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THE TRANSFER OF INVARIANT PAIRINGS
TO LATTICES

T. J. ENRIGHT AND R. PARTHASARATHY

In the article ‘““On the fundamental series of a real semi-
simple Lie algeba’’ two covariant functors, the completion
functor and the lattice functor, are introduced. In this
article, we study the behavior of invariant pairings and
invariant Hermitian pairings under the action of these
functors.

Let m be a finite dimensional reductive Lie algebra over C, the
field of complex numbers, and let U(m) denote its universal enveloping
algebra. Let §) be a CSA of m with roots 4, a positive system @
of 4 and Weyl group 77" For each ac @, let m, denote the a root
space in m and choose vectors H,, X,, X_, such that

Ly X.em,, X,em,, H=[X,X,, aH)=2.

Then H,, X,, X_, is called a standard triple and spans a subalgebra
a of m isomorphic to sl(2). Choose and fix once and for all an
involutive anti-automorphism ¢ of m such that ¢ restricted to § equals
the identity. Fix a real form m, of m such that [m,, m,] is a compact
real form of [m, m] and m,NH =B, is a real form of §. Let m, be
the real Lie algebra underlying m and let ¢ be the R-linear anti-
automorphism of U(mz) uniquely determined by the condition that
—a restricted to m equals the conjugation of m with respect to m,.
For m-modules A and B, a bilinear (resp. Hermitian) pairing (-, -)
of A and B is called invariant if {x-a, b) = {a, 2°-b) (resp. {x-a, by =
{a, x°-b)), ac A, be B, x€ Um). Denote by I.(A, B) (resp. IH, (A, B))
the C-linear (resp. R-linear) space of invariant (resp. invariant Her-
mitian) pairings of A and B. If gis any finite dimensional Lie algebra
over C with m C g and if g, (resp. G,) is an involutive anti-automor-
phism of U(g) (resp. U(gr)) which restricts to ¢ (resp. ) on mi, then
we define g-invariant pairings as above with ¢ replaced by o, (resp.
g replaced by 4,) and U(m) replaced by U(g). For g-modules A and
B, we denote by I,(A, B) (resp. IH,(A, B)) the spaces of g-invariant
(resp. g-invariant Hermitian) pairings of A and B.

For each ac@, let C, denote the completion functor determined
by the standard triple H,, X,, X_,. If m = sl(2) then we write H,
X, Y in place of H,, X,, X_, and denote the functor C, by C (there
is only one positive root in this case). Also in this case for ne N
(integer = 0) and A an m-module we write A[n] for the subspace of
H-eigenvectors with eigenvalue n and A*[«] for the subspace of A[n]
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of vectors mapped to zero by X. In the general case, Bouaziz [1]
and Deodhar [3] have shown that for any g-module A in the category
S (m) (cf. Definition 4.1 [5]) there is a lattice above A. Let
A,(se€ %) denote this lattice above A and define the functor = by
the formula: 7(4) = A,/> ... A,. ©(4) is a U(m)-finite g-module.

We can now state the main results of this article. First assume
m = sl(2). For A, Be . “(m) and @€ I, (4, B) (resp. IH,(A, B)) there
exists a unique pairing C(p) e I.(C(A4), C(B)) (resp. IH,(C(A), C(B)))
such that

(i) C(o) is zero on (A x G(B)) U (C(A) x B)

(ii) for all ne N, acC(A)*[n], b C(B)*[n]

I S
nl(n + 1)!

This result is given below as Proposition 3.1 and is a mild variation
of a result in [5] which concerns only invariant forms. The main
result of §3 is Theorem 3.4 which asserts that if A, Be . #(m) and
@ e I,(A, B) (resp. IH,(A, B)) then C(p) € I,(C(A), C(B)) (resp. IH,(C(A),
C(B))). For eI (A, A), this theorem is precisely Proposition 8.5
[3]. The proof given there is based on an elaborate computation.
The proof given in this article is more conceptual and is based on
properties of certain vector valued pairings.

