INVERTING DOUBLE KNOTS

WILBUR WHITTEN

We disprove J. Montesinos's conjecture that every invertible knot in S° is strongly invertible.

Let K denote a tame, oriented knot in S^3 , and fix an orientation of S^3 . If there exists an orientation-preserving, PL involution of S^3 that inverts K, then K is strongly invertible. J. Montesinos proposed this definition [5], and he has conjectured [3; Problem 1.6, p. 277] that every invertible knot is strongly invertible. In this paper, we disprove this conjecture; our results are as follows.

Theorem 1. A knot K is strongly invertible if and only if each double of K is strongly invertible.

COROLLARY. No double of a noninvertible knot is strongly invertible; hence, there exist invertible knots that are not strongly invertible.

Proof of Corollary. Any double knot is invertible [6; Theorem 1, p. 235].

THEOREM 2. If L is a strongly invertible knot with exactly one maximal companion C_L , then C_L is also strongly invertible.

Section 1 contains a preliminary lemma. We prove Theorems 1 and 2, in §2. In §3, we give a counterexample to the converse of Theorem 2; in §4, we discuss surgery on invertible knots, give several examples, and formulate a conjecture.

I wish to thank C. Gordon and K. Murasugi for discussing this work with me.

1. Preliminaries. In this paper, all spaces are polyhedrons; the three-sphere has a fixed orientation; all maps are piecewise linear; all submanifolds, polyhedral; and all knots, oriented. We shall need the following lemma.

Positioning Lemma. If K is a strongly invertible knot, then there exists an orientation-preserving, K-inverting, PL involution $\rho: S^3 \to S^3$ with nonempty, fixed point set A and there exists a polyhedral, ρ -invariant 2-sphere S such that (a) the "axis" A of ρ belongs to S, (b) the set $K \cap A$ contains exactly two points, (c) the knot K is transverse with respect to the 2-sphere S, and (d) the set $K \cap S$ contains only a finite number of points.

Proof. Because K is strongly invertible, there exists an orientation-preserving, K-inverting, PL involution $\rho'\colon S^3\to S^3$. The Lefschetz fixed-point theorem implies that $\rho'|K$ has exactly two fixed points. Because the fixed-point set (or axis) A' of ρ' is, therefore, nonempty, the axis A' must be a knot [7; Theorem, p. 162]. If we set $S^3=R^3\cup\{\infty\}$, then, because ρ' is piecewise linear and orientation-preserving, there exists a PL autohomeomorphism φ of S^3 such that $\varphi\rho'\varphi^{-1}(=\rho_\circ)$ is a "standard" (orthogonal) 180° -rotation and such that $\varphi(A')=(y\text{-axis})\cup\{\infty\}(=A_0)$ [10].

Because $\varphi(K)$ is polyhedral, because the rotation ρ_0 takes $\varphi(K)$ onto itself, and because $\varphi(K)$ meets A_0 in only two points, x_1 and x_2 , we can (if necessary) find a small angle $\alpha^{\circ}(\alpha>0)$ such that an α° -rotation ρ_{α} about A_0 takes $\varphi(K)$ to a knot $\rho_{\alpha}\varphi(K)$ that is transverse to the 2-sphere $S_0(=(yz\text{-plane})\cup\{\infty\})$ at each of the points, x_1 and x_2 . We shall find a knot K' (ambient isotopic to $\rho_{\alpha}\varphi(K)$) such that K', the involution ρ_0 (of S^3) with axis A_0 , and the 2-sphere S_0 satisfy the hypothesis and the conclusion of the lemma. The lemma's proof will easily follow.

Choose $\varepsilon(>0)$ so that (closed) ε -neighborhood V_{ε} of $\rho_{\alpha}\varphi(K)$ is a solid torus; such a choice is possible, because $\rho_{\alpha}\varphi(K)$ is polyhedral in S^3 . Because $\rho_{\alpha}\varphi(K)$ is transverse to S_0 at x_1 and at x_2 , we can restrict ε so that $V_{\varepsilon} \cap S_0$ contains (among other things) two disjoint meridional disks, E_1 and E_2 , of V_{ε} , with $E_i \cap \rho_{\alpha}\varphi(K) = \{x_i\}(i=1,2)$. By a final restriction of ε , we can assume that $V_{\varepsilon} \cap A_0 = (E_1 \cup E_2) \cap A_0 = (E_1 \cup E_2)$ (The constructions involved in our restrictions of ε are standard, and we shall omit them.) Finally, note that $\rho_0(V_{\varepsilon}) = V_{\varepsilon}$.

