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THE TRANSFER OF INVARIANT PAIRINGS
TO LATTICES

T. J. ENRIGHT AND R. PARTHASARATHY

In the article 'On the fundamental series of a real semi-
simple Lie algeba" two covariant functors, the completion
functor and the lattice functor, are introduced. In this
article, we study the behavior of invariant pairings and
invariant Hermitian pairings under the action of these
functors.

Let m be a finite dimensional reductive Lie algebra over C, the
field of complex numbers, and let U(rn) denote its universal enveloping
algebra. Let ΐ) be a CSA of m with roots Δ> a positive system Q
of A and Weyl group "W. For each aeQ, let ma denote the a root
space in m and choose vectors Ha, Xa, X_a such that

(1.1) Xa e ma , X_a e m_a , Ha - [Xa, X_α] , a(Ha) = 2 .

Then Hai Xa, X_a is called a standard triple and spans a subalgebra

α(«) of m isomorphic to si(2). Choose and fix once and for all an
involutive anti-automorphism σ of m such that σ restricted to ί) equals
the identity. Fix a real form m0 of m such that [tπ0, m0] is a compact
real form of [m, m] and m0 (Ί § — ί}0 is a real form of ί). Let mR be
the real Lie algebra underlying m and let σ be the JB-linear anti-
automorphism of Z7(tΠjι) uniquely determined by the condition that
—σ restricted to m equals the conjugation of m with respect to m0.
For m-modules A and B, a bilinear (resp. Hermitian) pairing < , •)
of A and B is called invariant if <x α, 6> = (a, xσ-b) (resp. (x-a, b) =
<α, x°-b}), aeA,beB, xe U(m). Denote by In(A, B) (resp. IHm(A, B))
the C-linear (resp. J?-linear) space of invariant (resp. invariant Her-
mitian) pairings of A and B. If g is any finite dimensional Lie algebra
over C with m e g and if σg (resp. <τβ) is an involutive anti-automor-
phism of 17(8) (resp. Z7(β*)) which restricts to σ (resp. σ) on m, then
we define g-invariant pairings as above with σ replaced by σq (resp.
σ replaced by σΛ) and U(m) replaced by £7(g). For g-modules A and
J5, we denote by Jβ(A, B) (resp. IHQ(A, B)) the spaces of g-invariant
(resp. g-invariant Hermitian) pairings of A and B.

For each aeQ, let Ca denote the completion functor determined
by the standard triple Ha, Xa, X_a. If m = sl(2) then we write H,
X, Y in place of Ha, Xa9 X_a and denote the functor Ca by C (there
is only one positive root in this case). Also in this case for neN
(integer ^ 0) and A an m-module we write A[n] for the subspace of
Jϊ-eigenvectors with eigenvalue n and Ax[n] for the subspace of A[n]
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of vectors mapped to zero by X. In the general case, Bouaziz [1]
and Deodhar [3] have shown that for any g-module A in the category
*J^(m) (cf. Definition 4.1 [5]) there is a lattice above A. Let
As(s 6 /^") denote this lattice above A and define the functor τ by
the formula: τ(A) = AJΣ ΦI Aβ. T(A) is a Z7(m)-finite g-module.

We can now state the main results of this article. First assume
m = sl(2). For A,Be^(m) and <peIm(A, B) (resp. IHm(A, B)) there
exists a unique pairing C(φ) e Im(C(A), C(B)) (resp. IHm(C(A), C(B)))
such that

( i ) C(φ) is zero on (A x C(B)) U (C(A) x B)
(ii) for all neN, aeC{A)x[n], beC(B)x[n]

C(φ)(a, b) = 1• <p(Y^a, Γ +ι6) .
w!(w + 1)!

This result is given below as Proposition 3.1 and is a mild variation
of a result in [5] which concerns only invariant forms. The main
result of § 3 is Theorem 3.4 which asserts that if A, Be^(m) and
φ e /β(A, B) (resp. /#8(A, £)) then C(φ) e IΛ(C(A), C(B)) (resp. IH%(C(A),
C(B))). For 9>eIβ(Λ, A), this theorem is precisely Proposition 8.5
[5]. The proof given there is based on an elaborate computation.
The proof given in this article is more conceptual and is based on
properties of certain vector valued pairings.