In §4 we apply the results of §3 to the setting of general re-
ductive Lie algebras m. Let ¢, be the unique element of %7 such
that ¢,Q = —Q and let ¢, = s, o---os,, be a reduced expression for
t, (a;€Q, simple roots). Let A, Be _#(m) and @ecl, (A, B) (resp.
IH,(A, B)). Then (cf. Proposition 4.2), the pairing C, o --:oC,,(®)
on A X B is independent of the reduced expression for ¢, and is
zero on (3,1 A, X B) U (A, X 3. B,). This pairing induces a pairing
of 7(A) and z(B) which we denote by z(@). Clearly, from the results
of §3, ©(p) e I(c(4), ©(B)) (resp. IH,(z(4), =(B)))-

Define the Borel subalgebra b = HP >,com,. For any b-module
M, we denote the induced module from b to m by UWM); i.e., UM) =
Um) @y M. The main result of this last section concerns an im-
portant example where the map @+ z(®) is surjective and preserves
nondegenerate pairings. This result (Proposition 4.5) asserts the
following:

Let M and N be locally finite b-modules which are semisimple as
9-modules with finite dimensional integral weight spaces. Assume
that U(M) and U(N) admit nondegenerate invariant forms. Then
the maps:

C(®)(a, b) = P(Y™a, Y"'b) .

7 L(UM), UN)) — L(z(UM)), =(U(N)))
z: IH,(UM), U(N)) — IH,(z(U(M)), =(U(N)))
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are surjections. Moreover, both maps carry nondegenerate pairings
to nondegenerate pairings.

This result is an important part of the theory of the funector 7.
In particular, it is used in “The representations of complex semi-
simple Lie groups” [6] to show that every irreducible representation
of a complex Lie group is infinitesimally equivalent to the image
under 7 of an irreducible highest weight module.

2. Notation. We continue with the notation of §1. Let n=
Dweem, and n” = >, om_,. Then b=0HPn and m=n"@b. For
any p¢eb*, let C. denote the one dimensional b-module corresponding
to ¢ and let V,,,.= Um) @,u C. denote the Verma module with
highest weight ¢. For any m-module A, let A* be the contragradi-
ent module. Let Z(m) denote the center of U(m) and Z(m)" the set
of homomorphisms of Z(m) into C. It is well known that Z(m)" is
parametrized by the Weyl group orbits in H*. For Xe Z(m)" and
an m-module A4, let A, equal the submodule of A where z — X(2)-1
is loecally nilpotent for all z€ Z(m). Let A" denote the H-submodule
of A of vectors mapped to zero by n; and, for pebh*, let A*[xr] be
the subspace of A" of vectors of weight p. Let U™(m) denote the
usual filtration of U(m), me N. For complex vector spaces A, B and
F, and F, a real form of F, we say that ¢ is a Hermitian map of
AXB into F if @ is linear in the first variable and conjugate linear
in the second variable. If A = B, we say @ is a Hermitian form if
@ is a Hermitian map and @(a, b) = @b, a), a,be A and denoting
conjugation of F' with respect to Fi.

3. Invariant and invariant Hermitian pairings. Let notation
be as in §1 except that we shall write a in place of m and assume
a=sl2). H,X,Y will be a standard triple for a and C will denote
the completion functor with respect to H, X, Y defined on the cate-
gories _#(a), g a finite dimensional Lie algebra which contains a.

ProposITION 3.1. Let A, Be . #(a) and let &,(neN) be nonzero
constants in R. For any @ in I,(A, B) (resp. IH,(A, B)) there exists
a unique pairing C(@) = °(-, -> wn I[(C(A), C(B)) (resp. IH,(C(A),
C(B))) such that

(i) °(-, -> equals zero on (C(A) x B) U (A x C(B)),

(ii) for each me N, a e C(A)*[n], b € C(B)*[n],

“a, by = &,Y""a, Y"') .

For ¢ in I,(A, A), the proposition is precisely Proposition 8.1
[5]. For @eIH,(A, A), the proof of the proposition is entirely analo-
gous. The case B # A is proved exactly as the case A = B and we
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omit the details.
By Proposition 3.1, for each set of nonzero constants &,(ne N)
we have the transfer maps for A, Be “(a),

@.1) P — C()
I(4, B)—> I,(C(4), C(B))  and
IH (4, B) — IH.(C(4), C(B)) .

DEFINITION 3.2. We say the map @, +— C(p, ;) for 4, Bin .#(a)
and @, ;€ I(A, B) (resp. IH,(A, B)) is compatible with tensoring if
for any finite dimensional a-module F' and any ¢, I(F, F') (resp.
IH (F, F))

CPr @ Pas) = Pr @ C(@Pa,) -

(Here we identify canonically C(F ® A) with F @ C(A) and C(F ® B)
with F @ C(B).)