The points x_1 and x_2 divide $\rho_{\alpha}\varphi(K)$ into two (closed) arcs, k_1 and k_2 ; the disks E_1 and E_2 divide V_{ε} into (closed) 3-cells, B_1 and B_2 , with k_i unknotted in $B_i (i=1,2)$ (see [4; p. 134]). We note that $\rho_0(B_1) = B_2$ and that $B_i \cap A_0 = (E_1 \cup E_2) \cap A_0$.

Keeping x_1 and x_2 fixed, we now put k_1 in general position with respect to S_0 by an orientation-preserving autohomeomorphism $h_1: S^3 \to S^3$ moving each point of k_1 less than ε . We can evidently assume that $h_1 \mid (S^3 - \text{Int } B_1)$ is the identity map.

The arc $\rho_0 h_1(k_1)$ is clearly unknotted in B_2 . Hence, there exists an orientation-preserving autohomeomorphism $h_2 \colon S^3 \to S^3$ taking k_2 onto $\rho_0 h_1(k_1)$ and leaving each point of S^3 — Int B_2 fixed. The autohomeomorphism h of S^3 given by

$$h(x) = egin{cases} h_i(x) \ , & ext{if} \quad x \in ext{Int } B_i(i=1,\,2) \ x \ , & ext{otherwise} \end{cases}$$

preserves the orientation of S^3 and takes $\rho_{\alpha}\varphi(K)$ onto a knot $h_1(k_1)$ \cup

 $ho_0 h_1(k_1)$ that is in general position with respect to S_0 and that is strongly inverted by ho_0 . We set $K' = h
ho_{\alpha} \varphi(K) (= h_1(k_1) \cup \rho_0 h_1(k_1))$ and note that the knot K', the involution ho_0 with axis A_0 , and the 2-sphere S_0 satisfy the hypothesis and conclusion of the lemma. The proof of the lemma now follows by taking $ho = (h
ho_{\alpha} \varphi)^{-1}
ho_0 (h
ho_{\alpha} \varphi)$, taking $A = A' (= \varphi^{-1}(A_0) = (h
ho_{\alpha} \varphi)^{-1}(A_0))$, and taking $S = (h
ho_{\alpha} \varphi)^{-1}(S_0)$.

2. Proofs.

Proof of Theorem 1. We shall assume that K is not trivial, for otherwise, the theorem is evidently true.

(1) Necessity. We assume that K is strongly invertible. Let ρ , and A, and S denote the objects our Positioning Lemma guarantees, and let $K \cap A = \{x_1, x_2\}$. By the Positioning Lemma's proof, we can assume (without loss of generality) that ρ is the 180°-rotation about $A(=(y\text{-axis}) \cup \{\infty\})$ and that $S=(yz\text{-plane}) \cup \{\infty\}$. Moreover, we can choose $\varepsilon(>0)$ and V_ε exactly as in the lemma's proof. We have $K=k_1 \cup k_2$ (with $\rho(k_1)=k_2$) and $V_\varepsilon=B_1 \cup B_2$; moreover, $E_\varepsilon \cap A(i=1,2)$ is a properly imbedded arc in E_ε .

Let C denote a cylindrical 3-cell with core k and with two disks, D_1 and D_2 , meeting in an arc and imbedded in C, as shown in Figure 1. Let v be a (closed) arc in $\operatorname{Int}(E_2 \cap A)$ such that $x_2 \in \operatorname{Int}(v)$ (see Figure 2(a)). It is easy to find an arc $v_1 \subset \operatorname{Int} E_1$ such that $v_1 \cap A = \{x_1\} = v_1 \cap \rho(v_1) = A \cap \operatorname{Int} v_1$; note that $\rho(v_1) \subset \operatorname{Int} E_1$ (see Figure 2(b)).