In § 4 we apply the results of § 3 to the setting of general re-
ductive Lie algebras m. Let ί0 be the unique element of W~ such
that t0Q — — Q and let t0 = sαi° oS(Xd be a reduced expression for
to (α*eQ, simple roots). Let A, Be<J^(m) and φeIz(A, B) (resp.
IH6(A,B)). Then (cf. Proposition 4.2), the pairing Caι<> ••> <>Cad(<p)
on At x J5X is independent of the reduced expression for t0 and is
zero on (Σ *i As x UJ U (Aj. x Σ8^i ft). This pairing induces a pairing
of τ(A) and τ(B) which we denote by τ(φ). Clearly, from the results
of §3, φ)6/ 8 (τ(4) ,τ(δ)) (resp. Iff,(r(A), τ(B))).

Define the Borel subalgebra b = | 0 Σ α e < ? ^ . For any b-module
Λf, we denote the induced module from b to m by U(M); i.e., ϊ/(Λf) =
Z7(m) ® σ ( i ) ilf. The main result of this last section concerns an im-
portant example where the map φ i-> τ(φ) is surjective and preserves
nondegenerate pairings. This result (Proposition 4.5) asserts the
following:

Let M and JV be locally finite b-modules which are semisimple as
^-modules with finite dimensional integral weight spaces. Assume
that U(M) and U(N) admit nondegenerate invariant forms. Then
the maps:

τ: I.( U(M\ U(N)) > I.(r( U(M)\
τ: IHm(U(M), U(N)) > IHw(τ(U(M))f τ(U(N)))
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are surjections. Moreover, both maps carry nondegenerate pairings
to nondegenerate pairings.

This result is an important part of the theory of the functor τ.
In particular, it is used in "The representations of complex semi-
simple Lie groups" [6] to show that every irreducible representation
of a complex Lie group is infinitesimally equivalent to the image
under τ of an irreducible highest weight module.

2* Notation* We continue with the notation of § 1. Let π =
Σiaeq ntα and xr = Σ α 6 Q m_α. Then b = ί) φ n and m ^ r φ t ) . For
any μeϊ)*, let Cμ denote the one dimensional b-module corresponding
to μ and let Vm,Q,μ = U(m) (8W) Cμ denote the Verma module with
highest weight μ. For any m-module A, let A* be the contragradi-
ent module. Let Z(m) denote the center of U(m) and Z(m)A the set
of homomorphisms of Z(m) into C. It is well known that Z(m)A is
parametrized by the Weyl group orbits in ψ. For XeZ(m)A and
an m-module A, let Aχ equal the submodule of A where z — X(z) l
is locally nilpotent for all zeZ(m). Let An denote the £)-submodule
of A of vectors mapped to zero by π; and, for μeψ, let An[μ] be
the subspace of A" of vectors of weight μ. Let Um{m) denote the
usual filtration of U(m), meiV. For complex vector spaces A, B and
F, and Fo a real form of F, we say that ψ is a Hermitian map of
AxB into F if φ is linear in the first variable and conjugate linear
in the second variable. If A — B, we say φ is a Hermitian form if
φ is a Hermitian map and φ(a, b) = φ(b, a), a, be A and denoting
conjugation of F with respect to FQ.

3* Invariant and invariant Hermitian pairings* Let notation
be as in § 1 except that we shall write α in place of m and assume
α ~ sϊ(2). H, X, Y will be a standard triple for α and C will denote
the completion functor with respect to H, X, Y defined on the cate-
gories *Ĵ (ct), g a finite dimensional Lie algebra which contains α.