PROPOSITION 3.3. The maps @ — C(®) given in (3.4) are compa-
tible with tensoring if and only if there is a monzero constant &
such that

&, =¢&m!(n+1)! (meN; 0l =1).

In the case @€ I,(A4, A), the proposition is precisely Proposition
8.4 [5] and for @€ IH,(A, A) the proof of the proposition is entirely
analogous. The proof in the case A +# B is exactly the same as the
case A = B and we omit the details.

Now we consider the relative situation a & g. Flix the constants
L =1/nl(n+ 1)) (neN) and let @ +— C(p) be the map given by (3.1)
for this choice of comstants.

THEOREM 3.4. Let A, Be %(a) and let ¢ e I,(A, B) (resp. IH,(A,
B)). Then C(9) e I,(C(A), C(B)) (resp. IH(C(A4), C(B))).

For @€ I,(A, A) this theorem is precisely Proposition 8.5 [5]. The
proof given here is different from the proof in [5], is more concep-
tual and is based on properties of certain vector valued pairings.
Before giving the proof, we establish a few properties of vector
valued pairings.

For g-modules 4, B and F, we call « an invariant pairing (resp.
invariant Hermitian pairing) of A and B with values in F if  is a
bilinear (resp. Hermitian) map «: A X B— F and, for x € U(g), a € 4,
be B, y(x-a, b) — y(a, 275-b) = x-(a, b) (resp. ¥(x-a, b) — (a, 2°-b) =
z-4(a, b)). Denote the set of such pairings by I,(4, B, F) (resp.
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IH (A, B, F)). If F is the trivial module then I,(A4, B, F') = I,(A, B)
and IH(A, B, F') = IH (A, B).

Next we shall associate to any pairing - two scalar valued pair-
ings. For any vector space V, let V* denote the algebraic dual of
V. Let V be the set V* with multiplication by elements of C de-
noted by * and given by ax\=ax, acC, e V*. V is a vector
space over C called the conjugate dual of V. If V is a g-module,
then V becomes a g-module by composing the R-linear automorphism
—& and the contragradient representation of g on V*. We shall
call this the conjugate dual module to V and denote it by V. For
v e I(A, B, F') define *e I (A, F* @ B) and € [(F* ® A, B) by the
formulae: for xe F'*, ac A, be B,

(3.2) P, M@ b) = My(a, b)),
(3.3) (v ® a, b) = My (a, b)) .

If e IH,(A, B, F) then define y*¢ IH,(A, F® B) and y e IH,(F*®
A, B) by the formulae (3.2) and (8.3) respectively. We note that if
F is finite dimensional then +r is determined by +* and by “+r.

Assume F' is finite dimensional and A, Be._#(a). Using «* and
“4p we define two transfers of + as follows. For € l(4, B, F)
(resp. IH,(A, B, F)), define RC(y) and LC(y) to be the unique ele-
ments of I(C(A), C(B), F) (resp. IH,/(C(A), C(B), F)) such that
(RC@)* = Cy®) and “(LCGp) = Clp).

ProrosiTION 3.5. For e l(4, B, F') or IH(A, B, F'), RC(y) =
LC(y).

Proof. First assume €I (A, B, F'). Let @ be the canonical
pairing of F and F'*. Tensoring we obtain a pairing
(8.4) PR (FRQF*R A x (F*QRQB)—>C.

Since F' Q) F'* is canonically isomorphic to Hom (F'*, F'*), the identity
element of Hom (F'*, F'*) induces a canonical inclusion:

(8.5) 1 A— FRQF*R A .
Via this inclusion, we restrict @ & "4 to obtain the pairing:
(3.6) Res(p @ ") A X (F*QB)— C.

With an easy calculation, one verifies that "+ and hence + is deter-
mined by Res (@ & “4r); and moreover, if ¢ (4, B, F), (1 =1, 2),
then

3.7 P = 9 = Res (P @ ") = 97 .
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Assertion (3.7) shows that to prove LC(y) = RC(+y) we need only

prove Res (@ ® “(LC(+))) = (RC(+))%. Thus we need only prove the
identity:

(3.8) Res (p @ C("y)) = C(¥*) .