Now, let $g\colon C\to B_1$ be a homeomorphism such that $g(E_i')=E_i(i=1,2)$, such that $g(v_1')=v_1$ and $g(v_2')=\rho(v_1)$, such that g(v')=v, and such that $g(k)=k_1$. Then $[g(D_1\cup D_2)]\cup [\rho g(D_1\cup D_2)]$ is a singular disk Σ with one clasping singularity, and the $\partial\Sigma$ is a double of K with twisting number σ (an integer depending on the homeomorphism $g\colon C\to B_1$) and with self-intersection number $\eta(=\pm 2)$. (By changing g (to change σ) and by replacing C with its mirror image (to change the sign of η), we can assume that $\partial\Sigma$ is any double of K that we desire.) Evidently, $\partial\Sigma$ is strongly invertible (by the involution ρ). This completes the proof of the necessity.

FIGURE 1

(2) Sufficiency. We assume that some double, D_K , of K is strongly invertible. Replace K by D_K in the Positioning Lemma; we can assume that ρ is the standard rotation (of period 2) about $A(=(y\text{-axis}) \cup \{\infty\})$, that $S=(yz\text{-plane}) \cup \{\infty\}$, and that $D_K \cap A=\{x_1, x_2\}$.

Let V^* denote a (closed) regular neighborhood of a clasping disk whose boundary is D_K ; note that K is equivalent to a core of V^* [6; p. 238]. Now K is a unique maximal companion D_K [6; p. 242]; that is, any companion of D_K , other than K, is also a companion of K. Hence, the torus $\rho(\partial V^*)$ is ambient isotopic to ∂V^* in $S^3 - D_K$. So, by [9; Theorem 1, p. 223], the ∂V^* is ambient isotopic (in $S^3 - D_K$) to a torus T in general position with respect to A, and either $\rho(T) \cap T = \emptyset$ or $\rho(T) = T$. If $\rho(T) \cap T = \emptyset$, then T and $\rho(T)$ are parallel. Because $\rho^2(T) = T$ and because each of $\rho(T)$ and T separates $S^3 - D_K$, it easily follows that ρ moves fixed points of itself, which is absurd. Thus, $\rho(T) = T$.

Now T splits S° into a solid torus V (containing D_K in its interior) and a K-knot manifold. If $A \cap T = \emptyset$, then $A \subset \operatorname{Int} V$, because $A \cap D_K \neq \emptyset$. Because K is knotted and A is unknotted, A belongs to a polyhedral 3-cell $\subset \operatorname{Int} V$; otherwise, A would have a companion, which it does not [6]. Applying Tollefson's lemma [8; Lemma 1, p. 141], we can find a 2-sphere $S' \subset \operatorname{Int}(V - A)$ such that S' bounds no 3-cell in V - A and such that either $\rho(S') \cap S' = \emptyset$ or $\rho(S') = S'$. As with the tori T and $\rho(T)$ in the preceding paragraph, we cannot

have $\rho(S') \cap S' = \emptyset$. If $\rho(S') = S'$, then take the 3-cell $B^3 (\subset S^3)$ that does not contain A and that S' bounds (in S^3), and consider the homeomorphism $\rho \mid B : B \to B$. By the Brouwer fixed-point theorem, $\rho \mid B$ has a fixed point, and so ρ has a fixed point not on A (which it does not). Hence, $A \cap T \neq \emptyset$.

Because T is in general position with respect to A, the cardinality b of $A\cap T$ is finite. Let T_0 denote the orbit space of $\rho\mid T$. The projection $p\colon T\to T_0$ is a branched covering, and the two Euler characteristics, $\chi(T)$ and $\chi(T_0)$, are related by the Riemann-Hurwitz branch-point formula,

$$\chi(T) = 2\chi(T_0) - b :$$

see [1; p, 93]. But $\chi(T) = 0$ and b > 0. Hence, $\chi(T_0) = 2$, and so T_0 is a 2-sphere and b = 4. (Because the orbit space of ρ is S^3 and because S^3 contains no projective planes, we cannot have $\chi(T_0) = 1$.)