PROPOSITION 3.1. Let A,Be^(a) and let ξn(neN) be nonzero
constants in R. For any φ in /α(A, B) (resp. IHa(A, B)) there exists
a unique pairing G(φ) = c< , •> in Ia(C(A), C(B)) (resp. IHa(C(A),
C(B))) such that

( i ) c< , •> equals zero on (C(A) x B) U (A x C(B)),
(ii) for each neN, aeC(A)x[n], beC(B)x[n],

*<α, δ> = e . < r +1α, Yn+1b)

For φ in Ia(A, A), the proposition is precisely Proposition 8.1
[5]. For φ 6 IHa(A, A), the proof of the proposition is entirely analo-
gous. The case B Φ A is proved exactly as the case A — B and we
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omit the details.
By Proposition 3.1, for each set of nonzero constants ξn(neN)

we have the transfer maps for A, 5ej^(α),

(3.1) φ\ >C{φ)

Ia(A, B) > Ia(C(A), C(B)) and

IHa(A, B) > IHa(C(A), C(B)) .

DEFINITION 3.2. We say the map φAtB \-^ C(φA>B) for A, B in J?($£)
and <pAtB 6 Ia(A, B) (resp. IHa(A, B)) is compatible with tensoring if
for any finite dimensional α-module F and any φF e Ia(F, F) (resp.
IHa(F, F))

C(φF <g) φAtB) = <PF<S) C(φAfB) .

(Here we identify canonically C(F® A) with F®C(A) and C(F<g)B)
with F(g)C(B).)

PROPOSITION 3.3. The maps φ -> C(φ) given in (3.4) are compa-
tible with tensoring if and only if there is a nonzero constant ξ
such that

ξn - ξ/n\(n + 1)! (neN; 0! = 1) .

In the case φ 6 Ia(A, A), the proposition is precisely Proposition
8.4 [5] and for φ e IHa(A, A) the proof of the proposition is entirely
analogous. The proof in the case A Φ B is exactly the same as the
case A = B and we omit the details.

Now we consider the relative situation α £ g. Fix the constants
ξn = l/nl (n + 1)! (n e N) and let φ \-+ C(φ) be the map given by (3.1)
for this choice of constants.

THEOREM 3.4. Let A, Be^(a) and let φeI6(A, B) (resp. IH6(A,
B)). Then C(φ)eI%(C(A)9 C{B)) (resp. IH%{C{A\ C(B))).

For φ e Jβ(A, A) this theorem is precisely Proposition 8.5 [5]. The
proof given here is different from the proof in [5], is more concep-
tual and is based on properties of certain vector valued pairings.
Before giving the proof, we establish a few properties of vector
valued pairings.

For g-modules A, B and F> we call ψ an invariant pairing (resp.
invariant Hermitian pairing) of A and B with values in F if ψ is a
bilinear (resp. Hermitian) map ψ: A x B->Fand, for xe U(Q), aeA,
be By ψ(x a, b) — ψ(a, αfβ δ) = x ψ(a, b) (resp. ψ(x-a, b) — ψ (α, xd*-b) —
x-ψ(a, 6)). Denote the set of such pairings by 78(A, B, F) (resp.
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IH,(A, B, F)). If F is the trivial module then I%(A, B, F) = IQ(A, B)
and IHQ(A, B9 F) - IHQ(A, B).

Next we shall associate to any pairing ψ two scalar valued pair-
ings. For any vector space F, let F* denote the algebraic dual of
F. Let V be the set F* with multiplication by elements of C de-
noted by * and given by α*λ = αλ, aeC, λ e F * . F is a vector
space over C called the conjugate dual of F. If F is a g-module,
then V becomes a g-module by composing the /ί-linear automorphism
—σ and the contragradient representation of g on F*. We shall
call this the conjugate dual module to F and denote it by F. For
ψ e Jβ(A, B, F) define ψR e Jβ(A, F* (x) B) and V e ΛC^* ® Λ #) *>
formulae: for λe.F*, aeA, beB,

(3.2) f β (α, λ (8> 6) = λ(f (α, 6)) ,

(3.3) z t ( ^ (x) α, 6) = λ(f(α, 6)) .