By Proposition 3.3, » Q@ C(*4) = C(p ® ) and by functoriality of
C(-) applied to (3.5), C(¢) is the canonical inclusion C(4) — F @ F* Q
C(A). This implies: Res (¢ @ C(*y)) = C(Res (¢ @ “v)). However, by
(8.7), Res(® ® ) = 4%; and so, the identity (3.8) is established.
This completes the proof for ¢ I,(4, B, F)). If 4rcIH,(A, B, F) then
since the map ¢ gives an invariant Hermitian pairing of F and F
the same argument applies and the proof is complete.

Proof of Theorem 3.4. For any @ e IH,(A, B) with A, Be _%(a),

define g* valued pairings ,» and @, by the formulae: for Xeg,
acA, beB,

(8.9) P, b)(X) = p(X-a, b)
Pz(a, D)Y(X) = @(a, Xb) .

One checks that ,» and @, are elements of IH,(A, B, g*). We now
claim the following identities hold:

(3.10) LC(@) = CC(p)
(3.11) (CP)R)" = C(Pa)") -

Let 7 be the a-module map: 7:gQ® A — 4, XRar— X-a, (Xeg, ac )
and 7 X 1: (g@® A) X B—~ A X B. Then “(,¢) = ¢o(x X 1); and so,
C*(1@)) = C(p) o (C(m) X 1). By uniqueness of C(z), C(n)(X ®a) = X-a
(X eg, a€C(A)); and thus, identity (3.10) is true. Identity (3.11) is
proved in essentially the same way. Combining (3.3), (3.10) and (3.2),
(3.11), we obtain:

(3.12) LC(,p) = C(@)
(8.13) RC(pr) = C(®)z -

Now assume @ e IH (A, B). Invariance is equivalent to saying
that .o equals ¢z. By Proposition 3.5 and identities (3.12) and (3.13)
we have: ,C(p) = C(@);. This says that C() is invariant.

In the case where @e (A, B) the argument is essentially the
same. We need only replace &, by o, in definition (3.9). We omit
the details.

4, Pairings and lattices. Let notation be as in §1. In par-
ticular, m is a reductive Lie algebra over C which is contained in
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a finite dimensional Lie algebra g. Let ¢{,€ %7  be the unique element
such that {,Q = —Q.

LEMMA 4.1. Let t, = 8, *+ 8., = 85, * -+ 85, be two reduced expres-
stons for t, (a;, B; simple). For any Q-dominant integral weight
L, set

My = (Sa_, " St + ONH) 1o = (85, 85, + O)(H,)
l=si=sd).

Then, in Un~) we have the identity:

(4.1) XIg - X0 = X5, - X7

Proof. Let x (resp. y) denote the left (resp. right) side of (4.1).
2®1 and y®1 both span the space of n-invariants of weight
t(t 4+ 9) — 0 in V,,,; and so, 2 is a nonzero multiple of y. How-
ever, since the simple roots are linearly independent and 3 m.a; =
¢ — t(¢t + 0) + 6 = >, n,B;, identity (4.1) is true in the symmetric
algebra. This implies x — ¥ is an element of U'(m), r = >, m,; =
>\ n;. But x is a nonzero multiple of ¥ and x, y ¢ U"'(n) so = = ¥.

PROPOSITION 4.2. Let t, = 8o, *++ 8, = 8, *** 85, be two reduced
expressions for t, (a,, B; simple). Let A, Be 7“(m) and ¢ I, (A, B)
or IH,(A, B). Then the pairings C,o---oC, () and Cyo---oCs (P)
are equal and this pairings 18 zero on (S Ay X B) U (A, X D1 By).

Proof. Assume pel(4,B). Let @, =Co---oC(p), (v=a
or B). Clearly @,,¢e I (A4, B) and, directly from the definition, @, is
Zero on (A,,al X B)U (A x Bsal). For any simple root & we have
(Theorem 1 [2]):

(42)  sity= 84, By

y for some j, 1<j5=d,

. sad

(" denotes omission) .

Set A, = Cpo -+ 0Cuy(A), Bi= Cypo--oCuy(B), 1 S i =d). By (4.2),
the restriction of @,,, to (4,,x B)U (A, X B,,) equals C,o-- 0Cq;_, of ¢, ;
restricted to (A4;4, X B;)U(4; X B;y,). But @, ; is zero on (4;4, X B;) U
(A; X Bjy,); and so, @, is zero on (3. A, X B) U (4, X X, B)).
The same argument applies to @;,. Therefore both ¢,, and @;,
induce invariant pairings on 7(A4) X 7(B). These modules are Um)-
finite; and so, we need only check that for Q-dominant integral g
and n-invariant vectors ze 4,, we B, of weight z

4.3) Pz, W) = Py (2, W) .
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Using the definitions directly we obtain:

—_— 1 my .. my
(4.4) Poslts ) = 1 m;] (m; + 1)1 POy e Koy Moy o Xoao)
Ppa(2, w) = H ——'(1—1')T¢(X—ﬂd oo Xz, X7 Zw) .