FIGURE 3

Now let T' denote the torus $(r-2)^2+z^2=1$ (see Figure 3), let m denote the curve $\{(r,z)|\theta=0 \text{ and } (r-2)^2+z^2=1\}$ (which we shall take as one of the two components of $T'\cap S$), and let $K_{(\overline{p},\overline{q})}((\overline{p},\overline{q})=1)$ denote the torus knot $\{(r,z)|r=2+\cos(\overline{p}\theta/\overline{q}),z=\sin(\overline{p}\theta/\overline{q})\}$ on T' (cf. [2; p. 92]). To fix the (r,θ,z) -coordinate system on T', let the point α shown in Figure 3 have (r,θ,z) -coordinates (3, 0, 0). Note that $\rho(T')=T'$ and that $\rho(m)=m^{-1}$ (after we have oriented m). If T'_0 denotes the orbit space of $\rho \mid T'$, then the projection $p'\colon T'\to T'_0$ is a branched covering. As with $p\colon T\to T_0$, the covering p' has four branch points, and T'_0 is a 2-sphere.

According to [1; Theorem 3.4, p. 94], the coverings p and p' are equivalent; that is, there exist homeomorphisms $\psi \colon T \to T'$ and $\gamma \colon S^2 \to S^2$ such that $p'\psi = \gamma \rho$. It follows easily that φ preserves covering fibers.

Thus, if $\{x, \rho(x)\}$ is a fiber of p, then $\{\psi(x), \psi\rho(x)\}$ is a fiber of p', and so $(\rho \mid T')\psi(\rho \mid T)(x) = \psi(x)$; that is, $\psi = (\rho \mid T')\psi(\rho \mid T)$. Because $\rho^2 = id$., we have $(\rho \mid T')\psi = \psi(\rho \mid T)$. Notice that $\rho(K_{(\overline{p}, \overline{q})}) = K_{(\overline{p}, \overline{q})}^{-1}$; thus, for any $(\overline{p}, \overline{q})$ -torus knot, there exists a representative, $K_{(\overline{p}, \overline{q})}$, of it on T' that ρ inverts (and, hence, strongly inverts).

If λ is an (oriented) longitude of K on T, then $\psi(\lambda)$ is isotopic on T' to m or to one of the torus knots $K_{(\overline{p}_1,\overline{q}_1)}$, for some pair $(\overline{p}_1,\overline{q}_1)$. Thus, either $\psi^{-1}(m)$ or $\psi^{-1}(K_{(\overline{p}_1,\overline{q}_1)})$ is a longitude of T meeting the axis A of p in exactly two points, because ψ maps branch points of p to branch points of p'. Because $(\rho \mid T')\psi = \psi(\rho \mid T)$, we have either $\rho(\psi^{-1}(m)) = \psi^{-1}(\rho \mid T')(m) = \psi^{-1}(m^{-1}) = [\psi^{-1}(m)]^{-1}$ or, similarly, $\rho(\psi^{-1}(K_{(\overline{p}_1,\overline{q}_1)})) = [\psi^{-1}(K_{(\overline{p}_1,\overline{q}_1)})]^{-1}$. Therefore, ρ strongly invertible.

Proof of Theorem 2. We need only note that, in the proof of Theorem 1, the sufficiency portion depends on the uniqueness of the maximal companion K of D_K and not on the knot type of D_K .

- 3. A counterexample. The noninvertible knot \mathcal{K} in [11; Figure 3, p. 1275] is a counterexample to the converse of Theorem 2. Because the knots 3_1 and 5_1 (of the Alexander-Briggs table) are simple, one can apply Schubert's theorem [6; p. 216] to show that \mathcal{K} has exactly one maximal companion, which is a trefoil knot and, hence, strongly invertible; details of the application are routine, and we shall omit them.
- 4. A conjecture. A link L in S^3 is $strongly\ invertible$, if there exists an orientation-preserving PL involution of S^3 that inverts each component of L. In [5, Theorem 1, p. 231], Montesinos proved that any 3-manifold derived from surgery on a strongly invertible link is a 2-fold cyclic covering space of S^3 branched over a link and, conversely, that one can produce any particular 2-fold branched cyclic covering space of S^3 by surgery on a suitable, strongly invertible link. I do not know whether nontrivial surgery on a knot that is not strongly invertible will produce a 2-fold branched cyclic covering space of S^3 . It is, however, a different story for links. Here are some examples.
- F. González-Acuña and J. Montesinos gave the first such examples (unpublished). Assign any rational coefficient to the component K_1 of the unsplittable and noninvertible Borromean rings, $K_1 \cup K_2 \cup K_3$