If ψ e IHQ(A, B, F) then define ψR e IHQ(A, F ® B) and Lψ e IHΛ(F* (x)
4̂, J5) by the formulae (3.2) and (3.3) respectively. We note that if

F is finite dimensional then ψ is determined by ψR and by L^.
Assume F is finite dimensional and A, S e ^ α ) . Using ψR and

L ^ we define two transfers of ψ as follows. For <f e Ia(A, B, F)
(resp. IHa(A, B, F))> define RC(ψ) and LC(ψ) to be the unique ele-
ments of Ia(C(A), C(B), F) (resp. Iffβ(C(A), C(JB), ί1)) such that
(RC(ψ))R = C(ψR) and L(LC(ψ)) = C(Lψ).

PROPOSITION 3.5. For ψ e I(A, B, F) or IH(A, B} F), RC(ψ) =

LC(ψ).

Proof. First assume ψeIQ(A, B, F). Let φ be the canonical
pairing of F and ί7*. Tensoring we obtain a pairing

(3.4) φ (x) V : (F(g) F* (x) A) x (ί7* (x) B) > C .

Since F®F* is canonically isomorphic to Horn (i*7*, i77*), the identity
element of Horn (F*, F*) induces a canonical inclusion:

(3.5) i:A >F(x)F*(x)A .

Via this inclusion, we restrict φ (x) Lψ to obtain the pairing:

(3.6) Res (φ (x) Lψ): A x (F* ® B) > C .

With an easy calculation, one verifies that 7α/r and hence ψ is deter-
mined by Res (φ (x) Lψ); and moreover, if ^el^A, B, F), (i ~ 1, 2),
then

(3.7) ψλ = f2 <=~ Res (φ (g)
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Assertion (3.7) shows that to prove LC(ψ) = RC(ψ) we need only
prove Res (<p (g) L(LC(ψ))) = (RC(ψ))R. Thus we need only prove the
identity:

(3.8) Res(<p(g)C(Lψ)) = C(ψR).

By Proposition 3.3, φ (g) C(Lψ) = C{φ (g) V) a n ( * by functoriality of
C( ) applied to (3.5), C(i) is the canonical inclusion C(A) -> JP7 0 F* (g)
C(A). This implies: Res (φ (g) C(z^)) = C(Res (<p (g) Lψ))- However, by
(3.7), Res (φ (g) Lψ0 = ψB; and so, the identity (3.8) is established.
This completes the proof for ψ e IQ(A, B, F). If ψ e /ϋΓfl(A, J5, F) then
since the map φ gives an invariant Hermitian pairing of F and F
the same argument applies and the proof is complete.

Proof of Theorem 3.4. For any φeIHa(A, B) with A,
define g* valued pairings Lφ and <pR by the formulae: for

, b)(X) = 9>(X α, 6)(3 9 )

One checks that L ^ and φB are elements of IHa(A, B, g*). We now
claim the following identities hold:

(3.10) \LC{φ)) = C{\Lφ))

(3.11) {C{φ)Ry - C{{φB)
R) .

Let π be the α-module map: π: Q (g) ̂ 4 -* A, X (g) α i—> X α, (Xeg, αeA)
and π x 1: (g(g) A) x δ - > i x β. Then L(Lφ) = φo(π x 1); and so,
C(L(Lφ)) = C(φ) o (C(7Γ) x 1). By uniqueness of C(π), C(π)(X (g) α) = X α
(Xeg, αeC(A)); and thus, identity (3.10) is true. Identity (3.11) is
proved in essentially the same way. Combining (3.3), (3.10) and (3.2),
(3.11), we obtain:

(3.12) LC(Lφ) = LC(φ)

(3.13) RC(φB) - C(φ)B .

Now assume φeIH9(A, B). In variance is equivalent to saying
that Lφ equals <pB. By Proposition 3.5 and identities (3.12) and (3.13)
we have: LC(φ) = C(φ)B. This says that C(φ) is invariant.

In the case where φ e /β(A, B) the argument is essentially the
same. We need only replace σ8 by σ8 in definition (3.9). We omit
the details.

4* Pairings and lattices* Let notation be as in § 1. In par-
ticular, m is a reductive Lie algebra over C which is contained in
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a finite dimensional Lie algebra g. Let t0 e W" be the unique element
such that t0Q = - Q .