Now, since {m;:1 < i <d} = {n:1 < < d} = {¢+ 6(H,): v € Q}, identi-
ties (4.1) and (4.4) imply (4.8) and the proof is complete for ¢ € I,(4, B).
The case @ € IH,(A, B) is handled by the same argument.

DEFINITION 4.3. With notation as in Proposition 4.2, the invari-
ant pairing C, o -+ oG, () on A, x B, is independent of the reduced
expression and induces a pairing on 7(A) X 7(B), which we denote
by z(p¢). We have:

t: I,(A, B) — I(z(4), ©(B)) ,

(45) ¢: IH (A, B) — IH,(c(A), 7(B)) .

Next we consider an important example where the maps 7 in
(4.5) are surjective. Let d, .(#) denote the element of U(n~) given
in the identity (4.1).

LEMMA 4.4. Let E and F be finite dimensional m-modules and
let v and & be —Q-dominant integral elements of H*. Let A =EQ
Vaewsand B=FQV,q:s. Then the maps T in (4.5) are surjective.

Proof. Let A(s€ %) and B,(s€ %) be lattices above A and B
respectively. Replacing A and B by summands we assume that for
some X, X' € Zm)*, A= A, and B= B,.. Since generalized Z(m) eigen-
spaces for distinet characters are orthogonal it is sufficient to prove
the lemma in the setting where X =X’. Choose ¢ € )* such that g +6
is Q-dominant integral and X is parameterized by the orbit 277 - (¢ + 6).

By Lemma 7 [4], the maps z — Z of A! to z(A)", By to t(B)" are
surjective. Choose subspaces M, & A"[¢], N, € Bf[¢] such that the
induced maps give bijections M, ~ 7(A)", N, ~ t(B)". Define linear
subspaces M = d,, (#)-M,, N =d,, (#)-N,. Then M and M, (resp. N
and N,) are linearly isomorphic and M < A"t x], N < B"[t;¢]. Let
@ e I (z(A), 7(B). Clearly, 7(A) and 7(B) being semisimple, & is deter-
mined by its restriction to z(4)*x7(B)". Let 4, denote the pull back
of this restriction to M, X N, and define v on M X N by the formula:
¥(dy, (e, dy, (19b) = ri(a, b), a€M,, beN,. We claim that there
exist submodules A’ & A, B’ & B such that:

(4.6) A=APUmM, B =B Um)N .
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Assume, for the moment, A’ and B’ exist and (4.6) holds. U@m)M
and Um)N are the direct sums of irreducible Verma modules all of
highest weight ;-¢£. Now Proposition 6.12 [5] implies that there
exists an invariant pairing @ of Um)M and Um)N which restricts
tog-on M X N. We extend ¢ to A X B by setting it equal to zero
on (A’ X B)U (A x B’). But then, for some nonzero constant I", $ =
7(I'-®). Thus to complete the proof of surjectivity of I,(A4, B) onto
I,(z(4), z(B)) we need only prove (4.6) holds for some submodules A4’
and B'.

Let ¢, be a nondegenerate invariant form on E and let @, be
a nondegenerate invariant form on V,,,_, (cf. Proposition 6.8 [5]).
7z(p,) is a nonzero invariant form on 7(V,,,._;). But this module is
the irreducible m-module with highest weight #,(v) — d; and so, z(®,)
is nondegenerate. Then z(p;® @,) = ¢, ® 7(p,) is nondegenerate.
Now z(pp ® @,) restricted to z(A4)" x t(A)" is nondegenerate; and
therefore, ¢, ® @, restricted to M x M is nondegenerate. So since
Um)M is the direct sum of irreducible Verma modules ¢, ® @, re-
stricted to Um)M x U@m)M is nondegenerate. We put A’ equal to
the orthogonal complement to Um)M in A with respect to ¢, R @,.
The argument for B is identical; and so, the proof of (4.6) is complete.