[5]. Take nonzero integers, a and b, and assign the coefficient 1/a to K_2 and the coefficient 1/b to K_3 . We now have a surgical description of a closed, connected, orientable 3-manifold, M. By applying an appropriate twist across a disk spanning each of K_2 and K_3 , we can replace our original surgical description on M by one involving only a knot, K, which (with a little adjusting) is easily seen to be strongly invertible. Hence, M is a 2-fold branched cyclic covering space of S^3 . Some of the various knots that K might be are 8_3 , 10_3 , and any twist knot.

For the second group of examples, let K_1 denote a double of a noninvertible knot and let K_2 denote a trivial knot in $S^3 - K_1$ placed near the "critical" part of K_1 so that exactly one (suitable) twist, t, across a disk spanning K_2 , will unknot K_1 . Now assign any rational coefficient to K_1 and assign either +1 or -1 to K_2 so that the coefficient of K_2 becomes ∞ after the twist t. The link $K_1 \cup K_2 (=L)$ is invertible, but not strongly invertible. Furthermore, with the two coefficients attached, L provides a surgical description of a manifold N. After twisting by t about a disk spanning K_2 , we can replace our first surgical description of N by one involving only a trivial knot. Hence, N is a 2-fold branched cyclic covering space of S^3 ; in fact, N is a lens space.

Conjecture. No manifold obtained from nontrivial surgery on a double of a noninvertible knot is a 2-fold branched cyclic covering space of S^3 .

We conclude with two remarks, added in October, 1980, just before the paper went to press.

REMARK 1. Let K be a knot nontrivially imbedded in the interior of an unknotted solid torus V in S^3 , and suppose that one can invert K inside V (without disturbing $S^3 - \text{Int}(V)$). Let W be a solid torus in S^3 whose core is *not* strongly invertible, and let $f:V \to W$ be a faithful homeomorphism. With only minor technical restrictions on K, we can conclude that f(K) is invertible but not strongly (see Theorem 2 of [12]). One can easily construct examples (each with genus > 1) that are not double knots (see [12]).

REMARK 2. Richard Hartley has independently constructed counterexamples to Montesinos's conjecture (that every invertible knot is strongly invertible); see Hartley's paper [Knots and involutions, Math. Zeit., 171 (1980), 175-185].

REFERENCES

- 1. I. Bernstein and A. L. Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans Amer. Math. Soc., 247 (1979), 81-124.
- 2. R. H. Crowell and R. H. Fox, *Introduction to Knot Theory*, Graduate Texts in Mathematics **57**, Springer-Verlag, New York, 1977.
- 3. R. Kirby, *Problems in low dimensional manifold topology*, Proceeding of Synposia in Pure Mathematics XXXII, Amer. Math. Soc., Providence, R. I., 1978.
- 4. E. E. Moise, Geometric Topology in Dimensions 2 and 3, Graduate Texts in Mathematics 47, Springer-Verlag, New York, 1977.
- 5. J. Montesinos, Surgery on links and double branched covers of S³; Knots, Groups, and 3-Manifolds, Annals of Mathematics Studies **84**, 227-259, Princeton University Press, Princeton, N. J., 1975.
- 6. H. Schubert, Knoten und Vollringe, Acta Math., 90 (1953), 131-286.
- 7. P. A. Smith, Transformations of finite period, Ann. of Math., 39 (1938), 127-164.
- 8. J. L. Tollefson, Involutions on $S^1 \times S^2$ and other 3-manifolds, Trans. Amer. Math. Soc., 183 (1973), 139-152.
- 9. ——, Periodic homeomorphisms of 3-manifolds fibered over S^1 , Trans. Amer. Math. Soc., **223** (1976), 223-234.
- 10. F. Waldhausen, Über Involutionen der 3-sphäre, Topology, 8 (1969), 81-91.
- 11. W. Whitten, Surgically transforming links into noninvertible knots, Amer. J. Math., 44 (1972), 1269-1281.
- 12. ——, Switching and inverting knots, preprint.

Received January 24, 1979.

University of Southwestern Louisiana Lafayette, LA 70504