LEMMA 4.1. Lβί t0 — sai sαrf = s^ s ^ fee £wo reduced expres-

sions for t0 (aif βj simple). For any Q-dominant integral weight
μ, set

mt = (s^ sai(μ + δ))(HΛi) , n< = (s^ sh(μ +

( 1 ^ i ^ <Z) .

Then, in U(n~) we have the identity:

Proof. Let a? (resp. 2/) denote the left (resp. right) side of (4.1).
x(x) 1 and ?/®l both span the space of n-invariants of weight
ίoG" + δ) — δ in Vn,Q,μ; and so, x is a nonzero multiple of /̂. How-
ever, since the simple roots are linearly independent and Σ w*Ά —
i" "" *oG" + ^) + ^ — Σ w ^ , identity (4.1) is true in the symmetric
algebra. This implies x — y is an element of Ur~1(jtίj9 r = Σ w^ ==
Σ nt. But x is a nonzero multiple of y and x, y & ?7r~1(m) so x — y.

PROPOSITION 4.2. Lei ί0 = sαi sad — sβl s d̂ fee ίwo reduced
expressions for t0 (aίt βi simple). Let A, Be*J^(m) and φeI6(A, B)
or IH%(A, B). Then the pairings Cαi° °Cad(φ) and Cβl<> °Cβd(<p)
are equal and this pairings is zero on (ΣisΦ1As x B±) U (A1 x Σ s ^ i ^ s )

Proof. Assume φ 6 /8(A, J5). L e t <pYti — Ch ° © Cΐd(φ), (y = a

or /3). Clearly ^ r > 1 6 J^Ai, BJ and, directly from the definition, 9>Λ>1 is
zero on (A8 x B) U (A x B8a). For any simple root ξ, we have
(Theorem 1 [2]):

(4.2) sζtQ = saί sα i - sad for some i , 1 ^ i ^ d ,

C denotes omission) .

Set A, = Cβ4 o . . . o Cai(A), JB, = Cβi o . . o Cβi(B), (1 ^ i ^ d). By (4.2),
the restriction of φa>ι to (ilβe x Bx) U (Λ x JB,€) equals Cai<> -. Q C ^ of ^α>i

restricted to (Aj+1 x Bj) U (A, x Bj+1). But ^>a>i is zero on (A i+1 x JBy) U
(Ay x By+0; and so, φaΛ is zero on ( Σ ^ Λ X BJ U (Ax x Σ s * i # s ) .
The same argument applies to φβtl. Therefore both φaΛ and φβιl

induce invariant pairings on τ(A) x τ(B). These modules are ?7(tn)-
finite; and so, we need only check that for Q-dominant integral μ
and π-invariant vectors z e Alf w e Bx of weight μ

(4.3) φa>1(z, W) = φβΛ(z, W) .
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Using the definitions directly we obtain:

9«.i(«, w) = Π ——^——ψ{X-d

ad • • • X - > , XZd

d • • • X_"»
( 4 4 ) « m,!(m( + l)!

ψUz, «0 = Π .. 1_uΛ,MX-td • X-ϊfr X-U X\v>) •
1 Ki! \Ui + 1)!

Now, since {m :̂ 1 <> i <^ d} = {nt: 1 ̂  ΐ ^ d} = {μ + δ(Hr): 7 e Q}9 identi-
ties (4.1) and (4.4) imply (4.3) and the proof is complete for φ e I^A, B).
The case φ e IHS(A, B) is handled by the same argument.

DEFINITION 4.3. With notation as in Proposition 4.2, the invari-
ant pairing Cβl ° ° Cad{φ) on Ax x B1 is independent of the reduced
expression and induces a pairing on τ(A) x τ{B), which we denote
by τ(φ). We have:

τ UA B) > Uτ(A), τ{B)) ,
τ: IH.CA, B) > IH%{τ(A\ τ{B)) .

Next we consider an important example where the maps τ in
(4.5) are surjective. Let dhΛ{μ) denote the element of U(n~) given
in the identity (4.1).

LEMMA 4.4. Let E and F be finite dimensional m-modules and
let v and ζ be —Q-dominant integral elements of §*. Let A = E®
Vm,Q,v_δ and B = F (x) Fm,ρ,ί_δ. Then the maps τ in (4.5) are surjective.