For the case of invariant Hermitian pairings we note that if
x € b* is real valued on H,(a€@Q), and V,,; is irreducible, then V,,,;
and its conjugate dual module (w.r.t. &) are isomorphic. Here we
are using the fact that ¢ was determined by a compact real form
of m. With this fact in mind, essentially the same argument as
above applies to show 7: IH (A, B) — IH,(z(A), ©(B)) is surjective.

For any b-module M, we denote the induced module from b to
m by UM); ie., UM) = Um) @y M.

PROPOSITION 4.5. Let M and N be locally finite b-modules which
are semisimple as H-modules and have finite dimensional weight
spaces. Assume that UM) and U(N) admit nondegenerate invariant
forms. Then the following maps are surjections:

7 I(UM), UN)) — L(z(U(M)), =(U(N)))
7: IH (UM), UN)) — IH, (z(UM), =(UN))) .

Moreover, both maps carry mondegenerate pairings to nondegenerate
DPAITINGS.

Proof. Since M and N are locally finite, U(M) and U(N) are
each the direct sums of their generalized Z(m) eigenspaces U(M), and
U(N),, X € Z(m)”. By assumption the weight spaces of M and N are
finite dimensional; and thus, for each Xe Z(m)" there exist finite
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dimensional sub b-modules M’ £ M, N’ £ N such that:
4.7 v, < U, UWN), < UN") .

For any pairing @ € I, (UM), UN)) or IH, (UM), UN)) and X, X'e
Zm)~, X = X', we have:

(4.8) UM), < (UN))*,  UN)y S (UM))" .

The inclusions (4.8) imply that we need only prove the proposition
for U(M) replaced by U(M), and U(N) replaced by U(N),. For
convenience we set A = U(M), and B = U(N),.

Using Lemma 4.7 [5], choose a finite dimensional m-module F'
and integral weights g, v e * with p(H,) € 0, v(H,) € 0 (@ €Q), such
that we have embeddings:

(4.9) M<>FR®C.,, NFQRC,.

Extending scalars to U(m) and setting V.= V,ou V, = Vae. We
obtain embeddings:

(4.10) UM)y=—FQQV,, UN)=—FQYV,.

By assumption U(M) and hence A admits a nondegenerate invariant
form, say . Then using Propositions 6.13 and 6.7 [5] there exists
an invariant form £ on F ® V. which is nondegenerate and restricts
to { on A. This implies that A is a direct summand of F' Q) V,; and
so, 7(A) is a direct summand of z(FF@Q V,). The same argument
implies that z(B) is a summand of z(F @ V,). But then if Res denotes
the restriction map for pairings, the map

(4.11) Res: [,(z(F Q V), 7 (F @ V,)) — I.(z(A), =(B))

is a surjection. Let ®e I, (z(4), z(B)). Then by (4.11), choose an
invariant pairing + such that Res (y) = #. By Lemma 4.4, choose
welFQV, FQRV, such that z(y) = 4. If @ denotes the restric-
tion of 4 to A X B, then 7(p) = @. This proves surjectivity.

Let pe I, (A, B) and assume @ is nondegenerate. Using Proposi-
tions 6.13 and 6.7 [5], there exists a nondegenerate invariant pairing
G of (FQV, X (FQYV, which restricts to . We use 4 to obtain
the orthogonal decomposition:

(4.12) FQV.=A@®B*', FQV,=B@A".

Let £ebh* be Q-dominant integral and let z, be an n-invariant of
weight & in A,. Assume 2,¢>,., 4,. From (4.12) we consider
FRV),=A DB, (se¢?); and so0, 2,¢ >, (FQV,), Then, by
Proposition 9.8 [5], z = d,, (£)-z, is a split invariant of FQ V.. By
Lemma 9.3 [5] and (4.12), there exists an n-invariant w of weight
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t;-& in B such that o(z, w) = (2, w) # 0. Let w, be the unique n-
invariant in B, such that w = d, (&) -w, and let Z and w denote the
images of 2z, and w, in z(A) and z(B). Then z(@)(z, w)#*0. This implies
that z is not contained in z(B)*. But z denotes any n-invariant of
7z(A); and so, 7(A) N 7(B)* = 0. Likewise z(B) N 7(4A)* = 0. So z(p)
is nondegenerate on 4 x B and hence on UM) x U(N). The argu-
ment for @ € IH (UM), U(N)) is identical and we omit it.
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