn = ΓL Gm and that all finite endpoints lie
in G.

(ix) 27&e set G is closed.
Let {xk} be a sequence in G with xfc —> a?. To show xeG, it

suffices, because of condition (1), to consider a fixed notch (an, δ j .
It suffices to consider the first of the cases x < bn and a? > an. Then
#* < bn eventually; it follows that xk ^ an eventually, and thus x ^
an. Thus xeG.

(x) .For α-̂ ί/ m, the indexing of the q fixed notches (if any)
among the first m may be rearranged so that

ax < bλ ̂  α2 < b2 ̂  ^ aq <bq .

We may assume that q >̂ 2 and that the intervals (αft, 6J with
^ ^ g are the fixed intervals; let b be the minimum of their right
endpoints bn. It follows that b is finite. Choose ε > 0 so that
ε <bn — an for all n ^ q. Since some bn is less than b + ε, we may
by reindexing assume 6X < b + ε. It follows from condition (2) that
a>i < δi ̂  α% for 2 ̂  w ̂  q. An induction completes the proof.

(xi) If aeR°° and ε > 0, then for any xeR either x > a or
x < a + ε.

Of the cases α < x and α > — °o we need consider only the
second. Of the subcases a < + °o and a > x we need consider only
the first, and now a is finite.

(xii) Consider any m and the rearrangement of (x), with q^tl.
For any xeR and any ε > 0, one of the following holds

(a) x < ax + ε.
(b) an < x < bn for some n <* q.
(c) bn — e < x < an+1 + ε for some n <q.
(d) bq - ε < x.
By (xi), either x < aλ + ε or aγ < x. An induction completes the

proof.
(xiii) Each set Gm is located, with
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p(x, Gm) = V P(x, H.)

for all x in R.
Let p be the indicated maximum. For any y e Gmf clearly p <J

\x — y\. Now let p < + °° and ε > 0; we must construct yeGm so
that \x — y\ < p + e. Either p > 0 or p < ε. In the first case
choose n <̂  m so that (̂a?, ίΓJ > 0. Since p(α;, JEΓJ < p + ε one of
the endpoints of (αn, bn) is finite and suffices for y. In the second
case, we may assume q ^ 1 in (x), and according to the alternatives
in (xii), define y as follows.

(a) y = χ/\ αx.
(b) y = an or y = bn, as suitable.
(c) y = bnVxΛ an+1.
(d) y = xVbq.
(xiv) Lei A fee α sβί o/ extended real numbers. If for every

ε > 0 ίfterβ exίsίs ί m A sucfc ίfeαί t + ε is an upper bound for A,
then A has a supremum in R°°.

For each n, construct tn in A such that a ^ tn + 1/w for all α
in A. To show that {ί%} converges in R°° we apply [4, Theorem 3].
First we construct the auxiliary sequence {σn}. Note that if some
tn < + oo then clearly all tn < + oo. Thus we construct an increas-
ing sequence {σn} of 0's and Γs such that tΛ > n + 1 when σ% = 0
and tn < + oo when σ% = 1. Now consider any n. If σn = 0 then
w + 1 < tn <; ίfc + 1/fc and thus tk> n for all k. If σ. = 1 and fc^w
then ^ ^ tn + 1/w and ί% ^ ^ + 1/k; thus |ίA - t n | ^ 1/%. Thus we
define s = lim ίΛ and it follows that s = sup A.

(xv) T%£ sβί G is located, with

p(x, G)=V p(x, Hn)

for all xeR.
We first show that for any x e R the indicated supremum exists

in R°°. By (xiii) it suffices to show that the distances p(x, Gn) have
a supremum. To verify the condition of (xiv), let ε > 0 and choose
k so that xe( — k,k) and 1/k < ε. Using the locating parameter Mk

from condition (3), put t Ξ p(χ9 GMk). We must show that p(x9 Gn)<^
t + ε for all n. For this it suffices to show p(x, Hn) <; t + ε for all
n. Consider any n. It suffices to consider the second of the cases
p(x, HJ < ε and ρ(x, Hn) > ε/2. Then x e (an, bn) and bn — an> ε. It
follows from the locating condition (3) that n ^ Mk, and thus
p(x, Hn) £ t.

Thus the supremum exists; denote it by p. To show that
p ^ I x — y I for every y eG, let ε > 0; we must show p < | x — y | +
ε. It suffices to consider the second of the cases p < ε and p > 0.
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C h o o s e m s o t h a t p(xf H m ) > 0 . T h e n p = p ( x , H m ) £ \ x — y \ .

Now let p < + oo and ε > 0. We must construct y eG such
that \x — y\ ^ p + e. Either (θ>0 or p < £ , In the first case
choose m so that p(x, Hm) > 0. Since p(x, Hm) < p + e, we obtain
Jfic — y\ < p + ε, where y is a suitably chosen endpoint of (αm, 6m),
and thus yeG.

In the second case, where p < ε, we shall construct a point y
in (? such that \x — y\ £ e. First construct an increasing sequence
{τk} of 0's, and Γs, with τx Ξ= 0, such that p < ε/k when τfc = 0 and
^ > 0 when τk = 1. Now construct a sequence f^} of real numbers
as follows. Consider any k. In the case τk = 0, we have p(x, Gk)<
ε/k; construct ykeGk such that \x — yk\ < ε/k. In the case τk — 1
first consider the subcase in which fc is the least integer, denoted
i, of such integers k. Choose n so that an < x < i>%. Since r ^ ^ O
we have |O < e/(j — 1). Put j / y = an or y i Ξ bn so that |α? — ys\ <
ε/(j — 1). Since then yά is a finite endpoint, yd e G. When k > j
put yk = yό. This defines the sequence {yk} with |a? — yk\ < ε and
ykeGk for each &.

To show that {yk} is a Cauchy sequence, let n > k. Three cases
result, depending on the values of τk and τ%. First, when both are
0. we have \x — yn\ < ε/n and \x — yk\ < ε/k, and thus \yn — yk\ <
2ε/k. Second, when both are 1, then yn = yk. Finally, when τk — 0
and τn — 1, then |α? — yk\ < ε/k and |x — yn\ < ε/(j — 1) ^ ε/Λ. Thus
lv» — !/*l < 2ε/&. Hence {yk} is a Cauchy sequence converging to a
point # with \x — y\£ε. From (ix) it follows that the sets Gk are
closed; thus yeG. Q

COROLLARY. A countable union \Jn In of fixative disjoint open
intervals is colocated if and only if there exists a sequence {Mk} of
positive integers such that n <̂  Mk whenever I% meets (—k9k) and
ΛL) > l/fc.

Some applications of the theorem will be given in [5], where
those located sets which have suprema in J?°°, and those which are
fixed, are characterized by means of numerical conditions on the
endpoints of the notches.
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