Proof. Let A8(s e <W) and Bs(s e W") be lattices above A and B
respectively. Replacing A and B by summands we assume that for
some Z, 1! 6 Z(m)A, A = Aχ and B = Br. Since generalized Z(m) eigen-
spaces for distinct characters are orthogonal it is sufficient to prove
the lemma in the setting where X = V. Choose μ e ψ such that μ + 8
is Q-dominant integral and X is parameterized by the orbit W'-(μ + δ).

By Lemma 7 [4], the maps z->z of A\ to τ(A)π, J5Γ to τ(JS)n are
surjective. Choose subspaces M1 £ An[̂ ]> -̂ Ί £ ^ΐ[μ] such that the
induced maps give bisections M1 ̂  τ(A)tt, N± r^ τ(J5)π. Define linear
subspaces M= dtθtl(μ)-Mlf N = d^^-N^ Then M and ikfx (resp. N
and JVΊ) are linearly isomorphic and MQ An[t'oμ], N Q Bn[t'Qμ]. Let
φ e /β(r(A), τ(β)). Clearly, τ(A) and τ(jB) being semisimple, φ is deter-
mined by its restriction to τ(A)nxτ(J5)n. Let ψt denote the pull back
of this restriction to M1 x N1 and define ψ on M x N by the formula:
ψ{dhΛ(μ)a, dtQ1(μ)b) = ψi(a, 6), αεilf19 beN±. We claim that there
exist submodules A' £ A, B' Q B such that:

(4.6) A = A' © U(m)M , 5 = 5 ' © C7(m)iV .
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Assume, for the moment, A' and B' exist and (4.6) holds. U(m)M
and U(m)N are the direct sums of irreducible Verma modules all of
highest weight t[ μ. Now Proposition 6.12 [5] implies that there
exists an invariant pairing φ of U(m)M and U(m)N which restricts
to ψ on M x N. We extend φ to A x B by setting it equal to zero
on (A' x B) U (A x B'). But then, for some nonzero constant Γ, φ =
τ(Γ-φ). Thus to complete the proof of surjectivity of IQ(A, B) onto
Ii(τ(A)f τ(B)) we need only prove (4.6) holds for some submodules A!
and B'.

Let φE be a nondegenerate invariant form on E and let φv be
a nondegenerate invariant form on Fm,Q>v_δ (cf. Proposition 6.8 [5]).
τ(φv) is a nonzero invariant form on τ(Vm>Qtl/^δ). But this module is
the irreducible m-module with highest weight to(v) — δ; and so, τ(φ^)
is nondegenerate. Then τ{φE (x) φv) — φE (x) r(9\) is nondegenerate.
Now τ(φE (x) <ρj restricted to τ{A)n x τ(A)n is nondegenerate; and
therefore, φE (x) <£>„ restricted to M x ilί is nondegenerate. So since
Z7(m)Af is the direct sum of irreducible Verma modules φE (g) φu re-
stricted to U(xn)M x U(m)M is nondegenerate. We put A! equal to
the orthogonal complement to J7(m)ikf in A with respect to 9^ (x) 9 .̂
The argument for B is identical; and so, the proof of (4.6) is complete.

For the case of invariant Hermitian pairings we note that if
λ e ψ is real valued on Ha(a e Q), and Vm>Qfλ is irreducible, then Vw,Qiχ
and its conjugate dual module (w.r.t. σ) are isomorphic. Here we
are using the fact that σ was determined by a compact real form
of m. With this fact in mind, essentially the same argument as
above applies to show τ: IH6(A, B) —> IHa(τ(A), τ(B)) is surjective.

For any b-module M, we denote the induced module from b to
m by U(M); i.e., U(M) - U(m)®σwM.

PROPOSITION 4.5. Let M and N be locally finite b-modules which
are semisimple as ^-modules and have finite dimensional weight
spaces. Assume that U(M) and U(N) admit nondegenerate invariant
forms. Then the following maps are surjections:

τ: Im(U(M), U(N)) > Im(τ(U(M)\ τ(U(N)))

τ: IHm(U(M), U(N)) > IHm{τ{U{M\ τ(U(N))) .

Moreover, both maps carry nondegenerate pairings to nondegenerate
pairings.

Proof. Since M and N are locally finite, U(M) and U(N) are
each the direct sums of their generalized Z(tn) eigenspaces U(M)χ and
U(N)χ, XeZ(m)A. By assumption the weight spaces of M and N are
finite dimensional; and thus, for each XeZ(m)A there exist finite
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dimensional sub b-modules M' £ M, N' Q N such that:

(4.7) U(M)χ S U{M') , U(N)χ Q U(N') .

For any pairing φeIm(U(M), U(N)) or IHm(U(M), U(N)) and 5C, X'e
Z(m)A, 1 Φ %', we have:

(4.8) U(M)χ Q (U(N)χ,y , U(N)χ, Q {U{M)χγ .

The inclusions (4.8) imply that we need only prove the proposition
for U(M) replaced by U(M)χ and U(N) replaced by U(N)χ. For
convenience we set A = U(M)χ and B = U(N)χ.

Using Lemma 4.7 [5], choose a finite dimensional tn-module F
and integral weights μ, ι>zψ with μ(Ha) < 0, v(Ha) < 0 (α 6 Q), such
that we have embeddings:

(4.9) Mf^—*F(g)Cμ, N'<=—*F(g)Cu.

Extending scalars to U(xή) and setting Vμ — Vm,Q>μ, Vv — Vm>QtV, we
obtain embeddings:

(4.10) U{M') -—> F®Vμ, U(N') - — F (x) Vv .

By assumption U(M) and hence A admits a nondegenerate invariant
form, say ζ. Then using Propositions 6.13 and 6.7 [5] there exists
an invariant form ζ on F (g) Vμ which is nondegenerate and restricts
to ζ on A. This implies that A is a direct summand of F ® Vμ; and
so, τ(A) is a direct summand of τ(F§ξ)Vμ). The same argument
implies that τ(B) is a summand of τ(.F(x) Vv). But then if Res denotes
the restriction map for pairings, the map

(4.11) Res: Im(τ(F (x) Vμ\ τ(F ® O > Im(τ(A), τ{B))

is a surjection. Let φeIm(τ(A), τ(JS)). Then by (4.11), choose an
invariant pairing ψ such that Res (φ) = φ. By Lemma 4.4, choose
ψeI(F®Vμ, F(g)VJ) such that τ(ψ) = ψ. If φ denotes the restric-
tion of ψ to A x B, then τ(φ) = ^ . This proves surjectivity.

Let φ e Im(Af B) and assume φ is nondegenerate. Using Proposi-
tions 6.13 and 6.7 [5], there exists a nondegenerate invariant pairing
ψ of (F® Vμ) x (F(x) Vv) which restricts to φ. We use α|r to obtain
the orthogonal decomposition:

(4.12)

Let ξeψ be Q-dominant integral and let zx be an n-invariant of
weight ξ in At. Assume ^ ί Σ ί W 4 8 . From (4.12) we consider
{F® Vμ)8 = A8® B\ ( S G ^ ) ; and so, zx £ Σ # i (F(g) Vμ)8. Then, by
Proposition 9.8 [5], z = diOfl(f)-«! is a split invariant of F(g)F/z. By
Lemma 9.3 [5] and (4.12), there exists an n-invariant w of weight
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tΌ'ζ in B such that φ(z, w) — ψ(z, w) Φ 0. Let wί be the unique π-
invariant in B1 such that w = dtol(ξ) wL and let z and w denote the
images of zι and wλ in τ(A) and τ{B). Then τ(φ)(z, ϊϋ)Φθ. This implies
that z is not contained in τ(BY. But 2 denotes any π-invariant of
τ(A); and so, τ{A) f] τ{B)L = 0. Likewise τ(5) n τ(A)1 = 0. So τ(<p)
is nondegenerate on A x J3 and hence on Ϊ7(jkf) x U(N). The argu-
ment for (peIHm(U(M), U(N)) is identical and we omit it.
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